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ABSTRACT 28 

The precision with which items are encoded in working memory and attention decreases with 29 

the number of encoded items. Current theories typically account for this “set size effect” by 30 

postulating a hard constraint on the allocated amount of encoding resource. While these 31 

theories have produced models that are descriptively successful, they offer no principled 32 

explanation for the very existence of set size effects: given their detrimental consequences for 33 

behavioral performance, why have these effects not been weeded out by evolutionary 34 

pressure, by allocating resources proportionally to the number of encoded items? Here, we 35 

propose a theory that is based on an ecological notion of rationality: set size effects are the 36 

result of a near-optimal trade-off between behavioral performance and the neural costs 37 

associated with stimulus encoding. We derive models for four visual working memory and 38 

attention tasks and show that they account well for data from eleven previously published 39 

experiments. Moreover, our results suggest that the total amount of resource that subjects 40 

allocate for stimulus encoding varies non-monotonically with set size, which is consistent with 41 

our rational theory of set size effects but not with previous descriptive theories. Altogether, 42 

our findings suggest that set size effects may have a rational basis and highlight the 43 

importance of considering ecological costs in theories of human cognition.  44 

 45 

INTRODUCTION 46 

Human cognition is strongly constrained by set size effects in working memory and attention: the 47 

precision with which these systems encode information rapidly declines with the number of items, 48 

as observed in for example delayed estimation, change detection, visual search, and multiple-object 49 

tracking tasks (Ma & Huang, 2009; Ma, Husain, & Bays, 2014; Mazyar, van den Berg, & Ma, 2012; 50 

Mazyar, Van den Berg, Seilheimer, & Ma, 2013; J Palmer, 1990; John Palmer, 1994; Shaw, 1980; 51 

Wilken & Ma, 2004). By contrast, set size effects seem to be absent in long-term memory, where 52 

fidelity has been found to be independent of set size (Brady, Konkle, Gill, Oliva, & Alvarez, 2013). 53 

The existence of set size effects is thus not a general property of stimulus encoding, but a 54 

phenomenon that requires explanation. Despite an abundance of models, such an explanation is still 55 

lacking.  56 

A common way to model set size effects has been to assume that stimuli are encoded using a 57 

fixed total amount of resources, formalized as “samples” (Lindsay, Taylor, & Forbes, 1968; J 58 

Palmer, 1990; Sewell, Lilburn, & Smith, 2014; Shaw, 1980), slots (Zhang & Luck, 2008), 59 
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information bit rate (C. R. Sims, Jacobs, & Knill, 2012), Fisher information (Ma & Huang, 2009), 60 

or neural firing (Bays, 2014): the larger the number of encoded items, the lower the amount of 61 

resource available for each item and, therefore, the lower the precision per item. These models 62 

make a very specific prediction about set size effects: encoding precision is inversely proportional 63 

to set size. It has been found that this prediction is often inconsistent with empirical data, which has 64 

led more recent models to instead use a power law to describe set size effects (Bays, Catalao, & 65 

Husain, 2009; Bays & Husain, 2008; Devkar & Wright, 2015; Donkin, Kary, Tahir, & Taylor, 66 

2016; Elmore et al., 2011; Keshvari, van den Berg, & Ma, 2013; Mazyar et al., 2012; van den Berg, 67 

Awh, & Ma, 2014; van den Berg, Shin, Chou, George, & Ma, 2012; Wilken & Ma, 2004). These 68 

more flexible power-law models tend to provide excellent fits to experimental data, but they have 69 

been criticized for lacking a principled motivation (Oberauer, Farrell, Jarrold, & Lewandowsky, 70 

2016; Oberauer & Lin, 2017). Hence, previous research has evolved to power-law models that 71 

accurately describe how precision in working memory and attention depends on set size, but a 72 

principled theory that explains why these effects are best described by a power law – and why they 73 

exist at all – is still lacking. While there seems little room for further improvement in the descriptive 74 

power of these models, finding rational or normative answers to these more fundamental questions 75 

can deepen our understanding of the very origin of encoding limitations in working memory and 76 

attention.  77 

Although several previous studies have used normative or rational theories to explain certain 78 

aspects of working memory and attention, none of them has accounted for set size effects in a 79 

principled way. One example is our own previous work on visual search (Mazyar et al., 2012, 80 

2013), change detection (Keshvari, van den Berg, & Ma, 2012; Keshvari et al., 2013), and change 81 

localization (van den Berg et al., 2012), where we modelled the decision stage using optimal-82 

observer theory, while assuming an ad hoc power law to model the relation between encoding 83 

precision and set size. Another example is the work by Sims and colleagues, who developed a 84 

normative framework in which working memory and perceptual systems are conceptualized as 85 

optimally performing information channels (C. R. Sims, 2016; C. R. Sims et al., 2012). Their 86 

framework offers parsimonious explanations for several aspects of stimulus encoding in visual 87 

working memory, such as the relation between stimulus variability and encoding precision (C. R. 88 

Sims et al., 2012) and the non-Gaussian shape of encoding noise (C. R. Sims, 2015). However, their 89 

framework does not offer a normative explanation of set size effects. In their early work (C. R. Sims 90 

et al., 2012) they accounted for these effects by assuming that total information capacity is fixed, 91 
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which is similar to other fixed-resource models and predicts an inverse proportionality between 92 

encoding precision and set size. In their later work (A Emin Orhan, Sims, Jacobs, Knill, & Orhan, 93 

2014; C. R. Sims, 2016) they add to this the assumption that there is an inefficiency in distributing 94 

capacity across items and fit capacity as a free parameter at each set size. Neither of their 95 

assumptions is motivated by normative arguments. 96 

Here, we propose that set size effects may be a near-optimal solution to an ecological trade-97 

off. The starting point for our theory is the principle that stimulus encoding is costly (Attwell & 98 

Laughlin, 2001; Lennie, 2003; Sterling & Laughlin, 2015), which may have pressured the brain to 99 

balance behavioral benefits of high precision against neural costs (Christie & Schrater, 2015; 100 

Lennie, 2003; Ma & Huang, 2009; Pestilli & Carrasco, 2005). Indeed, consistent with this idea, it 101 

has been found that performance on perceptual decision-making tasks can be improved by 102 

increasing monetary reward (Baldassi & Simoncini, 2011; Della Libera & Chelazzi, 2006; Peck, 103 

Jangraw, Suzuki, Efem, & Gottlieb, 2009). However, what level of encoding precision establishes a 104 

good balance may depend not only on the level of reward, but possibly also on task-related factors 105 

such as set size. Based on these considerations, we hypothesize that set size effects are the result of 106 

an ecologically rational or normative strategy that balances behavioral performance against 107 

encoding costs. We next formalize this hypothesis, derive models from it for four visual working 108 

memory and attention tasks, and fit them to data from eleven previously published experiments.  109 

 110 

THEORY 111 

We first formalize and test our theory in the context of the delayed-estimation paradigm (Wilken & 112 

Ma, 2004) and will later examine its generalization to other tasks. In single-probe delayed-113 

estimation tasks, subjects briefly hold a set of items in memory and report their estimate of a 114 

randomly chosen target item (Fig. 1A; Table 1). Estimation error ε is the (circular) difference 115 

between the subject’s estimate and the true stimulus value s. Set size effects in this task manifest 116 

itself as a widening of the estimation error distribution (Fig. 1B). As in previous work (Keshvari et 117 

al., 2012, 2013, Mazyar et al., 2012, 2013, van den Berg et al., 2014, 2012), we assume that a 118 

memory x follows a Von Mises distribution with mean s and concentration parameter κ, and define 119 

encoding precision J as Fisher information (Cover & Thomas, 2005), which is one-to-one related to 120 

κ (see Supplementary Information). We assume that response noise is negligible, such that the 121 

estimation error is equal to the memory error, ε=x−s. Moreover, we assume variability in J across 122 

items and trials (Fougnie, Suchow, & Alvarez, 2012; Keshvari et al., 2012; Mazyar et al., 2012; van 123 
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den Berg et al., 2014, 2012), which we model using a gamma distribution with a mean J  and a 124 

scale parameter τ (see Supplementary Information).  125 

 126 

 127 

 128 

 129 

 130 

Figure 1. An ecologically rational model of set size effects in delayed estimation. (A) Example of a

delayed-estimation experiment. The subject is briefly presented with a set of stimuli and, after a short delay,

reports the value of a randomly chosen target item. (B) Estimation error distributions widen with set size,

suggesting a decrease in encoding precision (data from Experiment DE5 in Table 1; estimated precision

computed in the same way as in Fig. 3A). (C) Stimulus encoding is assumed to be associated with two kinds

of loss: a behavioral loss that decreases with encoding precision and a neural loss that is proportional to

both set size and precision. In the delayed-estimation task, the expected behavioral error loss is independent

of set size. (D) Total expected loss has a unique minimum that depends on the number of remembered

items. The mean precision per item that minimizes expected total loss is referred to as the optimal mean

precision (arrows) and decreases with set size. The parameter values used to produce panels C and D were

λ=0.01, β=2, and τ↓0.
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Table 1. Overview of experimental datasets used. Task responses were continuous in the delayed-131 

estimation experiments and categorical in the other tasks. DE5 and DE6 differed in the way color 132 

was reported (DE5: color wheel; DE6: scroll).  133 

Experiment Reference Task Feature Set sizes #subj 

DE1 (Wilken & Ma, 2004) Delayed estimation Color 1, 2, 4, 8 15 

DE2 (Zhang & Luck, 2008) Delayed estimation Color 1, 2, 3, 6 8 

DE3 (Bays et al., 2009) Delayed estimation Color 1, 2, 4, 6 12 

DE4 (van den Berg et al., 2012) Delayed estimation Orientation 1-8 6 

DE5 (van den Berg et al., 2012) Delayed estimation Color 1-8 13 

DE6 (van den Berg et al., 2012) Delayed estimation Color 1-8 13 

CD1 (Keshvari et al., 2013) Change detection Color 1, 2, 4, 8 7 

CD2 (Keshvari et al., 2013) Change detection Orientation 2, 4, 6, 8 10 

CL1 (van den Berg et al., 2012) Change localization Color 2, 4, 6, 8 7 

CL2 (van den Berg et al., 2012) Change localization Orientation 2, 4, 6, 8 11 

VS (Mazyar et al., 2013) Visual search Orientation 1, 2, 4, 8 6 

 134 

 135 

The key novelty of our theory is the idea that stimuli are encoded with a level of mean 136 

precision, ,J  that minimizes a combination of behavioral loss and neural loss. Behavioral loss is 137 

induced by making an error ε, which we formalize using a mapping Lbehavioral(ε). This mapping may 138 

depend on both internal incentives (e.g., intrinsic motivation) and external ones (e.g., the reward 139 

scheme imposed by the experimenter). For the moment, we choose a power-law function, 140 

Lbehavioral(ε)=|ε|
β
 with β>0 as a free parameter, such that larger errors correspond with larger loss. The 141 

expected behavioral loss, denoted , is obtained by averaging loss across all possible errors, 142 

weighted by the probability that each error occurs, 143 

 144 

      behavioral behavioral, | , ,L J N L p J N d      (1) 145 

 146 

where  | ,p J N  is the estimation error distribution for given mean precision and set size. In 147 

single-probe delayed-estimation tasks, the expected behavioral loss is independent of set size and 148 

subject to the law of diminishing returns (Fig. 1C, black curve). 149 

behavioralL
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A second kind of loss is the energetic expenditure incurred by representing a stimulus. Since 150 

this loss is primarily rooted in neural spiking activity, we refer to it as “neural loss” and use neural 151 

theory to make an estimate of the relation between encoding precision and neural loss. For many 152 

choices of spike variability, including the common one of Poisson-like variability (Ma, Beck, 153 

Latham, & Pouget, 2006), the precision (Fisher information) of a stimulus encoded in a neural 154 

population is proportional to the trial-averaged neural spiking rate (Paradiso, 1988; Seung & 155 

Sompolinsky, 1993). Moreover, it has been estimated that the energetic loss induced by each spike 156 

increases with spiking rate (Attwell & Laughlin, 2001; Lennie, 2003). When combining these two 157 

premises, the expected neural loss associated with the encoding of an item is a supralinear function 158 

of encoding precision. However, to minimize free model parameters, we assume for the moment 159 

that the function is linear (at the end of this section we present a mathematical proof that the main 160 

qualitative prediction of our theory generalizes to any supralinear function). Further assuming that 161 

stimuli are encoded independently of each other, expected neural loss is also proportional to the 162 

number of encoded items, N. We thus obtain  163 

 164 

  neural , ,L J N JN   (2) 165 

 166 

where α is a free parameter that represents the amount of neural loss incurred by a unit increase in 167 

mean precision (Fig. 1C, colored lines).   168 

We combine the two types of expected loss into a total expected loss function (Fig. 1D),  169 

 170 

 
     

 
total behavioral neural

behavioral

, , ,

, ,

L J N L J N L J N

L J N JN





 

 
  (3) 171 

 172 

where the weight λ≥0 represents the importance of keeping neural loss low relative to the 173 

importance of good performance. Since λ and α have interchangeable effects on the model 174 

predictions, they can be fitted as a single free parameter   . We refer to the level of mean 175 

precision that minimizes the total expected loss as optimal mean precision,  176 

 177 

    optimal total, argmin , .
J

J J N L J N   (4) 178 

 179 
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Under the loss functions proposed above, we find that optimalJ is a decreasing function of set size 180 

(Fig. 1D), which is qualitatively consistent with set size effects observed in experimental data (cf. 181 

Fig. 1B).   182 

 183 

Generality 184 

When formalizing the loss functions, we had to make specific assumptions about how behavioral 185 

errors map to behavioral loss and encoding precision to neural loss. Since these assumptions cannot 186 

yet be fully empirically substantiated, it is important to verify that our theory generalizes to other 187 

choices that we could have made. To this end, we asked under what conditions our general theory, 188 

Eq. (4), predicts a set size effect (i.e., a decline of encoding precision with set size). A mathematical 189 

proof (see Supplementary Materials) shows that the following four conditions are sufficient: (i) the 190 

expected behavioral loss is a strictly decreasing function of encoding precision, i.e., an increase in 191 

precision results in an increase in performance; (ii) the expected behavioral loss is subject to a law 192 

of diminishing returns (Mankiw, 2004): the higher the initial precision, the smaller the behavioral 193 

benefit obtained from an increase in precision; (iii) the expected neural loss is an increasing 194 

function of encoding precision; (iv) the expected neural loss associated with a fixed increase in 195 

precision increases with precision. Hence, the conditions under which our theory predicts set size 196 

effects are not limited to the specific loss functions that we formulated here, but represent a broad 197 

range of choices.  198 

 199 

RESULTS 200 

 201 

Model fits 202 

To evaluate whether our theory can quantitatively account for experimental data, we fit the model 203 

formulated above to 67 individual-subject data sets from a delayed-estimation benchmark set
*
 204 

(Table 1). The maximum-likelihood fit accounts well for the raw error distributions (Fig. 2A) and 205 

the two statistics that summarize these distributions (Fig. 2B). Hence, these data are consistent with 206 

the theory that set size effects are the result of an ecologically rational trade-off between behavioral 207 

                                                 
*
 The original benchmark set (van den Berg et al., 2014) contains 10 data sets with a total of 164 individuals. Two of 

these data sets were published in papers that later got retracted and another one contained data for only two set sizes, 

which is not very informative for our present purposes. While our model accounts well for these data sets (Fig. S1 in 

Supplementary Information), we decided to exclude them from the main analyses.  
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performance and neural cost. Maximum-likelihood estimates of the three model parameters ( , τ, 208 

and β) are provided in Supplementary Table S1.  209 

 210 

 211 

 212 

Comparison with a power-law model and an unconstrained model 213 

To compare the goodness of fit of this model with that of previously proposed descriptive models, 214 

we next fit the same data using a model variant in which the relation between encoding precision 215 

and set size is assumed to be a power law. This variant is identical to the VP-A model in our earlier 216 

work (van den Berg et al., 2014). Model comparison based on the Akaike Information Criterion 217 

(AIC) (Akaike, 1974) indicates that the goodness of fit is comparable between the two models, with 218 

a small advantage for the rational model (ΔAIC=5.27±0.70; throughout the paper, X±Y indicates 219 

Figure 2. Model fits to data from six delayed-estimation experiments. (A) Maximum-likelihood fits to

raw data of the worst-fitting and best-fitting subjects. Goodness of fit was measured as R2, computed for

each subject by concatenating histograms across set sizes. (B) Subject-averaged fits to the two statistics that

summarize the estimation error distributions (circular variance and kurtosis) as a function of set size, split

by experiment. Here and in subsequent figures, error bars and shaded areas represent 1 s.e.m. of the mean

across subjects.
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mean±s.e.m. across subjects). Hence, the rational model provides a principled explanation of set 220 

size effects without sacrificing quality of fit compared to previous descriptive models. 221 

To get an indication of the absolute goodness of fit of the rational model, we next examine 222 

how much room for improvement there is in the fits. We do this by fitting a model variant in which 223 

memory precision is a free parameter at each set size, while keeping all other aspects of the model 224 

the same (note that this model variant purely serves as a descriptive tool to obtain estimates of the 225 

empirical precision values, not as a process model of set size effects in visual working memory). 226 

We find a marginal AIC difference (ΔAIC=3.49±0.93, in favor of the unconstrained model), which 227 

indicates that the fits of the rational model are close to the best possible fits. This finding is 228 

corroborated by examination of the fitted parameter values: the estimated precision values in the 229 

unconstrained model closely match the precision values in the rational model (Fig. 3A).  230 

 231 

 232 

 233 

Total precision as a function of set size 234 

One feature that sets our rational theory apart from previous theories is that it does not predict a 235 

trivial relationship between the total amount of allocated encoding resource and set size. To see this, 236 

we quantify the amount of allocated resources as the precision per item summed across all items, 237 

Figure 3. Estimated encoding precision in the delayed-estimation experiments. (A) Best-fitting

precision values in the rational model scattered against the best-fitting precision values in the unconstrained

model. Each dot represents the estimates for a single subject. (B) Estimated mean encoding precision per

item (red) and total encoding precision (black) plotted against set size.

A

Mean precision in rational model

M
e

a
n

 p
re

c
is

io
n
 i
n

 

u
n
c
o

n
s
tr

a
in

e
d

 m
o

d
e

l

0

20

40

0 20 40

R2=0.88

0 20 40

R2=0.93

0 20 40

R2=0.99

0 20 40

R2=0.98

0 20 40

R2=0.94

0 20 40

R2=0.85

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8

DE1 DE2 DE3 DE4 DE5 DE6

Rational modelUnconstrained model
B

T
o

ta
l 
p

re
c
is

io
n
 /

Set size

0

10

20

30

40

P
re

c
is

io
n
 p

e
r 

it
e

m

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

per item

DE1 DE2 DE3 DE4 DE5 DE6
total

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/151365doi: bioRxiv preprint 

https://doi.org/10.1101/151365
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

total .J JN  In fixed-resource models, this quantity is by definition constant and in power-law 238 

models it varies monotonically with set size. By contrast, we find that in the fits to several of the 239 

delayed-estimation experiments, total precision in the rational model varies non-monotonically with 240 

set size (Fig. 3B, gray curves). To examine whether there is evidence for such non-monotonic 241 

behavior in the subject data, we use the fitted precision values from the unconstrained model as our 242 

best empirical estimates of the precision with which subjects encoded items. We find that these 243 

empirical estimates show signs of similar non-monotonic relations in some of the experiments (Fig. 244 

3B, black circles). To quantify this statistically, we performed Bayesian paired t-tests (JASP_Team, 245 

2017) to compare the empirical 
totalJ  estimates at set size 3 with the estimates at set sizes 1 and 6 in 246 

the experiments that included these set sizes (DE2 and DE4-6; Table 1). These tests reveal strong 247 

evidence that total precision at set size 3 is higher than total precision at both set sizes 1 248 

(BF+0=1.05·10
7
) and 6 (BF+0=4.02·10

2
). Moreover, across all six experiments, the subject-averaged 249 

set size at which 
totalJ  is highest in the unconstrained model is 3.52±0.18. These findings suggest 250 

that the total amount of resources that subjects allocate for stimulus encoding varies non-251 

monotonically with set size, which is consistent with our rational model but not with previous 252 

descriptive models. To the best of our knowledge, this non-monotonic behavior has not been 253 

reported before and may be used to further constrain models of visual working memory and 254 

attention. 255 

 256 

Alternative loss functions 257 

To evaluate the necessity of a free parameter in the behavioral loss function, Lbehavioral(ε), we also 258 

test the following three parameter-free choices: |ε|, ε
2
, and −cos(ε). Model comparison favors the 259 

original model with AIC differences of 14.0±2.8, 24.4±4.1, and 19.5±3.5, respectively. While there 260 

may be other parameter-free functions that give better fits, we expect that a free parameter is 261 

unavoidable here, as it is likely that the error-to-loss mapping differs across experiments (due to 262 

differences in external incentives) and possibly also across subjects within an experiment (due to 263 

differences in internal incentives). We also test a two-parameter function that was proposed recently 264 

(Eq. (5) in (C. R. Sims, 2015)). The main difference with our original choice is that this alternative 265 

function allows for saturation effects in the error-to-loss mapping. However, this extra flexibility 266 

does not increase the goodness of fit sufficiently to justify the additional parameter, as the original 267 

model outperforms this variant with an AIC difference of 5.3±1.8. 268 
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 269 

Generalization to other tasks 270 

We next examine the generality of our theory, by testing whether it can also explain set size effects 271 

in two change detection tasks (Table 1). In these experiments, the subject is on each trial 272 

sequentially presented with two sets of stimuli and reports whether there was a change at any of the 273 

stimulus locations (Fig. 4A). A change was present on half of the trials, at a random location and 274 

with a random change magnitude. The behavioral error, ε, takes only two values in this task: 275 

“correct” and “incorrect”. Therefore,  | ,p J N  specifies the probabilities of correct and incorrect 276 

responses for a given level of precision and set size, which depend on the observer’s decision rule. 277 

Following previous work (Keshvari et al., 2012, 2013), we assume that subjects use the Bayes-278 

Figure 4. Model fits to three categorical decision-making tasks. (A) Experimental paradigm in the

change-detection experiments. The paradigm for change localization was the same, except that a

change was present on each trial and subjects reported the location of change. (B) Model fits to

change-detection data. Top: hit and false alarm rates; bottom: psychometric curves. (C) Model fits to

change-localization data. (D) Experimental paradigm in the visual-search experiment. (E) Model fits

to visual-search data. Note that all models were fitted to raw response data, not to the summary

statistics visualized here (see Methods).

P
ro

p
o

rt
io

n
 “

c
h

a
n

g
e

” 
re

s
p
o

n
s
e

s

change 

(y/n)?

change 

(y/n)?

Set size

Change trials No-change trials

1 2 4 8
0

0.5

1

2 4 6 8

orientationcolor

Change magnitude (º)

N=1 N=2 N=4 N=6 N=8

0 30 60 90
0

0.5

1

0 30 60 90

orientationcolor

Change magnitude (º)

0 30 60 90
0

0.5

1

P
ro

p
o

rt
io

n
 c

o
rr

e
c
t N=2 N=4 N=6 N=8

color

0 30 60 90

orientation

A B

C

D
Target present Target absent

P
ro

p
o
rt

io
n
 “

ta
rg

e
t 

p
re

s
e

n
t”

 r
e

s
p
o

n
s
e

s

1

0

0.2

0.4

0.6

0.8

Low heterogeneity

Set size

2 4 6 82 4 6 82 4 6 8

Medium heterogeneity High heterogeneity

E

500 ms

Target 

present?

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/151365doi: bioRxiv preprint 

https://doi.org/10.1101/151365
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

optimal rule (see Supplementary Information) and that there is random variability in encoding 279 

precision. This decision rule introduces one free parameter, pchange, specifying the subject's prior 280 

belief that a change will occur. Due to the binary nature of ε in this task, the free parameter of the 281 

behavioral loss function drops out of the model, as its effect is equivalent to changing parameter 282 

(see Supplementary Information). The model thus has three free parameters ( , τ, and pchange). We 283 

find that the maximum-likelihood fits account well for the data in both experiments (Fig. 4B).  284 

So far, we have considered tasks with continuous and binary judgments. We next consider 285 

two change localization experiments (Table 1) in which judgments are non-binary but categorical. 286 

The task is identical to change detection, except that a change is present on every trial and the 287 

observer reports the location at which the change occurred (out of 2, 4, 6, or 8 locations). We again 288 

assume variable precision and an optimal decision rule (see Supplementary Information). Although 289 

the rational model has only two free parameters (  and τ), it accounts well for both datasets (Fig. 290 

4C).  291 

The final task to which we apply our theory is a visual search experiment (Mazyar et al., 292 

2013) (Table 1). Unlike the previous three tasks, this is not a working memory task, as there was no 293 

delay period between stimulus offset and response. Set size effects in this experiment are thus likely 294 

to stem from limitations in attention rather than memory, but our theory applies without any 295 

additional assumptions. Subjects judged whether a vertical target was present among one of N 296 

briefly presented oriented ellipses (Fig. 4D). The distractors were drawn from a Von Mises 297 

distribution centered at vertical. The width of the distractor distribution determined the level of 298 

heterogeneity in the search display. Each subject was tested under three different levels of 299 

heterogeneity. We again assume variable precision and an optimal decision rule (see Supplementary 300 

Information). This decision rule has one free parameter, ppresent, specifying the subject's prior degree 301 

of belief that a target will be present. We fit the three free parameters ( , τ, and ppresent) to the data 302 

from all three heterogeneity conditions at once and find that the model accounts well for the 303 

dependencies of the hit and false alarm rates on both set size and distractor heterogeneity (Fig. 4E). 304 

 305 

DISCUSSION 306 

Descriptive models of visual working memory and attention have evolved to a point where there is 307 

little room for improvement in how well they account for experimental data. However, the basic 308 

fact that encoding precision decreases with increasing set size still lacks a principled explanation. 309 
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Here, we examined a possible explanation based on normative and ecological considerations: set 310 

size effects may be the result of a rational trade-off between behavioral performance and costs 311 

induced by stimulus encoding. The models that we derived from this hypothesis account well for 312 

data across a range of quite different tasks, despite having relatively few parameters. Moreover, 313 

they account for a non-monotonicity that appears to exist between in the relation between set size 314 

and the total amount of resources that subjects allocate for stimulus encoding. 315 

While the main purpose of our study was to make a conceptual advancement – by providing a 316 

principled theory for a phenomenon that has thus far been approached only descriptively – 317 

consideration of additional mechanisms could further improve the fits and lead to more complete 318 

models. For example, previous studies have incorporated response noise (van den Berg et al., 2014, 319 

2012), non-target responses (Bays et al., 2009), and a (variable) limit on the number of remembered 320 

items (Dyrholm, Kyllingsbæk, Espeseth, & Bundesen, 2011; C. R. Sims et al., 2012; van den Berg 321 

et al., 2014) to improve fits. These mechanisms have not been motivated in a principled manner, but 322 

it might be possible to treat some of them using a rational approach similar to the one that we took 323 

here. For example, the level of response noise might be set by optimizing a trade-off between 324 

performance and motor control effort (Wolpert & Landy, 2012) and slot-like encoding could be a 325 

rational strategy if spreading encoding resources over multiple items incurs a metabolic loss, as has 326 

been suggested by previous work (Scalf & Beck, 2010). 327 

More broadly, our work speaks to the relation between descriptive and rational theories in 328 

psychology and neuroscience. The main motivation for rational theories is to reach a deeper level of 329 

understanding by analyzing a system in the context of the ecological needs and constraints that it 330 

evolved under. Besides the large literature on ideal-observer decision rules (Geisler, 2011; Green & 331 

Swets, 1966; Körding, 2007; Shen & Ma, 2016), rational approaches have been used to explain 332 

properties of receptive fields (Liu, Stevens, & Sharpee, 2009; Olshausen & Field, 1996; Vincent, 333 

Baddeley, Troscianko, & Gilchrist, 2005), tuning curves (Attneave, 1954; Barlow, 1961; Ganguli & 334 

Simoncelli, 2010), neural wiring (Cherniak, 1994; Chklovskii, Schikorski, & Stevens, 2002), and 335 

neural network modularity (Clune, Mouret, & Lipson, 2013). A transition from descriptive to 336 

rational explanations might be an essential step in the maturation of theories of biological systems, 337 

and in psychology there certainly seems to be more room for this kind of explanation. 338 

An alternative explanation of set size effects has been that the brain is unable to keep neural 339 

representations of multiple items segregated from one another (Endress & Szabó, 2017; Nairne, 340 

1990; Oberauer & Lin, 2017; A E Orhan & Ma, 2015; Z. Wei, Wang, & Wang, 2012): as the 341 
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number of encoded items increases, so does the level of interference in their representations, 342 

resulting in lower task performance. However, these models offer no principled justification for the 343 

existence of interference and some require additional mechanisms to account for set size effects; for 344 

example, the model by Oberauer and colleagues requires three additional components – including a 345 

set-size dependent level of background noise – to fully account for set size effects (Oberauer & Lin, 346 

2017). That being said, we do not deny there may be interference effects in working memory and 347 

adding them to models we presented here may improve their goodness of fit. 348 

Our approach shares both similarities and differences with the concept of bounded rationality 349 

(Simon, 1957), which states that human behavior is guided by mechanisms that provide “good 350 

enough” solutions rather than optimal ones. The main similarity is that both approaches 351 

acknowledge that human behavior is constrained by various cognitive limitations. However, an 352 

important difference is that in the theory of bounded rationality, these limitations are postulates or 353 

axioms, while our approach explains them as rational outcomes of ecological optimization 354 

processes. This suggestion that cognitive limitations are subject to optimization instead of fixed 355 

may also have implications for theories outside the field of psychology. In the theory of “rational 356 

inattention” in behavioral economics, agents make optimal decisions under the assumption that 357 

there is a fixed limit on the total amount of attention that they can allocate to process economic data 358 

(C. A. Sims, 2003). This fixed-attention assumption is similar to the fixed-resource assumption in 359 

models of visual working memory and it could be interesting to explore the possibility that the 360 

amount of allocable attention is the outcome of a trade-off between expected economic performance 361 

and the expected cost induced by allocating attention to process economic data.  362 

While our results show that set size effects can in principle be explained as the result of an 363 

optimization strategy, they do not necessarily imply that encoding precision is fully optimized on 364 

every trial in any given task. First, encoding precision in the brain most likely has an upper limit, 365 

due to irreducible sources of noise such as Johnson noise and Poisson shot noise (Faisal, Selen, & 366 

Wolpert, 2008; Smith, 2015), as well as suboptimalities early in sensory processing (Beck, Ma, 367 

Pitkow, Latham, & Pouget, 2012). This prohibits the brain from reaching the near-perfect 368 

performance levels that our model predicts when the behavioral loss associated to errors is huge. 369 

Second, precision might have a lower limit: task-irrelevant stimuli are sometimes automatically 370 

encoded (Shin & Ma, 2016; Yi, Woodman, Widders, Marois, & Chun, 2004), perhaps because in 371 

natural environments few stimuli are ever completely irrelevant. This would prevent subjects from 372 

sometimes encoding nothing at all, in contradiction to what our theory predicts to happen at very 373 
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large set sizes. Third, all models that we tested incorporated variability in encoding precision. Part 374 

of this variability is possibly due to stochastic factors such as neural noise, but part of it may also be 375 

systematic in nature (e.g., particular colors and orientations may be encoded with higher precision 376 

than others (Bae, Allred, Wilson, & Flombaum, 2014; Girshick, Landy, & Simoncelli, 2011)). 377 

Whereas the systematic component could have a rational basis (e.g., higher precision for colors and 378 

orientations that occur more frequently in natural scenes (Ganguli & Simoncelli, 2010; X.-X. Wei & 379 

Stocker, 2015)), this is unlikely to be true for the random component. Indeed, when we jointly 380 

optimize J  and τ, we find estimates of τ that are consistently 0, meaning that any variability in 381 

encoding precision is suboptimal from the perspective of our model. Finally, even if set size effects 382 

are the result of a rational trade-off between behavioral and neural loss, it may be that the solution 383 

that the brain settled on works well on average, but is not tailored to provide an optimal solution in 384 

every possible situation. In that case, set size effects could be more rigid across environmental 385 

changes (e.g., in task or reward structure) than predicted by a model that incorporates every such 386 

change in a fully optimal manner.  387 

One way to assess the plausibility and generality of a model is by examining whether variations 388 

in parameters map in a meaningful way to variations in experimental methods. Unfortunately, this 389 

approach was not possible here, because both the subject populations and experimental methods 390 

varied on a considerable number of dimensions across experiments, including stimulus time and 391 

contrast, delay time, instructions, scoring function, and the type and amount of reward. More 392 

controlled studies could be performed to further evaluate our theory, by varying a specific 393 

experimental factor that is expected to affect one of the loss functions, while keeping all other 394 

factors the same. For example, one way to manipulate the behavioral loss function would be to 395 

impose an explicit scoring function and vary this function across conditions while keeping all other 396 

factors constant. Interestingly, a previous study that performed such a manipulation in a delayed-397 

estimation experiment found a behavioral effect in one experiment (Zhang & Luck, 2011), but 398 

unfortunately they did not vary set size. Another way to manipulate the behavioral loss function in 399 

working memory tasks is to use a cue to indicate which item is most likely going to be probed. 400 

Previous studies that used this manipulation (Bays, 2014; Klyszejko, Rahmati, & Curtis, 2014) 401 

found increased encoding precision in cued items compared to uncued items, consistent with an 402 

ideal observer strategy. It would be interesting to examine whether our model can quantitatively 403 

account for such data. Moreover, an intuitive argument suggests that our theory predicts set size 404 

effects on the cued item to become weaker as a function of cue validity. At minimum cue validity – 405 
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which is equivalent to using no cue, as in the experiments analyzed in this paper – our model 406 

predicts a decline of encoding precision with set size. At maximum validity, however, the loss-407 

minimizing strategy is obviously to always encode the cued item with the level of precision that 408 

would be optimal for set size 1, thus entirely eliminating a set size effect. Our model makes precise 409 

quantitative predictions about this transition from strong set size effects at low cue validity to no set 410 

size effects at maximum cue validity. Moreover, the predicted set size effects are likely to differ 411 

between the cued and uncued items, which could be tested using the same experiment.  412 

A seemingly obvious way to experimentally manipulate the neural loss function would be to 413 

vary the delay period. However, the neural mechanisms underlying working memory maintenance 414 

are still debated, which makes it difficult to derive model predictions for this manipulation. One 415 

possibility is that working memories are maintained in persistent activity (Funahashi, Bruce, & 416 

Goldman-Rakic, 1989; Fuster & Alexander, 1971), in which case it would be reasonable to assume 417 

that the neural cost related to maintenance increases linearly with delay time. If there is no initial 418 

cost associated to creating a memory, then a doubling of delay time should have the same effect as a 419 

doubling of set size. However, if there is an initial cost on top of the maintenance cost, then the 420 

effect of increasing delay period will be milder, especially if the initial cost is high. Moreover, it is 421 

has been argued that working memories may be maintained by increasing residual calcium levels at 422 

presynaptic terminals, which temporarily enhances synaptic strength and avoids the need for 423 

enhanced spiking (Mongillo, Barak, & Tsodyks, 2008). This way, an increase in delay time would 424 

induce little extra cost and our theory would predict only a mild effect of delay time on encoding 425 

precision, even in the absence of an initial cost. A recent study that varied delay period in a delayed-426 

estimation task (Pertzov, Manohar, & Husain, 2017) indeed found only modest effects of delay time 427 

on estimation error. However, given the uncertainties about the relation between maintenance time 428 

and total neural cost, it would be premature to draw strong conclusions from this finding.  429 

Developmental work has shown that working memory capacity estimates change with age 430 

(Simmering, 2012; Simmering & Perone, 2012). Viewed from the perspective of our proposed 431 

theory, this raises the question why the optimal trade-off between behavioral and neural loss would 432 

change with age. A speculative answer could be that a subject's encoding efficiency (formalized by 433 

parameter α in Eq. (2)) may improve during childhood. An increase in encoding efficiency (i.e., 434 

lower α) has the same effect in our model as a decrease in the set size (i.e., higher N), which we 435 

know is accompanied by an increase in optimal encoding precision. Hence, our model would 436 
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predict subjects to increase encoding precision over time, which is qualitatively consistent with the 437 

findings of the developmental studies. 438 

Finally, our results raise the question what neural mechanisms could implement the kind of 439 

near-optimal resource allocation strategy that is the core of our theory. Some form of divisive 440 

normalization (Bays, 2014; Carandini & Heeger, 2012) would be a likely candidate, which is 441 

already a key operation in neural models of attention (Reynolds & Heeger, 2009) and visual 442 

working memory (Bays, 2014; Z. Wei et al., 2012). The essence of this mechanism is that it lowers 443 

the gain when set size is larger, without requiring knowledge of the set size prior to the presentation 444 

of the stimuli.  445 

 446 

METHODS 447 

Data and code sharing 448 

All data analyzed in this paper and model fitting code are available at [url to be inserted].  449 

 450 

Model fitting 451 

Delayed estimation. We used Matlab’s fminsearch function to find the parameter vector 452 

 , ,  θ  that maximizes the log likelihood function, , where n is the number 453 

of trials in the subject’s data set, εi the estimation error on the i
th

 trial, and Ni the set size on that 454 

trial. To reduce the risk of converging into a local maximum, initial parameter estimates were 455 

chosen based on a coarse grid search over a large range of parameter values. The predicted 456 

estimation error distribution for a given parameter vector θ was computed as follows. First, 
optimalJ  457 

was computed by applying Matlab's fminsearch function to Eq. (5). In this process, the integrals 458 

over ε and J were approximated numerically by discretizing the distributions of these variables into 459 

100 and 20 equal-probability bins, respectively. Next, the gamma distribution over precision with 460 

mean 
optimalJ  and scale parameter τ was discretized into 20 equal-probability bins. Thereafter, the 461 

predicted estimation error distribution was computed under the central value of each bin. Finally, 462 

these 20 predicted distributions were averaged. We verified that our results are robust under 463 

changes in the number of bins used in the numerical approximations. 464 

 
1

log | ,
n

i i

i

p N


 θ
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Change detection. Model fitting in the change detection task consisted of finding parameter 465 

vector  , ,  changep θ  that maximizes , where n is the number of trials in 466 

the subject’s data set, Ri is the response (“change” or “no change”), Δi the magnitude of change, and 467 

Ni the set size on the i
th

 trial. For computational convenience, Δ was discretized into 30 equally 468 

spaced bins. To find the maximum-likelihood parameters, we first created a table with predicted 469 

probabilities of “change” responses for a large range of ( J , τ, pchange) triplets. One such table was 470 

created for each possible (Δ, N) pair. Each value p(R=“change” | N, Δ, J , τ, pchange) in these tables 471 

was approximated using the optimal decision rule (see Supplementary Information) applied to 472 

10,000 Monte Carlo samples. Next, for a given set of parameter values, the log likelihood of each 473 

trial response was computed in two steps. First, the expected total loss was computed as a function 474 

of J , using    total incorrect, ,L J N p J N JN  , where  incorrect ,p J N  was estimated using the pre-475 

computed tables. Second, we looked up log p(Ri | Ni, Δi, optimalJ  , τ, pchange) from the pre-computed 476 

tables, where 
optimalJ   is the value of J  for which expected total loss was lowest. To estimate the 477 

best-fitting parameters, we performed a grid search over a large set of parameter combinations, 478 

separately for each subject.  479 

Change localization and visual search. Model fitting methods for the change-localization 480 

and visual-search tasks were identical to the methods for the change-detection task, except for 481 

differences in the parameter vectors (no prior in the change localization task; ppresent instead of 482 

pchange in visual search) and the optimal decision rules (see Supplementary Information). 483 

 484 
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 712 

MODEL DETAILS 713 

Relation between J and κ 714 

We measure encoding precision as Fisher Information, denoted J. As derived in earlier work 715 

(Keshvari, van den Berg, & Ma, 2012), the mapping between J and the concentration parameter κ of 716 

a Von Mises encoding noise distribution is , where I1 is the modified Bessel 717 

function of the first kind of order 1. Larger values of J map to larger values of κ, corresponding to 718 

narrower noise distributions.   719 

 720 

Variable precision 721 

In all our models, we incorporated variability in precision (Fougnie, Suchow, & Alvarez, 2012; van 722 

den Berg, Shin, Chou, George, & Ma, 2012) by drawing the precision for each encoded item 723 

independently from a Gamma distribution with mean J  and scale parameter τ. We denote the 724 
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distribution of a single precision value by  | ,p J J   and the joint distribution of the precision 725 

values of all N items in a display by    
1

| , | ,
N

i

i

p J p J J 


J . 726 

 727 

Expected behavioral loss function by task 728 

As a consequence of variability in precision, computation of expected behavioral loss requires 729 

integration over both the behavioral error, ε, and the vector with precision values, J, 730 
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  731 

The distribution of precision,  | ,p J J , is the same in all models, but Lbehavioral(ε) and p(ε|J,N) are 732 

task-specific. We next specify these two components separately for each task. 733 

Delayed estimation. In delayed estimation, the behavioral error only depends on the memory 734 

representation of the target item. We assume that this representation is corrupted by Von Mises 735 

noise, 736 

    
  

   T cos

T

0 T

1
| , | ,

2

F J
p N p J e

I F J


 


 J  737 

where JT is the precision of the target item and F(.) maps Fisher Information to a concentration 738 

parameter κ; we implement this mapping by numerically inverting the mapping specified in the 739 

previous section. Furthermore, the behavioral loss function is assumed to be a power-law function 740 

of the absolute estimation error, Lbehavioral=|ε|
β
, where β>0 is a free parameter.  741 

Change detection. We assume that subjects report “change present” whenever the posterior 742 

ratio for a change exceeds 1, 743 

 
 

 

change present | ,
1,

change absent | ,

p

p


x y

x y
  744 

where x and y denote the vectors of noisy measurements of the stimuli in the first and second 745 

displays, respectively. Under the Von Mises assumption, this rule evaluates to (Keshvari, van den 746 

Berg, & Ma, 2013) 747 
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   748 

where pchange is a free parameter representing the subject’s prior belief that a change will occur, and 749 

κx,i and κy,i denote the concentration parameters of the Von Mises distributions associated with the 750 

observations of the stimuli at the i
th

 location in the first and second displays, respectively. 751 

 The behavioral error, ε, takes only two values in this task: correct and incorrect. We assume 752 

that observers map each of these values to a loss value, 753 

 754 

   incorrec

behavioral

t

correct

    if  is "incorrect"

      if  is "correct".

L
L

L







 


 755 

 756 

For example, an observer might assign a loss of 0 to any correct decision and a loss of 1 to any 757 

incorrect decision. The expected behavioral loss is a weighted sum of Lincorrect and Lcorrect,  758 

 759 

       behavioral correct correct correct incorrect, , 1 , ,L J N p J N L p J N L     760 

 761 

where  correct ,p J N  is the probability of a correct decision. This probability is not analytic, but can 762 

be easily be approximated using Monte Carlo simulations.  763 

Change localization. Expected behavioral loss is computed in the same way as in the 764 

change-detection task, except that a different decision rule must be used to compute  correct ,p J N . 765 

As shown in earlier work (van den Berg et al., 2012), the Bayes-optimal rule for the change-766 

localization task is to report the location that maximizes 
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2 2
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,
2 cos
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767 

where all terms are defined in the same way as in the model for the change-detection task.  768 

Visual search. The expected behavioral loss in the model for visual search is also computed 769 

in the same way as in the model for change detection, again with the only difference being the 770 

decision rule used to compute  correct ,p J N . The Bayes-optimal rule for this task is to report “target 771 
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 where ppresent is the subject’s prior 772 

belief that the target will be present, κD the concentration parameter of the distribution from which 773 

the distractors are drawn, κi the concentration parameter of the noise distribution associated to the 774 

stimulus at location i, xi the noisy observation of the stimulus at location i, and sT  the value of the 775 

target (see (Mazyar, Van den Berg, Seilheimer, & Ma, 2013) for a derivation).  776 

 777 

The behavioral loss function drops out when the behavioral error is binary  778 

When the behavioral error ε takes only two values, the behavioral loss can also take only two 779 

values. The integral in the expected behavioral loss (Eq (2) in the main text) then simplifies to a 780 

sum of two terms,  781 

 782 
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   784 

The optimal (loss-minimizing) value of J  is then 785 

 786 

 

      

   

optimal correct correct incorrect incorrect neural

correct L neural
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  787 

 788 

where ΔL ≡ Lcorrect – Lincorrect. Since ΔL and   have interchangeable effects on optimalJ , we fix ΔL to 1 789 

and fit only  as a free parameter. 790 

 791 

Conditions under which optimal precision declines with set size 792 

In this section, we show that when the expected behavioral loss is independent of set size (as in 793 

single-probe delayed estimation and change detection), the rational model predicts optimal 794 

precision to decline with set size whenever the following four conditions are satisfied: 795 

1) The expected behavioral loss is a strictly decreasing function of encoding precision, i.e., an 796 

increase in precision results in an increase in behavioral performance.  797 
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2) The expected behavioral loss is subject to a law of diminishing returns (Mankiw, 2004): the 798 

behavioral benefit obtained from a unit increase in precision decreases with precision. This 799 

law will hold when condition 1 holds and the loss function is bounded from below, which is 800 

generally the case as errors cannot be negative. 801 

3) The expected neural loss is an increasing function of encoding precision.  802 

4) The expected neural loss per unit of precision is a non-decreasing function of precision. On 803 

the premise that precision is proportional to spike rate (Paradiso, 1988; Seung & 804 

Sompolinsky, 1993), this condition is satisfied if loss per spike increases with spike rate, 805 

which has been found to be the case (Sterling & Laughlin, 2015). 806 

These conditions translate to the following constraints on the first and second derivatives of the 807 

expected loss functions, 808 
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The loss-minimizing value of precision is found by setting the derivative of the expected total loss 810 

function to 0, 811 

 812 

      total behavioral neural0 ' ' ' ,L J L J NL J     813 

 814 

which is equivalent to 815 
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The left-hand side is strictly positive for any J , because of constraints 1 and 3 above. In addition, it 818 

is a strictly decreasing function of J , because 819 
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is necessarily greater than 0 due to the four constraints specified above. As illustrated in 822 

Supplementary Figure S2, Eq. (S5) can be interpreted as the intersection point between the function 823 

specified by the left-hand side (solid curve) and a flat line at a value N (dashed lines). The value 824 

of J  at which this intersection occurs (i.e., optimalJ  ) necessarily decreases with N. 825 

Hence, in tasks where the expected behavioral loss is independent of set size, our model 826 

predicts a decline of precision with set size whenever the above four, rather general conditions hold. 827 

When expected behavioral loss does depend on set size (such as in whole-array change detection or 828 

change localization), the proof above does not apply and we were not able to extend the proof to 829 

this domain. (Anderson & Awh, 2012) (Anderson, Vogel, & Awh, 2011) (Rademaker, Tredway, & 830 

Tong, 2012) 831 

PARAMETER ESTIMATES 832 

Table S1. Subject-averaged parameter estimates of the rational model fitted to data from 11 833 

previously published experiments. See Table 1 in main text for details about the experiments and 834 

references to the papers in which the experiments were originally published.  835 

Experiment   τ β pchange ppresent 

DE1 (4.48 ± 0.66)·10
−3

 16.7±2.1 1.97±0.43   

DE2 (2.66 ± 0.28)·10
−3

 12.6±1.2 (7.1±1.2) ·10
−2

   

DE3 (3.47 ± 0.34) ·10
−3

 17.9±2.1 0.228±0.040   

DE4 (4.5 ± 1.0)·10
−3

 7.3±1.7 0.176±0.064   

DE5 (4.15 ± 0.37)·10
−3

 18.5±3.0 0.426±0.089   

DE6 (4.89 ± 0.57)·10
−3

 7.6±1.4 0.66±0.14   

CD1 (5.01 ± 0.98)·10
−3

 6.2±1.7  0.517±0.007  

CD2 (2.21 ± 0.57)·10
−3

 27.6±5.6  0.526±0.009  

CL1 (5.93 ± 0.45)·10
−3

 20.9±1.8    

CL2 (3.64 ± 0.69)·10
−3

 55±12    

VS (3.01 ± 0.04)·10
−1

 155±42   0.509±0.004 
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SUPPLEMENTARY FIGURES 869 
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Supplementary figure S1. Fits to the three delayed-estimation benchmark

data sets that were excluded from the main analyses. Circular variance (top)

and circular kurtosis (bottom) of the estimation error distributions as a function of

set size, split by experiment. Error bars and shaded areas represent 1 s.e.m. of the

mean across subjects. The first three datasets were excluded from the main

analyses on the ground that they were published in papers that were later retracted

(Anderson & Awh, 2012; Anderson et al. 2011). The Rademaker et al. (2012)

dataset was excluded from the main analyses because it contains only two set

sizes, which makes it less suitable for a fine-grained study of the relationship

between encoding precision and set size.
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Figure S2. Graphical illustration of Eq. (S1). The

value of   at which the equality described by Eq. (S1)

holds is the intersection point between the function

specified by the left-hand side (red curve) and a flat

line at a value Nλ. Since the left-hand side is strictly

positive and also a strictly decreasing function of   ,
the value at which this intersection occurs (i.e.,   optimal)

necessarily decreases with N.
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