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ABSTRACT

There is a vast array of new and improved methods for comparing groups and studying
associations that offer the potential for substantially increasing power, providing improved
control over the probability of a Type I error, and yielding a deeper and more nuanced under-
standing of neuroscience data. These new techniques effectively deal with four insights into
when and why conventional methods can be unsatisfactory. But for the non-statistician, the
vast array of new and improved techniques for comparing groups and studying associations
can seem daunting, simply because there are so many new methods that are now available.
The paper briefly reviews when and why conventional methods can have relatively low power
and yield misleading results. The main goal is to suggest some general guidelines regarding
when, how and why certain modern techniques might be used.
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1 Introduction

The typical introductory statistics course covers classic methods for comparing groups (e.g.,
Students t-test, the ANOVA F test and the Wilcoxon-Mann—Whitney test) and studying
associations (e.g., Pearsons correlation and least squares regression). The two-sample Stu-
dents t-test and the ANOVA F test assume that sampling is from normal distributions and
that the population variances are identical, which is generally known as the homoscedastic-
ity assumption. When testing hypotheses based on the least squares regression estimator
or Pearsons correlation, similar assumptions are made. (Section 2.2 elaborates on the de-
tails.) An issue of fundamental importance is whether violating these assumptions can have
a serious detrimental impact on two key properties of a statistical test: the probability of
a false positive, also known as a Type I error, and power, the probability of detecting true
differences among groups and a true association among two or more variables. There is the
related issue of whether conventional methods provide enough detail regarding how groups
differ as well as the nature of true association.

There are a variety of relatively well-known techniques for dealing with non-normality and
unequal variances. For example, use a rank based method. However, by modern standards,
these methods are relatively ineffective for reasons reviewed in section 3. More effective
techniques are indicated in section 4.

The good news is that when comparing groups that have non-normal but identical distri-
butions, control over the Type I error probability is, in general, reasonably good when using
conventional techniques. But if the groups differ, there is now a vast literature indicating
that under general conditions, power can be relatively poor. In practical terms, important
differences among groups might be missed (e.g., Wilcox, 2017a, b, ¢). Even when the nor-
mality assumption is true, but the population variances differ (called heteroscedasticity),
power can be adversely impacted when using the ANOVA F.

Similar concerns arise when dealing with regression. Conventional methods, including
rank-based techniques, perform well, in terms of controlling the probability of a Type I
error, when there is no association. But when there is an association, conventional methods,
including rank-based techniques (e.g., Spearmans rho and Kendalls tau) can have a relatively
low probability of detecting an association relative to modern methods developed during the
last thirty years.

Practical concerns regarding conventional methods stem from four major insights (e.g.,

Wilcox, 2017a, ¢). These insights can be briefly summarized as follows.

e The central limit and skewed distributions: much larger sample sizes might be needed
to assume normality than is generally recognized.

e There is now a deeper understanding of the role of outliers and how to deal with
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them. Some seemingly obvious strategies for dealing with outliers, based on standard
training, are known to be highly unsatisfactory for reasons outlined later in the paper.

e There is a substantial literature indicating that methods that assume homoscedasticity
(equal variances) can yield inaccurate results when in fact there is heteroscedasticity,
even when the sample sizes are quite large.

e When dealing with regression, curvature refers to situations where the regression line
is not straight. There is now considerable evidence that curvature is a much more
serious concern than is generally recognized.

Robust methods are typically thought of as methods that provide good control over the
probability of a Type I error. But today they deal with much broader issues. In particular,
they are designed to deal with the problems associated with skewed distributions, outliers,
heteroscedasticity and curvature that were outlined above.

One of the more fundamental goals among robust methods is to develop techniques
that are not overly sensitive to very small changes in a distribution. For instance, a slight
departure from normality should not destroy power. This rules out any method based on the
mean and variance (e.g., Staudte & Sheather, 1990; Wilcox, 2017a, b). Section 2.3 illustrates
this point.

Many modern robust methods are designed to have nearly the same amount of power as
conventional methods under normality, but they continue to have relatively high power under
slight departures from normality where conventional techniques based on means perform
poorly. There are other fundamental goals, some of which are relevant regardless of how
large the sample sizes might be. But an effective description of these goals goes beyond the
scope of this paper. For present purposes, the focus is on achieving relatively high power.

Another point that should be stressed has to do with standard power analyses. A common
goal is to justify some choice for the sample sizes prior to obtaining any data. Note that in
effect, the goal is to address a statistical issue without any data. Typically this is done by
assuming normality and homoscedasticity, which in turn can suggest that relatively small
sample sizes provide adequate power when using means. A practical concern is that violating
either of these two assumptions can have a tremendous impact on power when attention is
focused exclusively on comparing means. Section 2.1 illustrates this concern when dealing
with measures of central tendency. Similar concerns arise when dealing with least squares
regression and Pearson’s correlation. These concerns can be mitigated by using recently
developed robust methods summarized here as well as in Wilcox (2017a, c).

There is now a vast array of new and improved methods that effectively deal with known
concerns associated with classic techniques (e.g., Maronna et al., 2006; Heritier et al., 2009;
Wilcox, 2017a, b, ¢). They include substantially improved methods for dealing with all four
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of the major insights previously listed. Perhaps more importantly, they can provide a deeper,
more accurate and more nuanced understanding of data as will be illustrated in section 5.

For books focused on the mathematical foundation of modern robust methods, see Ham-
pel et al. (1986), Huber and Ronchetti (2009), Maronna et al. (2006), and Staudte and
Sheather (1990). For books focused on applying robust methods, see Heritier et al. (2009)
and Wilcox (2017a, c¢). From an applied point of view, the difficulty is not finding a
method that effectively deals with violations of standard assumptions. Rather, for the non-
statistician, there is the difficulty of navigating through the many alternative techniques that
might be used. This paper is an attempt to deal with this issue by providing a general guide
regarding when and how modern robust methods might be used when comparing two or
more groups. When dealing with regression, all of the concerns associated with conventional
methods for comparing groups remain and new concerns are introduced. A few issues related
to regression and correlations are covered here, but it is stressed that there are many other

modern advances that have practical value. Readers interested in regression are referred to
Wilcox (2017a, c).

A few general points should be stressed. First, if robust methods, such as modern methods
based on the median described later in this paper, give very similar results to conventional
methods based on means, this is reassuring that conventional methods based on the mean are
performing relatively well in terms of Type I errors and power. But when they differ, there
is doubt about the validity of conventional techniques. In a given situation, conventional
methods might perform well in terms of controlling the Type I error probability and providing
reasonably high power. But the best that can be said is that there are general conditions
where conventional methods do indeed yield inaccurate inferences. A particular concern is
that they can suffer from relatively low power in situations where more modern methods
have relatively high power. More details are provided in sections 3 and 4.

Second, the choice of method can make a substantial difference in our understanding of
data. One reason is that modern methods provide alternative and interesting perspectives
that more conventional methods do not address. A complication is that there is no single
method that dominates in terms of power or providing a deep understanding of how groups
compare. The same is true when dealing with regression and measures of association. The
reality is that several methods might be needed to address even what appears as a simple
problem, for instance comparing two groups.

There is, of course, the issue of controlling the probability of one or more Type I errors
when multiple tests are performed. There are many modern improvements for dealing with
this issue (e.g., Wilcox, 2017a, ¢). And another strategy is to put more emphasis on ex-
ploratory studies. One could then deal with the risk of false positive results by conducting a
confirmatory study aimed at determining whether significant results in an exploratory study
can be replicated (Wagenmakers et al., 2012). Otherwise, there is the danger of missing
important details regarding how groups compare. One of the main messages here is that de-
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spite the lack of a single method that dominates, certain guidelines can be offered regarding
how to analyze data.

Modern methods for plotting data can be invaluable as well (e.g., Rousselet, et al., 2017;
Rousselet et al., 2016; Weissgerber et al., 2016) In particular, they can provide important
perspectives beyond the common strategy of using error bars. Complete details go beyond
the scope of this paper, but section 5 illustrates some of the more effective plots that might
be used.

The paper is organized as follows. Section 2 briefly reviews when and why conventional
methods can be highly unsatisfactory. This is necessary in order to appreciate modern
technology and because standard training typically ignores these issues. Efforts to modernize
basic training have been made (e.g., Field et al., 2012; Wilcox, 2017b, ¢). And a 2016
special issue of the American Statistician (volume 69, number 4) was aimed at encouraging
instructors to modernize their courses. (This special issue touches on a broader range of
topics than those discussed here.) Some neuroscientists are trained in a manner that takes
into account modern insights relevant to basic principles. But it is evident that most are
not. Section 3 reviews the seemingly more obvious strategies aimed at salvaging standard
techniques, the point being that by modern standards they are relatively ineffective and
cannot be recommended. Moreover, certain strategies are not technically sound. Section 3
also provides an indication of how concerns regarding conventional methods are addressed
using more modern techniques. Section 4 describes strategies for comparing two independent
or dependent groups that take modern advances into account. Included are some methods
aimed at comparing correlations as well as methods designed to determine which independent
variables are most important. Section 5 illustrates modern methods using data from several
studies.

2 Insights Regarding Conventional Methods

This section elaborates on the concerns with conventional methods for comparing groups
and studying associations stemming from the four insights previously indicated.

2.1 Skewed Distributions

A skewed distribution simply refers to a distribution that is not symmetric about some
central value. An example is shown in Figure 1A. Such distributions occur naturally. An
example relevant to the neurosciences is given in section 5.2. Skewed distributions are a much
more serious problem for statistical inferences than once thought due to insights regarding
the central limit theorem.
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Consider the one-sample case. Conventional wisdom is that with a relatively small sample
size, normality can be assumed under random sampling. An implicit assumption was that
if the sample mean has, approximately, a normal distribution, then Students t-test will
perform reasonably well. It is now known that this is not necessarily the case as illustrated,
for example, in Wilcox (2017a, b).

This point is illustrated here using a simulation that is performed in the following man-
ner. Imagine that data are randomly sampled from the distribution shown in Figure 1A
(a lognormal distribution) and the mean is computed based on a sample size of n = 30.
Repeating this process 5000 times, the thick black line in Figure 1B shows a plot of the
resulting sample means; the thin gray line is the plot of the means when sampling from a
normal distribution instead. The distribution of T" values for samples of n = 30 is indicated
by the thick black line in Figure 1C; the thin gray line is the distribution of T" values when
sampling from a normal distribution. As can be seen, the actual T distribution extends out
much further to the left compared to the distribution of 7" under normality. That is, in the
current example, sampling from a skewed distribution leads to much more extreme values
than expected by chance under normality, which in turn results in more false positive results
than expected when the null hypothesis is true.

Suppose the goal is to test some hypothesis at the 0.05 level. Bradley (1978) suggests that
as a general guide, control over the probability of a Type I error is minimally satisfactory
if the actual level is between 0.025 and 0.075. When we test at the 0.05 level, we expect
5% of the t-tests to be significant. However, when sampling from the skewed distribution
considered here, this is not the case: the actual Type I error probability is approximately
0.111.

Figure 1D shows the distribution of 7" when n = 100. Now the Type I error probability
is approximately 0.082, again when testing at the 0.05 level. Based on Bradleys criterion,
a sample size of about 130 or larger is required. Bradely (1978) goes on to suggest that
ideally, the actual Type I error probability should be between 0.045 and 0.055. Now n =
600 is unsatisfactory; the actual level is approximately 0.057. With n = 700 the level is
approximately 0.055.

Before continuing, it is noted that the median belongs to the class of trimmed means,
which refers to the strategy of trimming a specified proportion of the smallest and largest
values and averaging the values that remain. For example, if n=10, 10% trimming means that
the lowest and highest values are removed and the remaining data are averaged. Similarly,
20% trimming would remove the two smallest and two largest values. Based on conventional
training, trimming might seem counterintuitive, but in some situations it can substantially
increase our ability to control the Type I error probability, as illustrated next, and trimming
can substantially increase power as well for reasons to be explained.

First focus on controlling the probability of a Type I error. (Section 2.3 illustrates one
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Figure 1: Panel A illustrates an example of skewed distribution. Panel B illustrates the
distribution of the sample mean under normality (the dashed line), n = 30, and the ac-
tual distribution based on a simulation. FEach sample mean was computed based on 30
observations randomly sampled from the distribution shown in A. Panels C and D compare
the theoretical T' distribution with 29 degrees of freedom to distributions of 5000 7" values.
Again, the T values were computed from observations sampled from the distribution in A.
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of the reasons methods based on means can have relatively low power.) Figure 2 illustrates
the Type I error probability as a function of the sample size, when when using the mean,
median and when sampling from the asymmetric (lognormal) distribution in Figure 1A.
Inferences based on the 20% trimmed mean were made via the method derived by Tukey
and McLaughlin (1963). Inferences based on the median were made via the method derived
by Hettmansperger and Sheather (2011). (The software used to apply these latter two
methods is contained in the R package described at the beginning of section 4.) Also shown
is the Type I error probability when sampling from a normal distribution. The gray area
indicates Bradley’s criterion.

Figure 3 illustrates the association between power and the sample size for the distributions
used in Figure 2. As can be seen, under normality, the sample mean is best, followed closely
by the 20% trimmed mean. The median is least satisfactory when dealing with a normal
distribution, as expected. However, for the asymmetric (lognormal) distribution, the median
performs best and the mean performs very poorly.

A feature of random samples taken from the distribution in Figure 1A is that the expected
proportion of points declared an outlier is relatively small. For skewed distributions, as we
move toward situations where outliers are more common, a sample size greater than 300 can
be required to achieve reasonably good control over the Type I error probability. That is,
control over the Type I error probability is a function of both the degree a distribution is
skewed and the likelihood of encountering outliers. However, there are methods that perform
reasonably well with small sample sizes as indicated in section 4.1.

For symmetric distributions, where outliers tend to occur, the reverse can happen; the
actual Type I error probability can be substantially less than the nominal level. This happens
because outliers inflate the standard deviation, which in turn lowers the value of T', which
in turn can negatively impact power. Section 2.3 elaborates on this issue.

In an important sense, outliers have a larger impact on the sample variance than the
sample mean, which impacts the t-test. To illustrate this point, imagine the goal is to test
Hy: =1 based on the following values: 1, 1.5, 1.6, 1.8, 2, 2.2, 2.4, 2.7. Then T = 4.69, the
p value is p = 0.002, and the 0.95 confidence interval = [1.45, 2.35]. Now, including the value
8, the mean increases from 1.9 to 2.58, suggesting at some level there is stronger evidence
for rejecting the null hypothesis. However, this outlier increases the standard deviation from
0.54 to 2.1, and now 7' = 2.26 and p = 0.054. The 0.95 confidence interval = [—0.033, 3.19].

Now consider the goal of comparing two independent or dependent groups. If the groups
have identical distributions, then difference scores have a symmetric distribution and the
probability of a Type I error is, in general, less than the nominal level when using conven-
tional methods based on means. Now, in addition to outliers, differences in skewness create
practical concerns when using Students t-test. Indeed, under general conditions, the two-
sample Students t-test for independent groups is not even asymptotically correct, roughly
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Figure 2: Type I error probability as a function of sample size. The type I error probability
was computed by running a simulation with 10,000 iterations. In each iteration, sample
sizes from 10 to 500, in steps of 10, were drawn from a normal distribution and a lognormal
distribution. For each combination of sample size and distribution, we applied a t-test on
the mean, a test of the median, and a t-test on the 20% trimmed mean, all with alpha
= 0.05. Depending on the test applied, the mean, median or 20% trimmed mean of the
population sampled from was zero. The black horizontal line marks the expected 0.05 type
I error probability. The gray area marks Bradley’s satisfactory range. When sampling from
a normal distribution, all methods are close to the nominal 0.05 level, except the trimmed
mean for very small sample sizes. When sampling is from a lognormal distribution, the mean
and the trimmed mean give rise to too many false alarms for small sample sizes. The mean
continues to give higher false positive rates than the other techniques even with n=500.
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Figure 3: Power as a function of sample size. The probability of a true positive was computed
by running a simulation with 10,000 iterations. In each iteration, sample sizes from 10 to
500, in steps of 10, were drawn from a normal distribution and the (lognormal) distribution
shown in Figure 1A. For each combination of sample size and distribution, we applied a
t-test on the mean, a test of the median, and a t-test on the 20% trimmed mean, all with
alpha = 0.05. Depending on the test applied, the mean, median or 20% trimmed mean of
the population sampled from was 0.5. The black horizontal line marks the conventional 80%
power threshold. When sampling from a normal distribution, all methods require less than
50 observations to achieve 80% power, and the mean appears to have higher power at lower
sample size than the other methods. When sampling from a lognormal distribution, power
drops dramatically for the mean but not for the median and the trimmed mean. Power for
the median actually improves. The exact pattern of results depends on the effect size and the
asymmetry of the distribution we sample from, so we strongly encourage readers to perform
their own detailed power analyses.
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because the standard error of the difference between the sample means is not estimated
correctly (e.g., Cressie & Whitford, 1986). Moreover, Students t-test can be biased. This
means that the probability of rejecting the null hypothesis of equal means can be higher
when the population means are equal, compared to situations where the population means
differ. Roughly, this concern arises because the distribution of 7" can be skewed, and in fact
the mean of T' can differ from zero even though the null hypothesis is true. (For a more
detailed explanation, see Wilcox, 2017¢, section 5.5.) Problems persist when Students t-test
is replaced by Welchs (1938) method, which is designed to compare means in a manner that
allows unequal variances. Put another way, if the goal is to test the hypothesis that two
groups have identical distributions, conventional methods based on means perform well in
terms of controlling the Type I error probability. But if the goal is to compare the population
means, and if distributions differ, conventional methods can perform poorly.

There are many techniques that perform well when dealing with skewed distributions
in terms of controlling the Type I error probability, some of which are based on the usual
sample median (Wilcox, 2017a, ¢). Both theory and simulations indicate that as the amount
of trimming increases, the ability to control over the probability of a Type I error increases
as well. Moreover, for reasons to be explained, trimming can substantially increase power,
a result that is not obvious based on conventional training. The optimal amount of trim-
ming depends on the characteristics of the population distributions, which are unknown.
Currently, the best that can be said is that the choice can make a substantial difference.
The 20% trimmed has been studied extensively and often it provides a good compromise
between the two extremes: no trimming (the mean) and the maximum amount of trimming
(the median).

In various situations, particularly important are inferential methods based on what are
called bootstrap techniques. Two basic versions are the bootstrap-t and percentile bootstrap.
Roughly, rather than assume normality, bootstrap-t methods perform a simulation using the
observed data that yields an estimate of an appropriate critical value and a p-value. So values
of T are generated as done in Figure 1, only data are sampled, with replacement, from
the observed data. In essence, bootstrap-t methods generate data-driven T distributions
expected by chance if there were no effect. The percentile bootstrap proceeds in a similar
manner, only when dealing with a trimmed mean, for example, the goal is to determine the
distribution of the sample trimmed mean, which can then be used to compute a p-value and
a confidence interval. When comparing two independent groups based on the usual sample
median, if there are tied (duplicated) values, currently the only method that performs well
in simulations, in terms of controlling the Type I error probability, is based on a percentile
bootstrap method (cf. Wilcox, 2017¢, Table 5.3.). Section 4.1 elaborates on how this method
is performed.

If the amount of trimming is close to zero, the bootstrap-t method is preferable to the
percentile bootstrap method. But as the amount of trimming increases, at some point a
percentile bootstrap method is preferable. This is the case with 20% trimming (e.g., Wilcox,

11
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2017). It seems to be the case with 10% trimming as well, but a definitive study has not
been made.

Also, if the goal is to reflect the typical response, it is evident that the median or even
a 20% trimmed mean might be more satisfactory. Using quantiles (percentiles) other than
the median can be important as well, for reasons summarized in section 4.2.

When comparing independent groups, modern improvements on the Wilcoxon—-Mann—
Whitney (WMW) test are another possibility, which are aimed at making inferences about
the probability that a random observation from the first group is less than a random obser-
vation from the second. (More details are provided in section 3.) Additional possibilities are
described in Wilcox (2017a), some of which are illustrated in section 4 of this paper.

In some situations, robust methods can have substantially higher power than any method
based on means. But it is not being suggested that robust methods always have more power.
This is not the case. Rather, the point is that power can depend crucially on the conjunction
of which estimator is used (for instance the mean vs. the median), and how a confidence
interval is built (for instance a parametric method or the percentile bootstrap). These choices
are not trivial and must be taken into account when analyzing data.

2.2 Heteroscedasticity

It has been clear for some time that when using classic methods for comparing means, het-
eroscedasticity (unequal population variances) is a serious concern (e.g., Brown & Forsythe,
1974). Heteroscedasticity can impact both power and the Type I error probability. The basic
reason is that, under general conditions, methods that assume homoscedasticity are using
an incorrect estimate of the standard error when in fact there is heteroscedasticity. Indeed,
there are concerns regardless of how large the sample size might be. Roughly, as we consider
more and more complicated designs, heteroscedasticity becomes an increasing concern.

When dealing with regression, homoscedasticity means that the variance of the dependent
variable does not depend on the value of the independent variable. When dealing with
age and depressive symptoms, for example, homoscedasticity means that the variation in
measures of depressive symptoms at age 23 is the same at age 80 or any age in between as
illustrated in Figure 4.

Independence implies homoscedasticity. So for this particular situation, classic methods
associated with least squares regression, Pearson’s correlation, Kendall’s tau and Spearman’s
rho are using a correct estimate of the standard error, which helps explain why they perform
well in terms of Type I errors when there is no association. That is, when a homoscedastic
method rejects, it is reasonable to conclude that there is an association, but in terms of
inferring the nature of the association, these methods can perform poorly. Again, a practical
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Figure 4: Homoscedasticity and heteroscedasticity. Panel A illustrates homoscedasticity.
The variance of the dependent variable is the same at any age. Panel B illustrates het-
eroscedasticity. The variance of the dependent variable can depend on the age of the partic-
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concern is that when there is heteroscedasticity, homoscedastic methods use an incorrect
estimate of the standard error, which can result in poor power and erroneous conclusions.

A seemingly natural way of salvaging homoscedastic methods is to test the assumption
that there is homoscedasticity. But six studies summarized in Wilcox (2017¢) found that
this strategy is unsatisfactory. Presumably situations are encountered where this is not the
case, but it is difficult and unclear how to determine when such situations are encountered.

Methods that are designed to deal with heteroscedasticity have been developed and are
easily applied using extant software. These techniques use a correct estimate of the standard
error regardless of whether the homoscedasticity assumption is true. A general recommen-
dation is to always use a heteroscedastic method given the goal of comparing measures of
central tendency, or making inferences about regression parameters, as well as measures of
association.

2.3 Outliers

Even small departures from normality can devastate power. The modern illustration of this
fact stems from Tukey (1960) and is based on what is generally known as a mixed normal
distribution. The mixed normal considered by Tukey means that with probability 0.9 an
observation is sampled from a standard normal distribution; otherwise an observation is
sampled from a normal distribution having mean zero and standard deviation 10. Figure 5A
shows a standard normal distribution and the mixed normal discussed by Tukey. Note that
in the center of the distributions, the mixed normal is below the normal distribution. But
for the two ends of the mixed normal distribution, the tails, the mixed normal lies above the
normal distribution. For this reason, the mixed normal is often described as having heavy
tails. In general, heavy-tailed distributions roughly refer to distributions where outliers are
likely to occur.

Here is an important point. The standard normal has variance one, but the mixed normal
has variance 10.9. That is, the population variance can be overly sensitive to slight changes
on the tails of a distribution. Consequently, even slight departure from normality can result
in relative poor power when using any method based on the mean.

Put another way, samples from the mixed normal are more likely to result in outliers
compared to samples from a standard normal distribution. As previously indicated, outliers
inflate the sample variance, which can negatively impact power when using means. Another
concern is that they can give a distorted and misleading summary regarding the bulk of the
participants.

The first indication that heavy-tailed distributions are a concern stems from a result
derived by Laplace about two centuries ago. In modern terminology, he established that
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Figure 5: A. Density functions for the standard normal distribution (solid line) and the
mixed normal distribution (dotted line). Tiigse distributions have an obvious similarity,
yet the variances are 1 and 10.9. B. Boxplots of means, medians and 20% trimmed means
when sampling from a normal distribution. C. Boxplots of means, medians and 20% trimmed
means when sampling from a mixed normal distribution. In panels B and C, each distribution
has 10,000 values, and each of these values was obtained by computing the mean, median or
trimmed mean of 30 randomly generated observations.
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as we move from a normal distribution to a distribution more likely to generate outliers,
the standard error of the usual sample median can be smaller than the standard error of
the mean (Hand, 1998). The first empirical evidence implying that outliers might be more
common than what is expected under normality was reported by Bessel (1818).

To add perspective, we computed the mean, median and a 20% trimmed mean based
on 30 observations generated from a standard normal distribution. (Again, a 20% trimmed
mean removes the 20% lowest and highest values and averages the remaining data.) Then we
repeated this process 10,000 times. Boxplots of the results are shown in Figure 5B. Theory
tells us that under normality the variation of the sample means is smaller than the variation
among the 20% trimmed means and medians, and Figure 1B provides perspective on the
extent this is the case.

Now we repeat this process, only data are sampled from the mixed normal in Figure 5A.
Figure 5C reports the results. As is evident, there is substantially less variation among the
medians and 20% trimmed means. That is, despite trimming data, the standard errors of
the median and 20% trimmed mean are substantially smaller, contrary to what might be
expected based on standard training.

Of course, a more important issue is whether the median or 20% trimmed mean ever
have substantially smaller standard errors based on the data encountered in research. There
are numerous illustrations that this is the case (e.g., Wilcox, 2017a, b, ¢).

There is the additional complication that the amount of trimming can substantially im-
pact power, and the ideal amount of trimming, in terms of maximizing power, can depend
crucially on the nature of the of the unknown distributions under investigation. The median
performs best for the situation in Figure 5C, but situations are encountered where it trims
too much, given the goal of minimizing the standard error. Roughly, a 20% trimmed mean
competes reasonably well with the mean under normality. But as we move toward distribu-
tions that are more likely to generate outliers, at some point the median will have a smaller
standard error than a 20% trimmed mean. Illustrations in section 5 demonstrate that this
is a practical concern.

It is not being suggested that the mere presence of outliers will necessarily result in
higher power when using a 20% trimmed mean or median. But it is being argued that
simply ignoring the potential impact of outliers can be a serious practical concern.

In terms of controlling the Type I error probability, effective techniques are available for
both the 20% trimmed mean and median. Because the choice between a 20% trimmed mean
and median is not straightforward in terms of maximizing power, it is suggested that in
exploratory studies, both of these estimators be considered.

When dealing with least squares regression or Pearson’s correlation, again outliers are
a serious concern. Indeed, even a single outlier might give a highly distorted sense about

16


https://doi.org/10.1101/151811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/151811; this version posted June 20, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

the association among the bulk of the participants under study. In particular, important
associations might be missed. One of the more obvious ways of dealing with this issue is
to switch to Kendall’s tau or Spearman’s rho. However, these measures of associations do
not deal with all possible concerns related to outliers. For instance, two outliers, properly
placed, can give a distorted sense about the association among the bulk of the data (e.g,
Wilcox, 2017b, p. 239).

A measure of association that deals with this issue is the skipped correlation where
outliers are detected using a projection method, these points are removed, and Pearson’s
correlation is computed using the remaining data. Complete details are summarized in
Wilcox (2017a). This particular skipped correlation can be computed with the R function
scor and a confidence interval, that allows heteroscedasticity, can be computed with scorci.
This function also reports a p-value when testing the hypothesis that the correlation is equal
to zero. (See section 3.2 for a description of common mistakes when testing hypotheses and
outliers are removed.) Matlab code is available too (Pernet, Wilcox, & Rousselet, 2012).

2.4 Curvature

Typically, a regression line is assumed to be straight. In some situations, this approach seems
to suffice. However, it cannot be stressed too strongly that there is a substantial literature
indicating that this is not always the case. A vast array of new and improved nonparametric
methods for dealing with curvature is now available, but complete details go beyond the scope
of this paper. Here it is merely remarked that among the many nonparametric regression
estimators that have been proposed, generally known as smoothers, two that seem to be
particularly useful are Cleveland’s (1979) estimator, which can be applied via the R function
Iplot, and the running-interval smoother (Wilcox, 2017a), which can be applied with the
R function rplot. Arguments can be made that other smoothers should be given serious
consideration. Readers interested in these details are referred to Wilcox (2017a, c).

Cleveland’s smoother was initially designed to estimate the mean of the dependent vari-
able given some value of the independent variable. The R function contains an option
for dealing with outliers among the dependent variable, but it currently seems that the
running-interval smoother is generally better for dealing with this issue. By default, the
running-interval smoother estimates the 20% trimmed mean of the dependent variable, but
any other measure of central tendency can be used via the argument est.

A simple strategy for dealing with curvature is to include a quadratic term. Let X denote
the independent variable. An even more general strategy is to include X* in the model for
some appropriate choice for the exponent a. But this strategy can be unsatisfactory as
illustrated in section 5.4 using data from a study dealing with fractional anisotropy and
reading ability. In general, smoothers provide a more satisfactory approach.
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There are methods for testing the hypothesis that a regression line is straight (e.g.,
Wilcox, 2917a). However, failing to reject does not provide compelling evidence that it is
safe to assume that indeed the regression line is straight. It is unclear when this approach
has enough power to detect situations where curvature is an important practical concern.
The best advice is to plot an estimate of the regression line using a smoother. If there is any
indication that curvature might be an issue, use modern methods for dealing with curvature,
many of which are summarized in Wilcox (2017a, ¢).

3 Dealing with Violation of Assumptions

Based on conventional training, there are some seemingly obvious strategies for dealing with
the concerns reviewed in the previous section. But by modern standards, generally these
strategies are relatively ineffective. This section summarizes strategies that perform poorly,
followed by a brief description of modern methods that give improved results.

3.1 Testing Assumptions

A seemingly natural strategy is to test assumptions. In particular, test the hypothesis that
distributions have a normal distribution and test the hypothesis that there is homoscedas-
ticity. This approach generally fails, roughly because such tests do not have enough power
to detect situations where violating these assumptions is a practical concern. That is, these
tests can fail to detect situations that have an inordinately detrimental influence on statistical
power and parameter estimation.

For example, Wilcox (2017a, c) lists six studies aimed at testing the homoscedasticity
assumption with the goal of salvaging a method that assumes homoscedasticity (cf., Kesel-
man et al., 2016). Briefly, these simulation studies generate data from a situation where it is
known that homoscedastic methods perform poorly in terms of controlling the Type I error
when there is heteroscedasticity. Then various methods for testing the homoscedasticity are
performed, and if they reject, a heteroscedastic method is used instead. All six studies came
to the same conclusion: this strategy is unsatisfactory. Presumably there are situations
where this strategy is satisfactory, but it is unknown how to accurately determine whether
this is the case based on the available data. In practical terms, all indications are that it
is best to always use a heteroscedastic method when comparing measures of central ten-
dency, and when dealing with regression as well as measures of association such as Pearson’s
correlation.

As for testing the normality assumption, for instance using the Kolmogorov—Smirnov
test, currently a better strategy is to use a more modern method that performs about as
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well as conventional methods under normality, but which continues to perform relatively well
in situations where standard techniques perform poorly. There are many such methods (e.g.,
Wilcox, 2017a, c¢), some of which are outlined in section 4. These methods can be applied
using extant software as will be illustrated.

3.2 Outliers: Two Common Mistakes

There are two common mistakes regarding how to deal with outliers. The first is to search
for outliers using the mean and standard deviation. For example, declare the value X and
outlier if | |
X-X

—_ > 2 1
- (1
where X and s are the usual sample mean and standard deviation, respectively. A problem
with this strategy is that it suffers from masking, simply meaning that the very presence of

outliers causes them to be missed (e.g, Rousseeuw & Leroy, 1987; Wilcox, 2017a).

Consider, for example, the values 1, 2, 2, 3, 4, 6, 100 and 100. The two last observations
appear to be clear outliers, yet the rule given by (1) fails to flag them as such. The reason
is simple: the standard deviation of the sample is very large, at almost 45, because it is not
robust to outliers.

This is not to suggest that all outliers will be missed; this is not necessarily the case.
The point is that multiple outliers might be missed that adversely affect any conventional
method that might be used to compare means. Much more effective are the boxplot rule
and the so-called MAD-median rule.

The boxplot rule is applied as follows. Let ¢; and ¢ be estimates of the lower and upper
quartiles, respectively. Then the value X is declared an outlier if X < ¢; — 1.5(¢2 — ¢1) or if
X > q2+ 1.5(g2 — ¢1) As for the MAD-median rule, let X, ..., X,, denote a random sample
and let M be the usual sample median. MAD (the median absolute deviation to the median)
is the median of the values | X; — M]|,...,|X,, — M|. The MAD-median rule declares the
value X an outlier if

| X — M|
MAD/0.6745

Under normality, it can be shown that MAD/0.6745 estimates the standard deviation, and
of course M estimates the population mean. So the MAD-median rule is similar to using
(1), only rather than use a two-standard deviation rule, 2.24 is used instead.

> 2.24. (2)

As an illustration, consider the values 1.85, 1.11, 1.11, 0.37, 0.37, 1.85, 71.53, and 71.53.
The MAD-median rule detects the outliers: 71.53. But the rule given by (1) does not. The
MAD-median rule is better than the boxplot rule in terms of avoiding masking.
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The second mistake is discarding outliers and applying some standard method for com-
paring means using the remaining data. This results in an incorrect estimate of the standard
error, regardless how large the sample size might be. That is, an invalid test statistic is being
used. Roughly, it can be shown that the remaining data are dependent, they are correlated,
which invalidates the derivation of the standard error. Of course, if an argument can be
made that a value is invalid, discarding it is reasonable and does not lead to technical issues.
For instance, a straightforward case can be made if a measurement is outside physiological
bounds, or if it follows a biologically non-plausible pattern over time, such as during an elec-
trophysiological recording. But otherwise, the estimate of the standard error can be off by a
factor of 2 (e.g., Wilcox, 2017b), which is a serious practical issue. A simple way of dealing
with this issue, when using a 20% trimmed mean or median, is to use a percentile boot-
strap method. (With reasonably large sample sizes, alternatives to the percentile bootstrap
method can be used, which are described in Wilcox 2017a, ¢). The main point here is that
these methods are readily applied with the free software R, which is playing an increasing
role in basic training. Some illustrations are given in section 5.

It is noted that when dealing with regression, outliers among the independent variables
can be removed when testing hypotheses. But if outliers among the dependent variable are
removed, conventional hypothesis testing techniques based on the least squares estimator are
no longer valid, even when there is homoscedasticity. Again, the issue is that an incorrect
estimate of the standard error is being used. When using robust regression estimators that
deal with outliers among the dependent variable, again a percentile bootstrap method can
be used to test hypotheses. Complete details are summarized in Wilcox (2017a, c¢). There
are numerous regression estimators that effectively deal with outliers among the dependent
variable, but a brief summary of the many details is impossible. The Theil and Sen estimator
as well as the MM-estimator are relatively good choices, but arguments can be made that
alternative estimators deserve serious consideration.

3.3 Transform the Data

A common strategy for dealing with non-normality or heteroscedasticity is to transform
the data. There are exceptions, but generally this approach is unsatisfactory for several
reasons. First, the transformed data can again be skewed to the point that classic techniques
perform poorly (e.g., Wilcox, 2017b). Second, this simple approach does not deal with
outliers in a satisfactory manner (e.g., Doksum & Wong, 1983; Rasmussen, 1989). The
number of outliers might decline, but it can remain the same and even increase. Currently,
a much more satisfactory strategy is to use a modern robust method such as a bootstrap
method in conjunction with a 20% trimmed mean or median. This approach also deals with
heteroscedasticity in a very effective manner (e.g., Wilcox, 2017a, c).

Another concern is that a transformation changes the hypothesis being tested. In effect,
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transformations muddy the interpretation of any comparison because a transformation of
the data also transforms the construct that it measures (Grayson, 2004).

3.4 Use a Rank-Based Method

Standard training suggests a simple way of dealing with non-normality: use a rank-based
method such as the WMW test, the Kruskal-Wallis test and Friedman’s method. The first
thing to stress is that under general conditions these methods are not designed to compare
medians or other measures of central tendency. (For an illustration based on the Wilcoxon
signed rank test, see Wilcox, 2017b, p. 367. Also see Fagerland & Sandvik, 2009.) Moreover,
the derivation of these methods is based on the assumption that the groups have identical
distributions. So in particular, homoscedasticity is assumed. In practical terms, if they
reject, conclude that the distributions differ.

But to get a more detailed understanding of how groups differ and by how much, alterna-
tive inferential techniques should be used in conjunction with plots such as those summarized
by Rousselet, et al. (2017). For example, use methods based on a trimmed mean or median.

Many improved rank-based methods have been derived (Brunner et al., 2002). But again,
these methods are aimed at testing the hypothesis that groups have identical distributions.
Important exceptions are the improvements on the WMW test (e.g., Cliff, 1996; Wilcox,
2017a, b), which, as previously noted, are aimed at making inferences about the probability
that a random observation from the first group is less than a random observation from the
second.

3.5 Permutation Methods

For completeness, it is noted that permutation methods have received some attention in
the neuroscience literature (e.g., Winkler et al., 2014; Pernet et al., 2015). Briefly, this
approach is well designed to test the hypothesis that two groups have identical distributions.
But based on results reported by Boik (1987), this approach cannot be recommended when
comparing means. The same is true when comparing medians for reasons summarized by
Romano (1990). Chung and Romano (2013) summarize general theoretical concerns and
limitations. They go on to suggest a modification of the standard permutation method, but
at least in some situations the method is unsatisfactory (Wilcox, 2017¢c, section 7.7). A deep
understanding of when this modification performs well is in need of further study.
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3.6 More Comments about the Median

In terms of power, the mean is preferable over the median or 20% trimmed mean when dealing
with symmetric distributions for which outliers are rare. If the distribution are skewed, the
median and 20% trimmed mean can better reflect what is typical, and improved control over
the Type I error probability can be achieved. When outliers occur, there is the possibility
that the mean will have a much larger standard error than the median or 20% trimmed
mean. Consequently, methods based on the mean might have relatively poor power. Note,
however, that for skewed distributions, the difference between two means might be larger
than the difference between the corresponding medians. Consequently, even when outliers
are common, it is possible that a method based on the means will have more power. In
terms of maximizing power, a crude rule is to use a 20% trimmed mean, but the seemingly
more important point is that no method dominates. Focusing on a single measure of central
tendency might result is missing an important difference. So again, exploratory studies can
be vitally important.

Even when there are tied values, it is now possible to get excellent control over the
probability of a Type I error when using the usual sample median. For the one-sample
case, this can be done with using a distribution free technique via the R function sintv2.
Distribution free means that the actual Type I error probability can be determined exactly
assuming random sampling only. When comparing two or more groups, currently the only
known technique that performs well is the percentile bootstrap. Methods based on estimates
of the standard error can perform poorly, even with large sample sizes. Also, when there are
tied values, the distribution of the sample median does not necessarily converge to a normal
distribution as the sample size increases. The very presence of tied values is not necessarily
disastrous. But it is unclear how many tied values can be accommodated before disaster
strikes. The percentile bootstrap method eliminates this concern.

4 Comparing Groups and Measures of Association

This section elaborates on methods aimed at comparing groups and measures of associa-
tion. First attention is focused on two independent groups. Comparing dependent groups
is discussed in section 4.4. Section 4.5 comments briefly on more complex designs. This is
followed by a description of how to compare measures of association as well as an indication
of modern advances related to the analysis of covariance. Included are indications of how
to apply these methods using the free software R, which at the moment is easily the best
software for applying modern methods. R is a vast and powerful software package. Cer-
tainly matlab could be used, but this would require writing hundreds of functions in order to
compete with R. There are numerous books on R, but only a relatively small subset of the
basic commands is needed to apply the functions described here. (See, for example, Wilcox,
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2017b, c.)

The R functions noted here are stored in the R package WRS, which can be installed
as indicated at https://github.com/nicebread/WRS. Alternatively, and seemingly easier,
use the R command source on the file Rallfun-v33.txt, which can be downloaded from
http://dornsife.usc.edu/labs/rwilcox/software/.

All recommended methods deal with heteroscedasticity. When comparing groups and
distributions differ in shape, these methods are generally better than classic methods for
comparing means, which can perform poorly.

4.1 Dealing with Small Sample Sizes

This section focuses on the common situation in the neuroscience where the sample sizes are
relatively small. When the sample sizes are very small, say less than or equal ten and greater
than four, conventional methods based on means are satisfactory in terms of Type I errors
when the null hypothesis is that the groups have identical distributions. If the goal is to
control the probability of a Type I error when the null hypothesis is that groups have equal
means, extant methods can be unsatisfactory. And as previously noted, methods based on
means can have poor power relative to alternative techniques.

Many of the more effective methods are based in part on the percentile bootstrap method.
Consider, for example, the goal of comparing the medians of two independent groups. Let
M, and M, be the sample medians for the two groups being compared and let D = M, — M,,.
The basic strategy is to perform a simulation based on the observed data with the goal of
approximating the distribution of D, which can then be used to compute a p-value as well
as a confidence interval.

Let n and m denote the sample sizes for the first and second group, respectively. The
percentile bootstrap method proceeds as follows. For the first group, randomly sample with
replacement n observations. This yields what is generally called a bootstrap sample. For
the second group, randomly sample with replacement m observations. Next, based on these
bootstrap samples, compute the sample medians, say M; and M. Let D* = M; — M.
Repeating this process many times, a p-value (and confidence interval) can be computed
based on the proportion of times D* < 0 as well as the proportion of times D* = 0. (More
precise details are given in Wilcox, 2017a, c¢.) This method has been found to provide
reasonably good control over the probability of a Type I error when both n and m are
greater than equal to five. The R function medpb2 performs this technique.

The method just described performs very well compared to alternative techniques. In
fact, regardless of how large the sample sizes might be, the percentile bootstrap method is
the only known method that continues to perform reasonably well when comparing medians
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and there are duplicated values. (Also see Wilcox (2017a, section 5.3.)

For the special case where the goal is to compare means, there is no method that provides
reasonably accurate control over the Type I error probability for a relatively broad range
of situations. In fairness, situations can be created where means perform well and indeed
have higher power than methods based on a 20% trimmed mean or median. When dealing
with perfectly symmetric distributions where outliers are unlikely to occur, methods based
on means, and that allow heteroscedasticity, perform relatively well. But with small sample
sizes, there is no satisfactory diagnostic tool indicating whether distributions satisfy these
two conditions in an adequate manner. Generally, using means comes with the relatively
high risk of poor control over the Type I error probability and relatively poor power.

Switching to a 20% trimmed mean, the method derived by Yuen (1974) performs fairly
well even when the smallest sample size is six (cf. Ozdemir et al., 2013). It can be applied
with the R function yuen. (Yuen’s method reduces to Welch’s method for comparing means
when there is no trimming.) When the smallest sample size is five, it can be unsatisfactory
in situations where the percentile bootstrap method, used in conjunction with the median,
continues to perform reasonably well. A rough rule is that the ability to control the Type
I error probability improves as the amount of trimming increases. With small sample sizes,
and when the goal is to compare means, it is unknown how to control the Type I error
probability reasonably well over a reasonably broad range of situations.

Another approach is to focus on P(X < Y), the probability that a randomly sample
observation from the first group is less than a randomly sample observation from the second
group. This strategy is based in part on an estimate of the distribution of D = X — Y, the
distribution of all pairwise differences between observations in each group.

To illustrate this point, let Xi,..., X, and Y;,...,Y,, be random samples of size n and
m, respectively. Let Dy, = X; — Y, (1 =1,...n; k =1,...,m). Then the usual estimate of
P(X <Y) is simply the proportion of D;; values less than zero. For instance, if X = (1,
2,3) and Y = (1, 2.5, 4), then D = (0.0, 1.0, 2.0, -1.5, -0.5, 0.5, -3.0, -2.0, -1.0) and the
estimate of P(X < Y) is 4/9, the proportion of D values less than zero.

Let p, 1y and pp denote the population means associated with X, Y and D, respectively.
From basic principles, f1, —pt, = pp. That is, the difference between two means is the same as
the mean of all pairwise differences. However, let 0, 8, and 6p denote the population medians
associated with X, Y and D, respectively. For symmetric distributions, ¢, — 0, = 0p, but
otherwise it is generally the case that 6, — 6, # 0p. In other words, the difference between
medians is typically not the same as the median of all pairwise differences. The same is
true when using any amount of trimming greater than zero. Roughly, 0, and 0, reflect the
typical response for each group, while 0 reflects the typical difference between two randomly
sampled participants, one from each group. Although less known, the second perspective
can be instructive in many situations. For instance, in a clinical setting in which we want to
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know what effect to expect when randomly sampling a patient and a control participant.

If two groups do not differ in any manner, P(X < Y') = 0.5. Consequently, a basic goal
is testing
Hy: P(X<Y)=0.5. (3)

If this hypothesis is rejected, this indicates that it is reasonable to make a decision about
whether P(X < Y) is less than or greater than 0.5 It is readily verified that this is the same
as testing

Hy:0p =0. (4)

An appeal of P(X < Y) is that it is easily understood by non-statisticians, and it has
practical importance for reasons summarized, among others, by Cliff (1996), Ruscio (2008)
and Newcombe (2006). The Wilcoxon-Mann-Whitney (WMW) test is based on an estimate
P(X <Y). However, it is unsatisfactory in terms of making inferences about this probability
because the estimate of the standard error assumes that the distributions are identical. If the
distributions differ, an incorrect estimate of the standard error is being used. More modern
methods deal with this issue. The method derived by Cliff (1996) for testing (3) performs
relatively well with small sample sizes and can be applied via the R function cidv2. (We are
not aware of any commercial software package that contains this method.)

However, there is the complication that for skewed distributions, differences among the
means, for example, can be substantially smaller as well as substantially larger than differ-
ences among 20% trimmed means or medians. That is, regardless of how large the sample
sizes might be, power can be substantially impacted by which measure of central tendency
is used.

4.2 Comparing Quantiles

Rather than compare groups based on a single measure of central tendency, typically the
mean, another approach is to compare multiple quantiles. For example, compare the quar-
tiles, or all of the deciles, or even all quantiles. This provides more detail about where and
how the two distributions differ (Rousselet, Pernet & Wilcox, 2017). For example, the typi-
cal participants might not differ very much based on the medians, but the reverse might be
true among low scoring individuals.

First consider the goal of comparing all quantiles in a manner that controls the probability
of one or more Type I errors among all the tests that are performed. Assuming random
sampling only, Doksum and Sievers (1976) derived such a method that can be applied via
the R function sband. The method is based on a generalization of the Kolmogorov—-Smirnov
test. A negative feature is that power can be adversely affected when there are tied values.
And when the goal is to compare the more extreme quantiles, again power might be relatively
low. A way of reducing these concerns is to compare the deciles using a percentile bootstrap
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method in conjunction with the quantile estimator derived by Harrell and Davis (1982). This
is easily done with the R functions qcomhd.

Note that if the distributions associated with X and Y do not differ, then D = X —Y will
have a symmetric distribution about zero. Let z, be the gth quantile of D, 0 < ¢ < 0.5. In
particular, it will be the case that ;4 x;_, = 0 when X and Y have identical distributions.
The median (2nd quartile) will be zero, and, for instance, the sum of the 3rd quartile (0.75
quantile) and the 1st quartile (0.25 quantile) will be zero. So this sum provides yet another
perspective on how distributions differ (see illustrations in Rousselet, Pernet & Wilcox, 2017).

Imagine, for example, that an experimental group is compared to a control group based
on some measure of depressive symptoms. If zgo5 = —4 and xp75 = 6, then for a single
randomly sampled observation from each group, there is a sense in which the experimental
treatment outweighs no treatment, because positive differences (beneficial effect) tend to be
larger than negative differences (detrimental effect). The hypothesis

H() Iy + T1—q = 0 (5)

can be tested with the R function cbmhd. A confidence interval is returned as well. Current
results indicate that the method provides reasonably accurate control over the Type I error
probability when ¢ = 0.25 and the sample sizes are greater than or equal to ten. For ¢ = 0.1,
sample sizes greater than or equal to twenty should be used (Wilcox, 2012).

4.3 Eliminate Outliers and Average the Remaining Values

Rather than use means, trimmed means or the median, another approach is to use an
estimator that down weights or eliminates outliers. For example, use the MAD-median to
search for outliers, remove any that are found and average the remaining values. This is
generally known as a modified one-step M-estimator (MOM). This approach might seem
preferable to using a trimmed mean or median because trimming can eliminate points that
are not outliers. But this issue is far from simple. Indeed, there are indications that when
testing hypotheses, the expectation is that using a trimmed mean or median will perform
better in terms of Type I errors and power (Wilcox, 2017a). However, there are exceptions:
no single estimator dominates.

As previously noted, an invalid strategy is to eliminate extreme values and apply conven-
tional methods for means based on the remaining data, because the wrong standard error is
used. Switching to a percentile bootstrap deals with this issue when using MOM as well as
related estimators. The R function pb2gen applies this method.
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4.4 Comparing Dependent Variables

Next, consider the goal of comparing two dependent variables. That is, the variables might
be correlated. Based on the random sample (X1,Y7),..., (X, Y,), let D; = X; =Y, (i =
1,...,n). Even when X and Y are correlated, p, — p, = pp, the difference between the
population means is equal to the mean of the difference scores. But under general conditions
this is not the case when working with trimmed means. When dealing with medians, for
example, it is generally the case that 6, — 6, # 0p.

If the distribution of D is symmetric and light-tailed (outliers are relatively rare), the
paired t-test performs reasonably well. As we move toward a skewed distribution, at some
point this is no longer the case for reasons summarized in section 2.1. Moreover, power
and control over the probability of a Type I error are also a function of the likelihood of
encountering outliers.

There is a method for computing a confidence interval for #p for which the probabil-
ity of a Type I error can be determined exactly assuming random sampling only (e.g.,
Hettmansperger & McKean, 1998). In practice, a slight modification of this method is rec-
ommended that was derived by Hettmansperger and Sheather (1986). So when sample sizes
are very small, this method performs very well in terms of controlling the probability of a
Type I error. And in general, it is an excellent method for making inferences about . The
method can be applied via the R function sintv2.

As for trimmed means, with the focus still on D, a percentile bootstrap method can be
used via the R function trimpb or wmeppb. Again, with 20% trimming, reasonably good
control over the Type I error probability can be achieved. With n = 20, the percentile boot-
strap method is better than the non-bootstrap method derived by Tukey and McLaughlin
(1963). With large enough sample sizes the Tukey—McLaughlin method can be used in lieu
of the percentile bootstrap method via the R function trimci, but it is unclear just how large
the sample size must be.

In some situations, there might be interest in comparing measures of central tendencies
associated with the marginal distributions rather than the difference scores. Imagine, for
example, participants consist of married couples. One issue might be the typical difference
between a husband and his wife, in which case difference scores would be used. Another issue
might be how the typical male compares to the typical female. So now the goal would be to
test Hy: 0, = 0, rather than Hy: 6p = 0. The R function dmeppb tests the first of these
hypotheses and performs relatively well, even when there are tied values. If the goal is to
compare the marginal trimmed means, rather than make inferences about the trimmed mean
of the difference scores, use the R function dtrimpb, or use wmceppb and set the argument
dif=FALSE. When dealing with a moderately large sample size, the R function yuend can
be used instead, but there is no clear indication just how large the sample size must be.
A collection of quantiles can be compared with Dgcomhd and all of the quantiles can be

27


https://doi.org/10.1101/151811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/151811; this version posted June 20, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

compared via the function Iband.

Yet another approach is to use the classic sign test, which is aimed at making inferences
about P(X < Y). As is evident, this probability provides a useful perspective on the
nature of the difference between the two dependent variables under study beyond simply
comparing measures of central tendency. The R function signt performs the sign test, which
by default uses the method derived by Agresti and Coull (1998). If the goal is to ensure that
the confidence interval has probability coverage at least 1 — «, rather than approximately
equal to 1 — «, the Schilling and Doi (2014) method can be used by setting the argument
SD=TRUE when using the R function signt. In contrast to the Schilling and Doi method,
p-values can be computed when using the Agresti and Coull technique. Another negative
feature of the Schilling and Doi method is that execution time can be extremely high even
with a moderately large sample size.

A criticism of the sign test is that its power might be lower than the Wilcoxon signed
rank test. However, this issue is not straightforward. Moreover, the sign test can reject in
situations where other conventional methods do not. Again, which method has the highest
power depends on the characteristics of the unknown distributions generating the data.
Also, in contrast to the sign test, the Wilcoxon signed rank test provides no insight into
the nature of any difference that might exist without making rather restrictive assumptions
about the underlying distributions. In particular, under general conditions, it does not
compare medians or some other measure of central tendency as previously noted.

4.5 More Complex Designs

It is noted that when dealing with a one-way or higher ANOVA design, violations of the
normality and homoscedasticity assumptions, associated with classic methods for means,
become an even more serious issue in terms of both Type I error probabilities and power.
Robust methods have been derived (Wilcox, 2017a, ¢), but the many details go beyond the
scope of this paper. However, a few points are worth stressing.

Momentarily assume normality and homoscedasticity. Another important insight has to
do with the role of the ANOVA F test versus post-hoc multiple comparison procedures such
as the Tukey—Kramer method. In terms of controlling the probability of one or more Type I
errors, is it necessary to first reject with the ANOVA F test? The answer is an unequivocal
no. With equal sample sizes, the Tukey—Kramer method provides exact control. But if it
is used only after the ANOVA F test rejects, this is no longer the case; it is lower than the
nominal level (Bernhardson, 1975). For unequal sample sizes, the probability of one or more
Type I errors is less than or equal to the nominal level when using the Tukey—Kramer method.
But if it is used only after the ANOVA F test rejects, it is even lower, which can negatively
impact power. More generally, if an experiment aims to test specific hypotheses involving
subsets of conditions, there is no obligation to first perform an ANOVA: the analyses should
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focus directly on the comparisons of interest using, for instance, the functions for linear
contrasts listed below.

Now consider non-normality and heteroscedasticity. When performing all pairwise com-
parisons, for example, most modern methods are designed to control the the probability of
one or more Type I errors without first performing a robust analog of the ANOVA F test.
There are, however, situations where a robust analog of the ANOVA F test can help increase
power (e.g., Wilcox, 2017a, section 7.4).

For a one-way design where the goal is to compare all pairs of groups, a percentile
bootstrap method can be used via the R function linconpb. A non-bootstrap method is
performed by lincon. For medians, use medpb. For an extension of Cliff’s method, use
cidmul. Methods and corresponding R functions for both two-way and three-way designs,
including techniques for dependent groups, are available as well; see Wilcox (2017a, c).

4.6 Comparing Independent Correlations and Regression Slopes

Next, consider two independent groups where for each group there is interest in the strength
of the association between two variables. A common goal is to test the hypothesis that the
strength of association is the same for both groups.

Let p; (j = 1, 2) be Pearson’s correlation for the jth group and consider the goal of
testing
Hy : p1 = po. (6)
Various methods for accomplishing this goal are known to be unsatisfactory (Wilcox, 2009).
For example, one might use Fisher’s r-to-z transformation, but it follows immediately from
results in Duncan and Layard (1973) that this approach performs poorly under general condi-
tions. Methods that assume homoscedasticity, as depicted in Figure 4, can be unsatisfactory
as well. As previously noted, when there is an association (the variables are dependent), and
in particular there is heteroscedasticity, a practical concern is that the wrong standard error
is being used when testing hypotheses about the slopes. That is, the derivation of the test
statistic is valid when there is no association; independence implies homoscedasticity. But
under general conditions it is invalid when there is heteroscedasticity. This concern extends
to inferences made about Pearson’s correlation.

There are two methods that perform relatively well in terms of controlling the Type
I error probability. The first is based on a modification of the basic percentile bootstrap
method. Imagine that (6) is rejected if the confidence interval for p; — py does not contain
zero. So the Type I error probability depends on the width of this confidence interval. If
it is too short, the actual Type I error probability will exceed 0.05. With small sample
sizes this is exactly what happens when using the basic percentile bootstrap method. The
modification consists of widening the confidence interval for p; — ps when the sample size is
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small. The amount it is widened depends on the sample sizes. The method can be applied
via the R function twopcor. A limitation is that this method can be used only when the
Type I error is 0.05 and it does not yield a p-value.

The second approach is to use a method that estimates the standard error in a manner
that deals with heteroscedasticity. When dealing with the slope of the least squares regression
line, several methods are now available for getting valid estimates of the standard error when
there is heteroscedasticity (Wilcox, 2017a). One of these is called the HC4 estimator, which
can be used to test (6) via the R function twohc4cor.

As previously noted, Pearson’s correlation is not robust: even a single outlier might
substantially impact its value giving a distorted sense of the strength of the association
among the bulk of the points. Switching to Kendall’s tau or Spearman’s rho, now a basic
percentile bootstrap method can be used to compare two independent groups, in a manner
that allows heteroscedasticity, via the R function twocor. As noted in section 2.3, the skipped
correlation can be used via the R function scorci.

The slopes of regression lines can be compared as well using methods that allow het-
eroscedasticity. For least squares regression, use the R function ols2ci. For robust regression
estimators, use reg2ci.

4.7 Comparing Correlations, the Overlapping Case

Now consider a single dependent variable Y and two independent variables, X; and Xs.
A common and fundamental goal is understanding the relative importance of X; and X,
in terms of their association with Y. A typical mistake in neuroscience is to perform two
separate tests of associations, one between X; and Y, another between X5 and Y, without
explicitly comparing the association strengths between the independent variables (Nieuwen-
huis et al. 2011). For instance, reporting that one test is significant, and the other is not,
cannot be used to conclude that the associations themselves differ. A common example
would be when an association is estimated between each of two brain measurements and a
behavioural outcome.

Their are many methods for estimating which independent variable is more important,
many of which are known to be unsatisfactory (e.g., Wilcox, 2017¢c, section 6.13). Stepwise
regression is among the unsatisfactory techniques for reasons summarized by Montgomery
and Peck (1992, Section 7.2.3) as well as Derksen and Keselman (1992). Regardless of their
relative merits, a practical limitation is that they do not reflect the strength of empirical
evidence that the most important independent variable has been chosen. One strategy is to
test Hy: p1 = p2, where now p; (j = 1, 2) is the correlation between Y and X;. This can be
done with the R function TWOpov. When dealing with robust correlations, use the function
twoDcorR.
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However, a criticism of this approach is that it does not take into account the nature
of the association when both independent variables are included in the model. This is a
concern because the strength of the association between Y and X; can depend on whether
X, is included in the model as illustrated in section 5.4. There is now a robust method for
testing the hypothesis that there is no difference in the association strength when both X;
and X, are included in the model. (Wilcox, 2017a, 2016). Heteroscedasticity is allowed.
If, for example, there are three independent variables, one can test the hypothesis that the
strength of the association for the first two independent variables is equal to the strength
of the association for the third independent variable. The method can be applied with the
R function reglVcom. A modification and extension of the method has been derived when
there is curvature (Wilcox, in press), but it is limited to two independent variables.

4.8 ANCOVA

The simplest version of the analysis of covariance (ANCOVA) consists of comparing the
regression lines associated with two independent groups when there is a single independent
variable. The classic method makes several restrictive assumptions: the regression lines are
parallel, for each regression line there is homoscedasticity, the variance of the dependent
variable is the same for both groups, normality, and a straight regression line provides an
adequate approximation of the true association. Violating any of these assumptions is a
serious practical concern. Violating two or more of these assumptions makes matters worse.
There is now vast array of more modern methods that deal with violations of all of these
assumptions Wilcox (2017a, chapter 12). These newer techniques can substantially increase
power compared to the classic ANCOVA technique, and perhaps more importantly they can
provide a deeper and more accurate understanding of how the groups compare. But the
many details go beyond the scope of this paper.

As noted in the introduction, curvature is a more serious concern than is generally rec-
ognized. One strategy, as a partial check on the presence of curvature, is to simply plot
the regression lines associated with two groups using the R functions Iplot2g and rplot2g.
When using these functions, as well as related functions, it can be vitally important to check
on the impact of removing outliers among the independent variables. This is easily done
with functions mentioned here by setting the argument xout=TRUE. If these plots suggest
that curvature might be an issue, consider the R functions ancova and ancdet. This latter
function applies method TAP in Wilcox (2017a, section 12.2.4) and can provide more de-
tailed information about where and how two regression lines differ compared to the function
ancova. These functions are based on methods that allow heteroscedasticity, non-normality,
and they eliminate the classic assumption that the regression lines are parallel. For two
independent variables, see Wilcox (2017a, section 12.4). If there is evidence that curvature
is not an issue, again there are very effective methods that allow heteroscedasticity as well
as non-normality (Wilcox, 2017a, section 12.1).
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5 Some Illustrations

Using data from several studies, this section illustrates modern methods and how they con-
trast. Extant results suggest that robust methods have a relatively high likelihood of maxi-
mizing power, but as previously stressed, no single method dominates in terms of maximizing
power. Another goal in this section is to underscore the suggestion that multiple perspec-
tives can be important. More complete descriptions of the results, as well as the R code
that was used, are available on figshare (Wilcox & Rousselet, 2017). The figshare repro-
ducibility package also contains a more systematic assessment of type I error and power in
the one-sample case. (See notebook power_onesample.pdf).

5.1 Spatial Acuity for Pain

The first illustration stems from Mancini et al. (2014) who report results aimed at providing
a whole-body mapping of spatial acuity for pain. (Also see Mancini, 2016.) Here the focus
is on their second experiment. Briefly, spatial acuity was assessed by measuring 2-point
discrimination (2PD) thresholds for both pain and touch in 11 body territories. One goal
was to compare touch measures taken at different body parts: forehead, shoulder, forearm,
hand, back and thigh. Plots of the data are shown in Figure 6A for the six body parts. The
sample size is n = 10.

Their analyses were based on the ANOVA F test, followed by paired t-tests when the
ANOVA F test was significant. Their significant results indicate that the distributions differ,
but because the ANOVA F test is not a robust method when comparing means, there is some
doubt about the nature of the differences. So one goal is to determine in which situations
robust methods give similar results. And for the non-significant results, there is the issue of
whether an important difference was missed due to using the ANOVA F test and Student’s
t-test.

First we describe a situation where robust methods based a median and a 20% trimmed
mean give reasonably similar results. Comparing foot and thigh pain measures based on
Student’s t-test, the 0.95 confidence interval = [—0.112, 0.894] and the p-value is 0.112. For
a 20% trimmed mean the 0.95 confidence interval is [—0.032, 0.778] and the p-value is 0.096.
As for the median, the corresponding results were [—0.085, 0.75] and 0.062.

Next, all pairwise comparisons, based on touch, were performed for the following body
parts: forehead, shoulder, forearm, hand, back and thigh. Figure 6B shows a plot of the
difference scores for each pair of body parts. The probability of one or more Type I errors
was controlled using an improvement on the Bonferroni method derived by Hochberg (1988).
The simple strategy of using paired t-tests if the ANOVA F rejects does not control the
probability of one or more Type I errors. If paired t-tests are used without controlling the
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Figure 6: Data from Mancini et al. 2014. Panel A shows the marginal distributions of
thresholds at locations FH = forehead, S = shoulder, FA = forearm, H = hand, B = back
and T = thigh. Individual participants (n = 10) are shown as colored disks and lines.
The medians across participants are shown in black. Panel B shows the distributions of all
pairwise differences between the conditions shown in A. In each stripchart (1D scatterplot),
the black horizontal line marks the median of the differences.
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probability of one or more Type I errors, as done by Mancini et al., 14 of the 15 hypotheses
are rejected. If the probability of one or more Type I errors is controlled using Hochberg’s
method, the following results were obtained. Comparing means via the R function wmcp
(and the argument tr=0), 10 of the 15 hypotheses were rejected. Using medians via the R
function dmedpb, 11 were rejected. As for the 20% trimmed mean, using the R function
wmceppb, now 13 are rejected illustrating the point made earlier that the choice of method
can make a practical difference.

It is noted that in various situations, using the sign test, the estimate of P(X < Y') was
equal to one, which provides a useful perspective beyond using a mean or median.

5.2 Receptive Fields in Early Visual Cortex

The next illustrations are based on data analyzed by Talebi and Baker (2016) and presented
in their Figure 9. The goal was to estimate visual receptive field (RF) models of neurones
from a cat’s visual cortex using natural image stimuli. The authors provided a rich quan-
tification of the neurones’ responses and demonstrated the existence of three functionally
distinct categories of simple cells. The total sample size is 212.

There are three measures: latency, duration, and a direction selectivity index (dsi). For
each of these measures there are three independent categories: nonoriented (nonOri) cells
(n=101), expansive oriented (expOri) cells (n=48) and compressive oriented (compOri) cells
(n=63).

First focus on latency. Talebi et al. used Student’s t-test to compare means. Comparing
the means for nonOri and expOri, no significant difference is found. But an issue is whether
Student’s t-test might be missing an important difference. The plot of the distributions
shown in the top row of Figure 7A, which was created with the R function ghplot, provides
a partial check on this possibility. As is evident, the distributions for nonOri and expOri are
very similar suggesting that no method will yield a significant result. Using error bars is less
convincing because important differences might exist when focusing instead on the median,
20% trimmed mean, or some other aspect of the distributions.

As noted in section 4.2, comparing the deciles can provide a more detailed understanding
of how groups differ. The second row of Figure 7 shows the estimated difference between the
deciles for the nonOri group versus the expOri group. The vertical dotted line indicates the
median. Also shown are confidence intervals (computed via the R function qcomhd) having,
approximately, simultaneous probability coverage equal to 0.95. That is, the probability of
one or more Type I errors is approximately 0.05. In this particular case, differences between
the deciles are more pronounced as we move from the lower to the upper deciles, but again
no significant differences are found.
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Figure 7: Response latencies A and durations B from cells recorded by Talebi and Baker
(2016). Row 1: Estimated distributions of latency and duration measures for three categories:
nonOri, expOri, and compOri. Rows 2 and 3 show shift functions based on comparisons
between the deciles of two groups. The deciles of one group are on the x-axis; the difference
between the deciles of the two groups is on the y-axis. The black dotted line is the difference
between deciles, plotted as function of the deciles in one group. The grey dotted lines mark
the 95% bootstrap confidence interval, which is also highlighted by the grey shaded area.
Row 2: Differences between deciles for nonOri versus expOri, plotted as a function of the
deciles for nonOri. Row 3: Differences between deciles for nonOri versus compOri, plotted
as a function of the deciles for nonOri.
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The third row shows the difference between the deciles for nonOri versus compOri. Again
the magnitude of the differences becomes more pronounced moving from low to high mea-
sures. Now all of the deciles differ significantly except the 0.1 quantiles.

Next, consider durations in column B of Figure 7. Comparing nonOri to expOri using
means, 20% trimmed means and medians, the corresponding p-values are 0.001, 0.005 and
0.009. Even when controlling the probability of one or more Type I errors using Hochberg’s
method, all three reject at the 0.01 level. So a method based means rejects at the 0.01
level, but this merely indicates that the distributions differ in some manner. To provide an
indication that the groups differ in terms of some measure of central tendency, using 20%
trimmed means and medians is more satisfactory. The plot in row 2 of Figure 7B confirms
an overall shift between the two distributions, and suggests a more specific pattern, with
increasing differences in the deciles beyond the median.

Comparing nonOri to compOri, significant results were again obtained using means, 20%
trimmed means and medians, the largest p-value is p=0.005. In contrast, qcomhd indicates
a significant difference for all of the deciles excluding the 0.1 quantile. As can be seen from
the last row in Figure 7B, once more the magnitude of the differences between the deciles
increases as we move from the lower to the upper deciles. Again, this function provides a
more detailed understanding of where and how the distributions differ significantly.

5.3 Mild Traumatic Brain Injury

The illustrations in this section stem from a study dealing with mild traumatic brain injury
(Almeida-Suhett et al., 2014). Briefly, 5-6 week old male, Sprague-Dawley rats received
a mild controlled cortical impact (CCI) injury. The dependent variable used here is the
stereologically estimated total number of GAD- 67-positive cells in the basolateral amygdala
(BLA). Measures 1 and 7 days after surgery were compared to the sham-treated control
group that received a craniotomy, but no CCI injury. A portion of their analyses focused
on the ipsilateral sides of the BLA. Boxplots of the data are shown in Figure 8. The sample
sizes are 13, 9 and 8, respectively.

Almeida-Suhett et al. compared means using an ANOVA F test followed by Bonferroni
post-hoc test. Comparing both day 1 and day 7 measures to the sham group based on
Student’s t-test, the p-values are 0.0375 and < 0.001, respectively. So, if the Bonferroni
method is used, the day 1 group does not differ significantly from the sham group when
testing at the 0.05 level. However, using Hochberg’s improvement on the Bonferroni method,
now the reverse decision is made.

Here, the day 1 group was compared again to the sham group based a percentile bootstrap
method for comparing both 20% trimmed means and medians, as well as Cliff’s improvement
on the WMW test. The corresponding p-values are 0.024, 0.086 and 0.040. If 20% trimmed
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Figure 8: Boxplots for the contralateral and ipsilateral sides of the BLA
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means are compared instead with Yuen’s method, the p-value is p=0.079, but due to the
relatively small sample sizes, a percentile bootstrap would be expected to provide more
accurate control over the Type I error probability. The main point here is that the choice
between Yuen and a percentile bootstrap method can make a practical difference. The
boxplots suggest that sampling is from distributions that are unlikely to generate outliers,
in which case a method based on the usual sample median might have relatively low power.
When outliers are rare, a way of comparing medians that might have more power is to use
instead the Harrell-Davis estimator mentioned in section 4.2 in conjunction with a percentile
bootstrap method. Now p=0.049. Also, testing (4) with the R function wmwpb, p=0.031 So
focusing on €p, the median of all pairwise differences, rather than the individual medians,
can make a practical difference.

In summary, when comparing the sham group to the Day 1 group, all of the methods
that perform relatively well when sample sizes are small, described in section 4.1, reject at
the 0.05 level except the percentile bootstrap method based on the usual sample median.
Taken as a whole, the results suggest that measures for the sham group are typically higher
than measures based on day 1 group. As for the day 7 data, now all of the methods used
for the day 1 data have p-values less than or equal to 0.002.

The same analyses were done using the contralateral sides of the BLA. Now the results
were consistent with those based on means: none are significant for day 1. As for the day 7
measures, both conventional and robust methods indicate significant results.

5.4 Fractional Anisotropy and Reading Ability

The next illustrations are based on data dealing with reading skills and structural brain
development (Houston et al., 2014). The general goal was to investigate maturational volume
changes in brain reading regions and their association with performance on reading measures.
The statistical methods used were not made explicit. Presumably they were least squares
regression or Pearson’s correlation coupled with the usual Student’s t-tests. The ages of the
participants ranged between 6 and 16. After eliminating missing values, the sample size is
n = 53. (It is unclear how Houston et al. dealt with missing values.)

As previously indicated, when dealing with regression, it is prudent to begin with a
smoother as a partial check on whether assuming a straight regression line appears to be
reasonable. Simultaneously, the potential impact of outliers needs to be considered. In
exploratory studies, it is suggested that results based on both Cleveland’s smoother and the
running interval smoother be examined. (Quantile regression smoothers are another option
that can be very useful; use the R function gsm.)

Here we begin by using the R function Iplot (Cleveland’s smoother) to estimate the
regression line when the goal is to estimate the mean of the dependent variable for some
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given value of an independent variable. Figure 9A shows the estimated regression line when
using age to predict left corticospinal measures (CST.L). Figure 9B shows the estimate when
a GORT fluency (GORT.FL) measure of reading ability (Wiederhold et al., 2001) is taken to
be the dependent variable. The shaded areas indicate a 0.95 confidence region that contains
the true regression line. In these two situations, assuming a straight regression line seems
like a reasonable approximation of the true regression line.

Figure 9C shows the estimated regression line for predicting GORT.FL with CST.L. Note
the dip in the regression line. One possibility is that the dip reflects the true regression line,
but another explanation is that it is due to outliers among the dependent variable. (The R
function outmgv indicates that the upper GORT.FL values are outliers.) Switching to the
running interval smoother (via the R function rplot), which uses a 20% trimmed mean to
estimate the typical GORT.FL value, now the regression line appears to be quite straight.
(For details, see the figshare file mentioned at the beginning of this section.)

The presence of curvature can depend on which variable is taken to be the independent
variable. Figure 9D illustrates this point by using CST.L as the dependent variable and
GORT.FL as the independent variable, in contrast to 9C. Note how the line increases and
then curves down.

Using instead the running-interval smoother, where the goal is to estimate the 20%
trimmed mean of the dependent variable, now there appears to be a distinct bend approx-
imately at GORT.FL=70. For GORT.FL less than 70 the regression line appears to quite
straight and the slope was found to be significant (p=0.007) based on the R function regci,
which uses the robust Theil-Sen estimator by default. (It is designed to estimate the me-
dian of the dependent variable.) For GORT.FL greater than 70, again the regression line is
reasonably straight, but now the slope is negative and does not differ significantly from zero
(p=0.27). Moreover, testing the hypothesis that these two slopes are equal (via the R func-
tion reg2ci), p=0.027, which provides additional evidence that there is curvature. So a more
robust smoother suggests that there is a positive association up to about GORT.FL=70,
after which the association is much weaker and possibly nonexistent.

A common strategy for dealing with curvature is to include a quadratic term in the
regression model. More generally, one might try to straighten a regression by replacing the
independent variable X with X for some suitable choice for a. However, for the situation at
hand, the half slope ratio method (e.g., Wilcox, 2017a, 11.4) does not support this strategy.
It currently seems that smoothers provide a more satisfactory approach to dealing with
curvature.

Now consider the goal of determining whether age or CST.L is more important when
GORT.FL is the dependent variable. A plot of the regression surface when both indepen-
dent variables are used to predict GORT.FL suggests that the regression surface is well
approximated by a plane. (Details are in the figshare document.) Testing the hypothe-
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Figure 9: Non-parametric estimate of the regression line for predicting GORT.FL with CST.L
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sis that the two independent variables are equally important via the R function reglVcom
indicates that age is more important. (This function uses the Theil-Sen estimator by de-
fault.) Moreover, the ratio of the strength of the individual associations is 53. Using least
squares regression instead (via reglVcom but with the argument regfun=ols), again age is
more important and now the ratio of the strength of the individual associations is 9.85.

Another measure of reading ability that was used is the Woodcock—Johnson (WJ) basic
reading skills composite index (Woodcock, et al., 2001). Here we consider the extent the
GORT (raw) rate score is more important than age when predicting the the WJ word attack
(raw) score. Pearson’s correlation for the word attack score and age is 0.68 (p < 0.001).
The correlation between the GORT rate score and the word attack score is 0.79 (p < 0.001).
Comparing these correlations via the R function twohc4cor, no significant difference is found
at the 0.05 level (p=0.11). But when both of these independent variables are entered into the
model, and again the Theil-Sen regression estimator is used, a significant result is obtained
(p< 0.001): the GORT rate score is estimated to be more important. In addition, the
strength of the association between age and the word attack score is estimated to be close
to zero. Using instead least squares regression, p = 0.02 and the correlation between age
and WJ word attack score drops to 0.012. So both methods indicate that the GORT rate
score is more important, with the result based on a robust regression estimator providing
more compelling evidence that this is the case. This illustrates a point made earlier that the
relative importance of the independent variables can depend on which independent variables
are included in the model.

6 A Suggested Guide

While no single method is always best, the following guide is suggested when comparing
groups or studying associations.

e Plot the data. Error bars are popular, but they are limited regarding the information
they convey, regardless of whether they are based on the standard deviation or an
estimate of the standard error. Better are scatterplots, boxplots or violin plots. For
small sample sizes, scatterplots should be the default. If the sample sizes are not
too small, plots of the distributions can be very useful, but there is no agreed upon
guideline regarding just how large the sample size should be. For the moment, we
suggest checking both boxplots and plots of the distributions when the sample size is
n > 30 with the goal of getting different perspectives on the nature of the distributions.
It is suggested that kernel density estimators, rather than histograms, be used for
reasons illustrated in Wilcox (2017b). (The R functions akerd and ghplot use a kernel
density estimator.) For discrete data, where the number of possible values for the
outcome variable is relatively small, also consider a plot of the relative frequencies.
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The R function splot is one possibility. When comparing two groups consider the R
function splotg2. For more details regarding plots, see Weissgerber et al. (2015) and
Rousselet et al. (2017).

e For very small sample sizes, say less than or equal to ten, consider the methods in
sections 4.2 and 4.3.

e Use a method that allows heteroscedasticity. If the homoscedasticity assumption is
true, in general little is lost when using a heteroscedastic method. But as the degree of
heteroscedasticity increases, at some point methods that allow heteroscedasticity can
make a practical difference in terms of both Type I errors and power. Put more broadly,
avoid methods that use an incorrect estimate of the standard error when groups differ
or when dealing with regression and there is an association. These methods include
t-tests and ANOVA F tests on means, the WMW test, as well as conventional methods
for making inferences about measures of association and the parameters of the usual
linear regression model.

e Be aware of the limitations of methods based on means: they have a relatively high
risk of poor control over the Type I error probability, as well as poor power. Another
possible concern is that when dealing with skewed distributions, the mean might be
an unsatisfactory summary of the typical response. Results based on means are not
necessarily inaccurate, but relative to other methods that might be used, there are
serious practical concerns that are difficult to address. Importantly, when using means,
even a significant result can yield a relatively inaccurate and unrevealing sense of
how distributions differ, and a non-significant result cannot be used to conclude that
distributions do not differ.

e As a useful alternative to comparisons based on means, consider using a shift function
or some other method for comparing multiple quantiles. Sometimes these methods can
provide a deeper understanding of where and how groups differ that has practical value
as illustrated in Figure 7. There is even the possibility that they yield significant results
when methods based on means, trimmed means and medians do not. For discrete data,
where the variables have a limited number of possible values, consider the R function
binband. (See Wilcox, 2017c, section 12.1.17; or Wilcox, 2017a section 5.8.5.)

e When checking for outliers, use a method that avoids masking. This eliminates any
method based on the mean and variance. Wilcox (2017a, section 6.4) summarizes
methods designed for multivariate data. (The R functions outpro and outmgv use
methods that perform relatively well.)

e Be aware that the choice of method can make a substantial difference. For example,
highly non-significant results can become significant when switching from a method
based on the mean to a 20% trimmed mean or median. The reverse can happen where
methods based on means are significant but robust methods are not. In this latter
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situation, the reason might be that confidence intervals based on means are highly
inaccurate. Resolving whether this is the case is difficult at best based on current
technology. Consequently, it is prudent to consider the robust methods outlined in
this paper.

e When dealing with regression or measures of association, use modern methods for
checking on the impact of outliers. When using regression estimators, dealing with out-
liers among the independent variables is straightforward via the R functions mentioned
here: set the argument xout=TRUE. As for outliers among the dependent variable,
use some robust regression estimator. The Theil-Sen estimator is relatively good, but
arguments can be made for using certain extensions and alternative techniques. When
there are one or two independent variables, and the sample size is not too small, check
the plots returned by smoothers. This can be done with the R functions rplot and
Iplot. Other possibilities and their relative merits are summarized in Wilcox (2017a).

7 Concluding Remarks

It is not being suggested that methods based on means should be completely abandoned or
have no practical value. Instead, complete reliance on conventional methods can result in a
superficial, misleading and relatively uninformative understanding of how groups compare.
In addition, they might provide poor control over the Type I error probability and power.
Similar concerns plague least squares regression and Pearson’s correlation.

When a method fails to reject, this leaves open the issue of whether a significant result
was missed due to the method used. From this perspective, multiple tests can be informative.
However, there are two competing goals that need to be considered. The first is that when
testing multiple hypotheses, this can increase the probability of one or more Type I errors.
From basic principles, if, for example, five tests are performed at the 0.05 level, and all five
hypotheses are true, the expected number of Type I errors is 0.25. But the more common
focus is on the probability of one or more Type I errors rather than the expected number of
Type I errors. The probability of one or more Type I errors will be greater than 0.05, but by
how much is difficult to determine exactly due to the dependence among the tests that are
performed. Improvements on the Bonferroni method deal with this issue (e.g., Hochberg,
1988; Hommel, 1988) and are readily implemented via the R function p.adjust. But the more
tests that are performed, such adjustments come at the cost of lower power. Simultaneously,
ignoring multiple perspectives runs the risk of not achieving a deep understanding of how
groups compare. Also, as noted in the previous section, if methods based on means are used,
it is prudent to check the extent robust methods give similar results.

An important issue not discussed here is robust measures of effect size. When both
conventional and robust methods reject, the method used to characterize how groups differ
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can be crucial. Cohen’s d, for example, is not robust simply because it is based on the
means and variances. Robust measures of effect size are summarized in Wilcox (2017a, c).
Currently, efforts are being made to extend and generalize these measures.

Another important issue is the implication of modern insights in terms of the massive
number of published papers using conventional methods. These insights do not necessarily
imply that these results are incorrect. There are conditions where classic methods perform
reasonably well. But there is a clear possibility that misleading results were obtained in
some situations. One of the main concerns is whether important differences or associations
have been missed. Some of the illustrations in Wilcox (2017a, b, c), for example, reanalyzed
data from studies dealing with regression where the simple act of removing outliers among
the independent variable resulted in a highly non-significant result becoming significant at
the 0.05 level. As illustrated here, non-significant results can become significant when using
a more modern method for comparing measures of central tendency. There is also the
possibility that a few outliers can result in a large Pearson correlation when in fact there
is little or no association among the bulk of the data (Rousselet & Pernet 2012). Wilcox
(2017c) mentions one unpublished study where this occurred. So the issue is not whether
modern robust methods can make a practical difference. Rather, the issue is how often this
occurs.

Finally, there is much more to modern methods beyond the techniques and issues de-
scribed here (Wilcox, 2017a). Included are additional methods for studying associations as
well as substantially better techniques for dealing with ANCOVA. As mentioned in the in-
troduction, there are introductory textbooks that include the basics of modern advances and
insights. But the difficult task of modernizing basic training for the typical neuroscientist
remains.
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