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Abstract 
 
The developmental switch to sporulation in Physarum polycephalum is a 
phytochrome-mediated far-red light-induced cell fate decision that synchronously 
encompasses the entire multinucleate plasmodial cell and is associated with 
extensive reprogramming of the transcriptome. By repeatedly taking samples of 
single cells after delivery of a light stimulus pulse, we analysed differential gene 
expression in two mutant strains and in a heterokaryon of the two strains all of which 
display a different propensity for making the cell fate decision. Multidimensional 
scaling of the gene expression data revealed individually different single cell 
trajectories eventually leading to sporulation. Characterization of the trajectories as 
walks through states of gene expression discretized by hierarchical clustering 
allowed the reconstruction of Petri nets that model and predict the observed 
behavior. Structural analyses of the Petri nets indicated stimulus- and genotype-
dependence of both, single cell trajectories and of the quasipotential landscape 
through which these trajectories are taken. The Petri net-based approach to the 
analysis and decomposition of complex cellular responses and of complex mutant 
phenotypes may provide a scaffold for the data-driven reconstruction of causal 
molecular mechanisms that shape the topology of the quasipotential landscape. 
 
 
1. Introduction 
 
 The organs and tissues of multicellular organisms are composed of different 
types of cells that are specialized in structure and function. These specialized cells 
are formed by a process called cell differentiation. The regulatory control of 
transcription factors leads to the differential expression of cell type-specific sets of 
genes encoding proteins that determine the morphology, the functional capabilities, 
and the behavior of the cells. Understanding the regulatory control of cell 
differentiation is of outstanding interest in basic research and especially in 
biomedicine, given the potential therapeutic applications of stem cells to tissue repair 
and the regeneration of organs or considering the dysregulation of proliferation and 
differentiation in cancer.  
 There are two basic and potentially complementing approaches in systems 
biology [1]. Bottom-up and top-down modeling. In the first case, models are built from 
known molecular interactions. In the second approach, also called reverse 
engineering or network inference, the model of the network is reconstructed based 
on experimental data. In principle, the quasipotential landscape controling the 
differentiation of individual cells could be calculated from a set of differential 
equations describing the biochemical reactions within the regulatory network [2, 3]. 
However, such a model is currently not available and information about the gene 
regulatory network is sketchy even for mammalian cells [3]. Computational analysis 
of known networks or network motifs has shown that their dynamic behaviour 
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depends on mechanistic details, kinetic rate constants, and concentrations [4-7]. 
Given this situation and considering the complexity of cellular signaling, the reverse 
engineering (network inference) approach to complex processes like cell fate 
decisions may be a useful complement to bottom-up research. Hence, we wish to 
expore ways to reconstruct the quasipotential landscape from experimental time 
series data. 
 Cell differentiation is not just found in multicellular animals and plants. In many 
simple eukaryotes, specialized cell types occur in temporal order in the course of a 
life cycle, typically in response to environmental conditions that are sensed by 
specific receptor proteins [8]. Physarum polyecephalum is a classical model 
organisms in which cell differentiation processes have been studied early on. 
 For several reasons, the P. polycephalum plasmodium is a great object for 
studying differentiation at the single cell level [9]. The plasmodium is a giant single 
cell that can be grown to arbitrary size. The myriad of nuclei that are suspended in its 
cytoplasm display natural synchrony in cell cycle regulation and differentiation [10-
15]. Because of this natural synchrony and because of the vigorous cytoplasmic 
shuttle streaming, the plasmodium provides a source from which macroscopic 
samples of homogeneous cell material can be repeatedly taken in order to analyse 
how the concentration of molecular components changes within a single cell as a 
function of time. To set a defined starting point, sporulation of a starving plasmodium 
can be triggered by a short pulse of far-red light which activates a phytochrome 
photoreceptor [16-18]. At around five to six hours after the pulse, the plasmodium 
becomes irreversibly committed to sporulation [9]. The formation of fruiting bodies 
starts at approximately eleven hours and the macroscopically visible morphogenesis 
is completed at about 18 hours after the pulse (Fig. 1). During the formation of the 
mature fruiting body, the protoplasm is cleaved and mononucleate, haploid spores 
are formed by meiosis.  

Sporulation is associated with a cascade of differentially expressed genes [19-
22]. By repeatedly taking samples at different time points after triggering sporulation 
with a far-red light pulse, we have shown that individual plasmodial cells proceed to 
sporulation along variable pathways that involve qualitatively different correlation 
patterns of differentially expressed genes [23]. Based on these intitial analyses we 
could however not specify routes that individual cells would take nor could we assign 
the differential regulation of specific genes to such routes.  

Here, we identify trajectories of P. polycephalum plasmodial cells that had 
been exposed to a differentiation-inducing far-red light stimulus. Based on similarities 
and differences of single cell trajectories obtained by multidimensional scaling of 
gene expression data, we construct a phenotype model in the form of a Petri net that 
predicts the transition between states of gene expression discretized by hierarchical 
clustering. The Petri net formally links these states to the differential regulation of 
specific genes and to the sensory control of induction, commitment, and sporulation. 
Experimental comparison of mutants with different propensities to sporulate and 
structural analysis of the derived Petri nets indicates both, reponsiveness and genetic 
plasticity of the Waddington quasipotential landscape. We conclude that Petri nets  
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Figure 1. Time course of commitment and sporulation of a P. polycephalum plasmodium and 
preparation of samples for gene expression time series datasets. (A) Sporulation of a 
starving, competent, multinucleate (macro-) plasmodium can be triggered by a brief pulse of 
far-red light which is sensed by a phytochrome photoreceptor. After the inductive light pulse 
there is a pre-morphogenetic phase of about 9 to 10 hours without any visible changes in the 
plasmodial morphology. By crossing the point of no return (PNR) at four to six hours after 
induction, the plasmodium is committed to sporulation and loses its ablility to grow on nutrient 
agar. Morphogenesis starts when the plasmodial strands wind up and subsequently 
dissociate into small nodular structures (nodulation stage). Each nodule culminates and 
differentiates into a melanized fruiting body. Meiosis and cleavage of the multinucleate 
protoplasmic mass results in the formation of haploid, mononucleate spores that are released 
when the fruiting body ruptures. Under favourable conditions, a haploid, mononucleate 
amoeba can hatch from a spore to start a new life cycle [24]. (B) Collection of plasmodial 
samples for the measurement of gene expression time series. Starved plasmodial cells (each 
Petri dish contained one plasmodial cell on a plate of starvation agar) were stimulated with a 
pulse of far-red light and returned to the dark (for details see Materials and Methods). Before 
(referred to as 0h sample) and at various time points (2h, 6h, 8h, 11h) after the stimulus 
pulse, samples from the plasmodium were taken with a spatulum and shock frozen in liquid 
nitrogen for the subsequent isolation of RNA. The remainder of the plasmodium was further 
incubated until the next day to see whether the developmental decision to sporulation has 
occurred (sporulation control). For obtaining dark control time series, the experiment was 
performed exactly as described above, but the far-red light stimulus was omitted. Finally, the 
gene expression pattern in each sample was analysed. 
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that predict single cell trajectories by decomposing complex phenotypes may serve 
as formal scaffolds for the reconstruction (reverse engineering) of causal molecular 
mechanisms that define and shape the quasipotential landscape from experimental 
data. 
 
 
2. Methods 
 
2.1. Strains and growth of cell material 
 
Cells of strains of PHO3 [25] and PHO57 [26] that were isolated in genetic screens 
for mutants with reduced propensity for light-induced sporulation were grown as 
microplasmodial suspensions in a fermenter for four days. Microplasmodia were 
harvested and washed, and the plasmodial pellet was allowed to dry on five layers of 
filter paper for 30 minutes. A ring of 1 g of the resulting cell paste was applied to the 
center of a 9 cm ø Petri dish cantaining starvation agar using a motor-driven 50-mL 
syringe coupled to an in-house built automatic device for rotating the agar plate 
around its axis. Plasmodial cells were subsequently allowed to fuse on starvation 
agar so that a single macro-plasmodium developed on each plate. Macro-plasmodia 
were starved for 7 days in complete darkness at 22°C. Experimental conditions 
including media for growth and starvation were exactly as previously described [26]. 
Heterokaryons were obtained by applying 1 g of a 1:1 mixture of plasmodial pastes of 
strains PHO3 and PHO57 to the starvation agar plate and the cultures were further 
incubated as described above. During incubation, microplasmodia of the two strains 
spontaneously fused with each other to form a heterokoaryon.  
 
 
 
2.2. Stimulation of plasmodial cells, preparation of samples, and gene expression 
analysis 
 
Starved plasmodial cells (each Petri dish contained one plasmodial cell) were 
stimulated with a pulse of far-red light (λ ≥ 700 nm, 13 W/m2) as described 
(Starostzik & Marwan 1998) and returned to the dark (22°C). Before (referred to as 0 
h sample) and at various time points (2 h, 6 h, 8 h, 11 h) after the stimulus pulse, 
samples from the plasmodium were taken with a spatula and shock frozen in liquid 
nitrogen for the subsequent isolation of RNA. The remainder of the plasmodium was 
further incubated until the next day and served as a sporulation control that indicated 
whether the developmental decision to sporulation occurred (Fig. 1B). Alternatively, 
time series were taken exactly as described while omitting the far-red light stimulus 
pulse (dark control time series). Total RNA was isolated from each sample 
separately, reverse transcribed, and the relative expression level of 35 marker genes 
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(Supplementary Table 1) quantified by GeXP multiplex reverse transcription–
polymerase chain reaction (RT–PCR) as previously described [26]. Primer 
sequences are described in [27]. One time series dataset was obtained for each 
plasmodial cell. A set of genes that showed differential regulation in response to far-
red light stimulation in the wild type [27] were selected for further analysis (Table 1). 
 
 
2.3. Statistical methods 
 
The datasets for PHO3, for PHO57, and for the PHO3 + PHO57 heterokaryon were 
processed separately. 
 
2.3.1. Normalization of the gene expression data. Gene expression data were 
normalized to the values measured in the dark control time series. To do so, the 
mean of the expression values of all samples taken from cells that had not been 
exposed to a far-red light stimulus was calculated for each gene separately and the 
expression values for each gene measured in samples of far-red light stimulated 
plasmodia were normalized to the mean of the respective gene in the dark control 
time series. 
 
2.3.2. Generation of heat maps and hierarchical clustering.  
Clustering and visualization of the normalized gene expression data were performed 
with the function heatmap.2 in R (Version 3.1.3). In parallel, significant cluster 
analysis ( α = 0.001) was performed using the function simprof as part of the package 
clustsig [28]. Both functions employ the function hclust [29]. 
 
2.3.3. Multidimensional scaling. After normalization of the gene expression data (see 
above), a structure representing the euklidian distance between the data points was 
computed by the function dist which is part of the stats library. Classical 
multidimensional scaling (MDS) of the gene expression data in two dimensions (k=2) 
was then performed on the distances using the function cmdscale() in R (Version 
3.1.3) which is also part of the stats library and plotted with plot() contained in 
graphics.  
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3. Results 
 
 
 
3.1. Light responsiveness and sporulation propensity of plasmodial cells is genotype-
dependent 
 
We analysed two strains, PHO3 and PHO57 that were isolated in a genetic screen 
for sporulation mutants [26]. As compared to the wild type, PHO3 displays a reduced 
propensity to sporulate in response to a far-red (FR) light stimulus while plasmodia of 
PHO57 do not sporulate at all in response to FR light stimulation. When starved 
PHO3 plasmodia were irradiated with a saturating pulse of far-red light, only 
approximately half of the population sporulated indicating that the probability for 
entering the developmental pathway is reduced as compared to the wild-type. 
However, the entire protoplasmic mass of each plasmodium sporulated as a whole or 
did not sporulate at all, indicating that the decision for sporulation to occur was still 
all-or-none in each plasmodium. Investigating the PHO3 mutant hence allows to 
study the dynamical bifurcation between the routes that lead or lead not to 
sporulation in the context of this genotype. 
 Plasmodial cells were starved for six days and exposed to a far-red light 
stimulus. Before and at different time points after the stimulus, a sample was taken 
from each plasmodium to analyse the expression pattern of a set of genes (Table 1) 
that are up- or down-regulated in the wild-type in association with developmental 
switching [15, 27] (Fig 1B). The remainder of the plasmodium was incubated until the 
next day to see whether sporulation had occurred. For the dark controls, plasmodia 
were not exposed to far-red light but otherwise treated identical. Comparative display 
of the time-series data obtained for each plasmodial cell of PHO3 revealed that a set 
of genes were up-regulated in the subpopulation of cells committed to sporulation as 
it had previously been found for the wild-type [27]. In order to group cells with respect 
to the similarity of the expression patterns, we pooled and normalized the data to 
obtain one dataset for the cells of each genotype (see Materials and Methods for 
details), performed a hierarchical cluster analysis of the expression values [29], and 
displayed the results in the form of a heat map (Fig. 2A).  
 PHO57 cells did not sporulate in response to a far-red light stimulus which is 
saturating in wild type [26], and there was no obvious response in differential gene 
expression (Fig. 2B).  
 Heterokaryons of equal relative cytoplasmic mass of PHO57 and PHO3 were 
obtained by fusing plasmodial cells of both strains. Accordingly, the PHO3 and 
PHO57 mutant gene dosages were approximately 50 % in the heterokaryon while the 
presence of a dosage of 50 % of the corresponding wild-type alleles of the respective 
fusion partner may cause complementation. The heterokaryons showed a 
qualitatively similar phenotype as PHO3 cells. As in PHO3, only approximately 50 %  
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Table 1. Differentially regulated genes analysed for the reconstruction of single cell trajectories named according to their orthologs in the Uniprot database. 

Differential regulation is indicated for each gene as it occurs in cells committed to sporulation.  

 
 
Gene 

 
Similarity UniProt ID 

 
E-value 

 Query 
coverage 

(%) 

Differenital 
regulation 

psgA Physarum specific gene NA NA NA down 

pldC Phospholipase D Q9LRZ5 4E-14 61 down 
pldB Phosphatidylinositol-glycan-specific phospholipase D P80108 1E-80 83 down 
pikB Phosphatidylinositol 3-kinase 2 P54674 3E-63 68 down 
pumA Pumilio homolog 2  Q80U58 2E-46 80 down 
anxA Annexin-B12 P26256 6E-41 98 down 
pptA Phosphatase DCR2 Q05924 6E-19 59 up 

cdcA Cell division control protein 31 P06704 6E-27 38 up 

pakA Serine/threonine-protein kinase pakC Q55GV3 3E-48 79 up 

pldA Phosphatidylinositol-glycan-specific phospholipase D Q8R2H5 4E-62 91 up 

ligA Checkpoint protein hus1 homolog 1 (LigA) Q54NC0 1E-28 94 up 

pwiA Piwi-like protein 1 Q96J94 2E-55 92 up 

rgsA Regulator of G-protein signaling 2 O08849 3E-05 31 up 
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of the plasmodial cells of the PHO57 + PHO3 heterokaryon population sporulated in 
response to a saturating far-red light stimulus, suggesting that the PHO57 mutation in 
conjunction with PHO3 is recessive at a gene dosage of 50 %. Sporulated cells 
qualitatively showed a similar response at the gene expression level (Fig. 2C) as 
PHO3 cells did, i.e. down-regulation of psgA, pldC, pldB, pikB, pumA, anxA and up-
regulation of pptA, cdcA, pakA, pldA, ligA, pwiA, and rgsA (Table 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Differential gene expression patterns for a set of cell differentiation marker genes 
in response to far-red light stimulation of plasmodial cells. Heat maps and clusters as 
obtained by hierarchical clustering (H) or simprof analysis (S) are shown for of PHO3 (A), 
PHO57 (B) and for the PHO3 + PHO57 heterokaryon (C). Time series were obtained by 
repeatedly taking samples from plasmodial cells that were stimulated with far-red light or that 
were not stimulated (dark control time series), giving one time series for each individual 
plasmodial cell together with the information whether or not the remainder of the plasmodium 
had sporulated (Fig. 1B). The data points of three groups of plasmodial cells (unstimulated, 
not sporulated; stimulated, not sporulated; stimulated and sporulated) were pooled and the 
three resulting datasets (for PHO3, PHO57 and for the PHO3 + PHO57 heterokaryon) used 
for hierarchical clustering and the heat maps (this Figure), for multidimensional scaling 
(Fig. 3), and for the reconstruction of the single cell trajectories (Fig. 4).  
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3.2. Multidimensional scaling analysis reveals variable trajectories of individual cells 
 
To investigate the variability of pathways a plasmodium can take to commitment and 
sporulation and the dependence of these pathways on the genotype, we performed a 
multidimensional scaling (MDS) analysis [30] to arrange the data points according to 
their similarity as projected into a two-dimensional plane. Clearly, data points were 
unevenly spread over the area of the plot and there were certain regions where data 
points from sporulated or from non-sporulated plasmodia were predominantly located 
(Fig. 3; red vs. black or blue data points, respectively). Data points that were 
assigned to a cluster by hierarchical clustering (Fig. 2) mapped to a corresponding 
cloud of points in the MDS plot (Fig. 3; dashed lines), indicating that the obtained 
results were consistent. MDS analysis of the gene expression data of PHO57 cells 
revealed data points in one significant cluster with three outliers that mapped to a 
second cluster, suggesting that the far-red light exposure did not induce any 
significant response in gene expression. We then reconstructed the trajectory for 
each individual cell by connecting the data points in the MDS plots according to the 
temporal order in which the samples had been taken from the cell. The trajectories of 
the sporulated plasmodia (indicated in red in Fig. 4) moved towards the lower part of 
the MDS plot as compared to the trajectories of the non-sporulated plasmodia of 
PHO3 and of the PHO3 + PHO57 heterokaryon (Fig. 4A,C). One feature however 
was the same for all plasmodia of PHO3 and of the heterokaryon. Their trajectories 
spanned regions corresponding to more than one cluster, suggesting that plasmodia 
switched between different gene expression patterns, even those cells that had not 
been stimulated by a light pulse. Corresponding analyses performed with the non-
sporulating strain PHO57 (Fig. 4B) and the differences between PHO3 and the 
PHO3 + PHO57 heterokaryon suggest that cluster formation, MDS patterns, and 
single cell trajectories depend on the genotype that influences the propensity of a 
plasmodium to sporulate (see below).  
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Figure 3. Multidimensional scaling (MDS) of the data points of cells of PHO3 (A), PHO57 (B) 
and of the PHO3 + PHO57 heterokaryon(C). Each data point represents the gene expression 
pattern of a cell at a given time point. The data points in the MDS plot were assigned to a 
respective cluster found by hierarchical clustering in (Fig. 2) and were accordingly marked 
with a dashed line. 
 
 
 
3.3. Reconstructing a Petri net model of state transitions from single cell trajectories 
 
The two methods, hierarchical clustering and MDS gave consistent yet 
complementing results. While MDS visualizes the similarity of the expression patterns 
of samples in a two-dimensional plane, clustering assigns samples to groups 
resulting in a statistically significant discretization. Based on this discretization, we 
reconstructed a Petri net model from the trajectories of individual cells of each strain, 
PHO3, PHO57, and of the PHO3 + PHO57 heterokaryon. The gene expression 
pattern of each plasmodium at each time point as defined by its assigned cluster was 
listed in a table to obtain a comprehensive representation of all time series (Table 2). 
This table was translated into a Petri net that models the transitions between the 
gene expression states of each strain. For a brief introduction to the Petri net 
formalism including the elements used in this study, see Box 1 and Fig. 5. 

For creating a Petri net model that is able to reproduce and predict single cell 
trajectories by simulation, a place was assigned to each cluster as defined by 
hierarchical clustering (Table 2) and MDS. For the initial graphical representation, the 
places were put in a relative geometric position that corresponds to the center of 
each cluster as it is located in the MDS plot (Fig. 3). The places were then connected  
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Table 2. Single cell trajectories of gene expression patterns as discretized by hierarchical 
clustering. Each line represents the time series measured in an individual plasmodial cell. 
Cells were labled as follows. K, not stimulated, not sporulated, N, far-red light stimulated, not 
sporulated, P, far-red light stimulated, sporulated. Clusters (H) are marked in the heat maps 
of Fig. 2. Clusters that were found in the cells of the dark controls are shown in black, those 
that were found in light stimulated but not in sporulating cells in blue, and those that were 
exclusively found in sporulating cells are shown in red.  
 

Cells	of	strain	PHO3	 	 	 	 	
	 	 	 	 	 	
Cell  \ time 0h 2h 6h 8h 11h 

K1 C5 C4 C9 C9 C4 
K2 C1 C1 C5 C5 C4 
K3 C5 C1 C6 C5 C5 
K4 C1 C5 C4 C4 C5 
K5 C1 C2 C5 C5 C5 
N1 C5 C2 C4 C4 C5 
N2 C1 C2 C7 C4 C5 
N3 C1 C1 C3 C4 C4 
N4 C2 C1 C6 C6 C6 
P1 C6 C2 C8 C11 C10 
P2 C2 C2 C8 C11 C10 
P3 C1 C7 C8 C11 C11 
P4 C1 C2 C8 C11 C10 

	 	 	 	 	 	
 
Cells	of	strain	PHO57	 	 	 	 	
	 	 	 	 	 	
Cell  \ time 0h 2h 6h 8h 11h 

K1 C2 C2 C2 C2 C2 
K2 C2 C1 C2 C2 C2 
K3 C2 C2 C2 C2 C2 
K4 C2 C2 C2 C2 C2 
N1 C1 C2 C2 C2 C2 
N2 C2 C2 C2 C2 C2 
N3 C2 C2 C2 C2 C2 
N4 C2 C2 C2 C2 C2 
N5 C2 C2 C2 C2 C2 
N6 C2 C2 C2 C2 C2 
N7 C2 C2 C2 C2 C2 
N8 C2 C2 C2 C2 C1 

 
 
 
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 11, 2017. ; https://doi.org/10.1101/151878doi: bioRxiv preprint 

https://doi.org/10.1101/151878


-13- 

Werthmann & Marwan, Revised 

Table 2, continued 
	 	 	 	 	 	
	 	 	 	 	 	
Cells of the PHO3 + PHO57 heterokaryon 	 	
	 	 	 	 	 	
Cell  \ time 0h 2h 6h 8h 11h 

K1 C1 C1 C1 C1 C1 
K2 C3 C1 C1 C1 C1 
K3 C1 C1 C1 C1 C1 
K4 C1 C8 C1 C1 C1 
N1 C7 C6 C1 C1 C1 
N2 C5 C5 C12 C4 C3 
P1 C5 C5 C12 C13 C13 
P2 C1 C8 C12 C13 C9 
P3 C2 C5 C12 C13 C13 
P4 C6 C5 C11 C13 C10 
P5 C3 C5 C12 C13 C9 
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◀ Figure 4. Single cell trajectories of differential gene expression. Data points of the time 
series from the multidimensional scaling plot of (Fig. 3) were connected to give a trajectory 
representing the gene expression patterns of subsequent time points for each individual 
plasmodial cell. Spatial regions as assigned to the clusters as determined in (Fig. 2) were 
outlined as in (Fig. 3). Color coding of trajectories: not stimulated, not sporulated, black; far-
red light stimulated, not sporulated, blue; far-red light stimulated, sporulated, red. 
 
 
 
 
 
 
================================================================ 
Box 1. Standard and extended Petri nets 
 
Petri nets are mathematical structures that are broadly used to model concurrent 
systems with classical applications in computer science, systems engineering, and 
operations research [31]. Petri nets are also common to model, analyse, and 
simulate biochemical reaction networks [32, 33]. Petri nets are bipartite directed 
graphs that are composed of places, transitions and directed arcs (Fig. 5). In 
biochemical reaction networks, places may represent biochemical components while 
transitions refer to biochemical reactions [33]. In a more general sense, a place may 
represent an entity or a certain state. When a place contains one or more tokens this 
means that the entity is present in the copy number as indicated by the number of 
tokens in the place. To indicate whether a state is true, one token is sufficient. A 
transition in a Petri net is always connected to one or more places by at least one 
directed arc. Upon firing, the transition can transport a token in the direction defined 
by the connecting arc and thereby change the marking of the connected places (for 
details see Fig. 5). By firing of a transition and moving of at least one token, the 
system accordingly transits from one state into another. Petri nets can be used as a 
formal language that is compatible with virtually all modeling paradigms common in 
systems biology [34, 35], including Boolean netoworks. Petri nets have been 
employed to model the transition between physiological states and genetic 
complementation effects in the photosensory control of sporulation in Physarum 
polycephalum [36]. 
================================================================ 
 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 11, 2017. ; https://doi.org/10.1101/151878doi: bioRxiv preprint 

https://doi.org/10.1101/151878


-16- 

Werthmann & Marwan, Revised 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Elements of extended Petri nets used in this study and their functionality. (a) Petri 
nets are bipartite directed graphs in which two types of nodes, places and transitions, are 
mutually connected by arcs. Extended Petri nets additionally provide read arcs and inhibitory 
arcs which link a place to a transition to control the enabledness of the transition. (b) Petri net 
representing an enzyme-catalyzed biochemical reaction in the form of  E+S→ES→E+P , 
for simplicity neglecting the reversibility of the reactions. In the example, the places 
representing substrate and enzyme, respectively, carry one token each, meaning that there 
is one molecule of substrate and one molecule of enzyme. Transitions represent biochemical 
reactions. Upon firing, transition k1 takes one token from S and one token from E and 
delivers one token in the place representing the enzyme-substrate-complex. As soon as 
there is a token in place ES, transition k2 is enabled and may consume the token from ES to 
put one token each in places P and E. Subsequently, none of the transitions can fire any 
more, as there is no token in S. In stochastic Petri nets, firing of a transition occurs with a 
constant probability per unit of time as defined by a rate constant as soon as the transition is 
enabled. (c), (d) The graphical copy of a node is called logic node and can be used to 
graphically disentangle a Petri net. In the Petri net tool Snoopy, a node is automatically 
shaded if it is defined as logic. (c) The Petri net of (b) is represented using logic places for all 
reactants S, E, ES, and P. Note that the tokens by which a logic place is marked are 
automatically displayed in all graphical copies of this place. (d) The Petri net of (b) with k1 
defined as a logic transition. Accordingly, k1 can only fire if the two places, S and E, contain 
at least one token. (e,f,g) Use of read arcs and the meaning of arc weights. The arc weight is 
indicated as a number next to an arc. If no arc weight is given, the arc weight by definition is 
one. As place R is connected to transition T1 with a read arc with an arc weight of one, the 
transition can only fire if R is marked by at least one token. The arc weight of standard arcs 
corresponds to the stochiometry of token displacement. In other words, it indicates the 
number of tokens that are transported via the arc connected to the transition when this 
transition fires. If a pre-place of a transition contains a number of tokens which is less than 
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the arc weight of a standard arc, or a read arc which is directed to the transition, the 
transition cannot fire. The marking of a place that is connected via a read arc or an inhibitory 
arc to a transition does not change when the transition fires. Simply said, read arcs and 
inhibitory arcs sense rather than transport tokens. When T1 in the Petri net of (e) fires, it 
takes, according to the arc weights, one token from P and puts two tokens into Q while the 
marking or R remains unchanged (f). Transition T1 in the Petri net of panel (g) cannot fire 
because there is only one token in P while the arc weight requires that two tokens are 
consumed from P upon firing of the transition. If place R is connected to transition T1 with an 
inhibitory arc instead of the readarc in (e), T1 can only fire if there are less tokens in place R 
than indicated by the arc weight of the inhibitory arc (not shown). A brief introduction to Petri 
nets and to the Petri net tool Snoopy can be found in [37]. 
 
 
by transitions in a way that each single cell trajectory could be represented by the 
token moving through the Petri net. The token corresponds to the marble in 
Waddingtons metaphor (see Discussion). To graphically discriminate the pathways 
as they were observed in a particular group of plasmodial cells, arcs directing the 
pathways taken by the dark controls were indicated in black, those of far-red light 
irradiated but not sporulated cells in blue and those of far-red light-induced and 
sporulated cells in red (Fig. 6). Paths that were taken by plasmodia from more than 
one group were encoded with arcs of two or more colors (e.g. arcs connecting 
transitions T12 or T16 in Fig. 6). Note that the coloring of the arcs is only for 
illustration or visualisation purposes but does not have any functional relevance for 
the Petri net. Note also, that this is not a "colored Petri net" in the technical sense. 
Colored Petri net is a technical term for a special class of Petri nets [38].  

In Fig. 6, the coloring of the arcs highlights that there were pathways that were 
exclusively taken by those plasmodia that had sporulated and some that were 
predominantly taken by light-exposed plasmodia that did not sporulate, while others 
were perdominantly taken by the dark controls. Certainly, the low number of 
plasmodial cells in each sample does not allow for any final conclusion regarding the 
exclusiveness of the pathways which are taken in response to a certain treatment. 
Nevertheless, our case studies demonstrate how a Petri net analysis of single cell 
trajectories on MDS data can be performed. With the Petri net, single cell trajectories 
can be simulated as follows: One token is put into a place defining the state in which 
the plasmodium is when the trajectory starts. The token is then allowed to move 
spontaneously through the stochastic Petri net as enabled transitions fire randomly 
giving a simulated single cell trajectory for each simulation run. Simulations can be 
performed with Snoopy [35, 39], the tool that was used to draw the Petri nets. The 
relative frequency of a transition to fire and hence the relative frequency of individual 
trajectories to occur results from the firing propensity of the transitions (corresponding 
to kinetic rate constants) that can be defined in the stochastic Petri net. Even without 
running a simulation, the Petri net visualizes the pathways that were taken by 
individual cells on their walk through the quasipotential landscape of gene expression 
(see Discussion) and it displays structural properties that are analysed in the 
following.  
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Figure 6. Petri nets reconstructed from the time series of transitions between states of gene 
expression of PHO3 (A), PHO57 (B) and of PHO3 + PHO57 heterokaryon (C) cells. Places 
representing the clusters as determined in (Fig. 2) and listed in Table 2 were geometrically 
arranged relative to each other corresponding to the center of each cluster in the MDS plot of 
Fig. 3 so that the information regarding the similarity of expression patterns between the 
clusters is encoded in the relative spatial position of the Petri net places. Transitions of the 
Petri net were named according to the places they connect, e.g. transition T12 connects 
place C1 to place C2 through directed arcs. The color coding of the arcs indicates the group 
of cells in which the paths were observed: not stimulated, not sporulated, black; far-red light 
stimulated, not sporulated, blue; far-red light stimulated, sporulated, red. The Petri net place 
representing the starting point of a single cell trajectory is marked with one token. Upon firing 
of enabled transitions, the token indicating the gene expression state of the cell moves 
through the net and creates a trajectory similar to the trajectories in (Fig. 4). 
 
 
3.4. T-invariant analysis indicates cyclic transition between states 
 
 Before we assign the firing of the transitions to the differential regulation of 
specific genes, let us first consider some structural properties of the Petri net. We 
discuss the properties of the nets in their current form, bearing in mind that the 
reconstruction is based on a limited amount of data. With more cells analysed, the 
nets might well become more structured with more places and more transitions. Also, 
currently observed differences in trajectories between groups of cells (e.g. light-
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exposed vs. dark controls) might emerge or disappar with more cells analysed or with 
more time points taken. Despite of this caveat, the currently available dataset allows 
to demonstrate the computational method.  

The places in the Petri net of Fig. 6 have been purposefully arranged to 
visually assign them to the relative positions of the clusters within the MDS plot. In 
this format, the relative position of the places indicates how similar the clusters are 
relative to each other with respect to the gene expression patterns they comprise. In 
order to arrange the nets so that their structure appears more clearly, we used an 
automatic layout algorithm implemented in Snoopy (Fig. 7). Although the connectivity 
within the re-arranged nets is unchanged, the information regarding the similarity of 
the clusters is lost as the relative positions of the places corresponding to the relative 
positions of the clusters in the MDS plot is not preserved. The rearranged net was 
then used to analyse the T-invariants. A T-invariant can be described as follows: If 
each transition belonging to a T-invariant in partial order has fired once, the marking 
of the places of the T-invariant is the same as it was before the first transition of the 
T-invariant fired (see color-coded T-invariants in Fig. 8 as examples; for a formal 
definition of T-invariants see [40]. In other words, a T-invariant defines a reaction 
cycle or a sequence of firing events that brings the subsystem which is covered by 
this T-invariant back to its original state.  
 T-invariants were calculated using the analysis tool Charlie [41] and 
subsequently visualized in Snoopy. The net of PHO3 cells in Fig. 7A is mostly 
covered by a set of 21 T-invariants that display multiple overlaps. Overlapping is so 
extensive that color-coding of all individual T-invariants in the net of Fig. 7A is not 
even possible. As inspection of the individual T-invariants is instructive, the 
calculation of T-invariants with Charlie and visualization of the complete set with 
Snoopy is shown in the Supplemental Movie SI Movie 1. T-invariants only occurred in 
those parts of the net that were reconstructed from the trajectories of cells that did 
not sporulate. Therefore, the red bold arcs in Fig. 7A highlight those regions of the 
net that are not part of any of the 21 T-invariants and that were taken by the 
sporulated cells only. T-invariant analysis reflects that non-sporulated cells cyclically 
switchend between different states of gene expression. It further predicts numerous 
trajectories that would emerge from the combinatorics of state transitions. From the 
color-encoded arcs in Fig. 7A it seems that far-red light exposure created T-invariants 
in addition to those emerging from the trajectories of the dark controls. However, the 
low number of cells analysed for each group does not allow for any final conclusion. 
With this limitation in mind, the T-invariants involving C3 or C7 might well be 
stimulus-specific Fig. 7A. T13, the transition from C1 to C3 (Fig. 7A) with a strong 
differential regulation of pikB, pldC (down), and pldA (up) may indicate a futil attempt 
of PHO3 cells to switch to the cell fate of sporulation.   
 In summary, the high number of T-invariants reflects that non-sporulated 
PHO3 cells were switching between states of gene expression. Cells that sporulated 
in response to the far-red light stimulus irreversibly proceeded to clusters C8, C11 
and C10, however on seemingly different pathways C2 to C8 or C1 to C8 via C7  
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Figure 7. Planarized Petri nets used for the analysis of T-invariants. The Petri nets of Fig. 6 
were subjected to an automatic layout algorithm (planarization) implemented in the Petri net 
tool Snoopy in order to get the graphical representation clearly arranged. The new layouts 
were used to visualize the T-invariants as calculated with the analysis tool Charlie [41]. The 
color coding of the arcs in (A), (B), and (C) indicates in which types of plasmodial cells the 
paths were observed: Dark controls, not sporulated, black; far-red stimulated, not sporulated, 
blue; far-red stimulated, sporulated, red. The Petri net of PHO3 cells (A) contains 21 
extensively overlapping T-invariants which are shown in Supplemental Movie 1. The simple 
net of PHO57 (B) consists of one single T-invariant. Transitions in (A) were defined as logic 
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transitions to allow the connections to those parts of the model that were added to represent 
light regulation, differential gene expression, and the physiological states of the cell (Fig. 9). 
The three T-invariants of the net of the PHO3 + PHO57 heterokaryon (C) are shown in 
Fig. 8. 
 
 
according to the Petri net and as suggested by the experimental results shown in 
Table 2. Based on the available dataset we cannot exclude that C7 represents a 
state with short life time that might also have occurred upon the transition from C2 to 
C8 though in might not have been resolved due to the low number of time points that 
were sampled. Anyway, the high number of T-invariants observed for PHO3 cells 
was not found in the PHO3 + PHO57 heterokaryon (Fig. 8) indicating that the 
structure of the Petri net reflecting the topology of the quasipotential landscape is 
genotype-dependent (see Discussion).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. T-invariants of the Petri net modeling the transitions between changes between 
states of gene expression in the PHO3 + PHO57 heterokaryon. The T-invariants were 
computed and displayed using the analysis tool Charlie [41] and displayed in Snoopy as 
shown in Supplemental Movie 1. 
 
 

The trajectories of PHO3 cells that were committed to sporulation moved 
through cluster C8 to clusters C11 and eventually to C10. In any temporal sequence 
of events, C8 was the first place which was visited by all cells that subsequently 
sporulated. Only cells that were committed to sporulation entered C8, suggesting that 
transitions T28 and T78 represent the committment to sporulation (Fig. 7A) where the 
system is trapped by a new basin of attraction (see Discussion). 

The Petri net obtained for PHO57 cells (Fig. 7B) is accordingly simple as there 
were only two significantly different clusters in the MDS plot. The net consists of a 
single T-invariant.  

A B C 

C1

C2

C3

C4

C5

C6 C7

C8

C9

C10

C11

C12

C13

T18

T31

T81

T1213

T812

T25
T43

T124

T512

T61 T76

T139

T65

T511

T1113T1310

T35

C1

C2

C3

C4

C5

C6 C7

C8

C9

C10

C11

C12

C13

T18

T31

T81

T1213

T812

T25
T43

T124

T512

T61 T76

T139

T65

T511

T1113T1310

T35

C1

C2

C3

C4

C5

C6 C7

C8

C9

C10

C11

C12

C13

T18

T31

T81

T1213

T812

T25
T43

T124

T512

T61 T76

T139

T65

T511

T1113T1310

T35

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 11, 2017. ; https://doi.org/10.1101/151878doi: bioRxiv preprint 

https://doi.org/10.1101/151878


-22- 

Werthmann & Marwan, Revised 

 The Petri net reconstructed from the pathways of cells of the heterokaryon 
Fig. 7C was different as compared to the Petri net for the PHO3 cells with its 21 T-
invariants. In the Petri net for the heterokaryon there were only three T-invariants, 
one for the cells of the dark controls and two for light-exposed cells (Fig. 7C; Fig. 8). 
The other pathways lead to sporulation. There were two nodes of pre-activation for 
sporulating cells, C5 and C12 from which cells could return without sporulating. And 
there was one central node C13 for all sporulating cells which characterizes a state at 
which the cells had been committed to sporulation. The difference in the number of T-
invariants indicates that the behaviour of the cells of the PHO3 + PHO57 
heterokaryon is more directed than the behaviour of the PHO3 cells suggesting that 
the topology of the quasipotential landscape is genotype-dependent. This more 
directed behaviour with less T-invariants within the Petri net may well be due to 
partial complementation of the sporulation-suppressing PHO3 mutation by the wild 
type gene product contributed by the PHO57 plasmodium in the heterokaryon. 
 
 
3.5. Light-dependent steps and commitment of plasmodial cells 
 
Single cell trajectories have been obtained for three groups of cells, for far-red light-
exposed cells that sporulated or that did not sporulate in response to the stimulus 
and for dark controls that did not sporulate either. Arcs representing trajectories taken 
by irradiated, not sporulating cells only are indicated in blue in Fig. 7A-C. However, 
due to the low number of samples it cannot be excluded that dark control cells would 
not take at least certain steps of these pathways. Hence we searched for the 
maximal number of transitions that according to the net structure would be expected 
to be light-dependent. To do so, we identified those significant clusters that did not 
occur in cells of the dark controls and instead were found in light-stimulated cells that 
did not sporulate (marked in blue in Table 2). In addition, we identified those clusters 
that exclusively occurred in cells that sporulated in response to light stimulation 
(marked in red in Table 2). With the caveats mentioned above, transitions leading to 
places representing these clusters are considered to be directly or indirectly light-
dependent. For PHO3 cells these are transitions T28 which, as discussed above, is 
directly associated with commitment to sporulation and T13, T17, and T27 that lead 
to C3 or to C7. Accordingly, C3 and C7 are candidates for states of pre-activation or 
induction, respectively which might either decay via transitions T34 or T74 or lead to 
commitment via T78. Based on these considerations, the minimal model for light 
activation of PHO3 cells is shown in Fig. 9. The phytochrome photoreceptor is 
activated by photoconversion of Pfr by far-red light. Photoconversion then enables the 
logic transitions T13, T17, T27, and T28, meaning that the three transitions cannot 
fire without any far-red light stimulus. Coupled through the so-called logic transitions, 
highlighted in grey, the light-activation module of Fig. 9A is a functional part of the 
Petri net of Fig. 7A. Graphical copies of a place or a transition are called logic places 
or logic transitions. The principle is explained in Fig. 5c,d. The use of logic nodes 
(logic places and/or logic transitions) allows to stucture and to modularize the 
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Figure 9. Petri net modules representing the phytochrome-mediated photosensory control of 
transitions between states of gene expression (A), associated changes in physiological 
states (B), and the differential expression of individual genes (C) in PHO3 cells. (A) 
Photosensory control. Places represent absence or presence of far-red light (FR) and the 
phytochrome photoreceptor in its Pfr and Pr states, respectively. Logic transitions are shaded 
in grey. Transitions filled in black are so-called immediate transitions that fire without delay 
when the preplace is sufficiently marked (for details see [37]). (B) Physiological states of the 
plasmodium, their photosensory control and their relation to the transitions between the 
clusters of differential gene expression as shown in Figs 2,3, and 7. (C) Sample copy of a 
gene expression module, updating the expression level of a gene upon firing of a transition 
linking the places representing clusters shown in (Fig. 7A). In order to model the differential 
regulation of all genes, this module is required in multiple copies (= number of transitions in 
Fig. 7A x number of genes represented). Its structure is designed to update the expression 
level of a gene according to its x-fold change entered as an arc weight. Those places and 
transitions that perform a computational function only (and do not have any biological 
interpretation) have not been labelled by a name. The network motif in the example shown 
for the pwiA gene is triggered by one of the transitions in (A), T28. As T28 fires, the 
expression level of the pwiA gene represented by the marking of the pwiA place is retrieved 
and updated according to the arc weight W(T28, pwiA). The arc weights for the set of 
analysed genes are displayed in Table 3 as x-fold changes in the gene expression level upon 
firing of transitions T28 and T78 which represent the commitment to sporulation. 
Supplementary Table 2 correspondingly displays the arc weights for all transitions of panel 
(A). Places representing the gene expression level are implemented and graphically 
displayed as continous places [42] and can therefore be updated in the form of continuous 
numbers. As the Petri net contains stochastic and continuous nodes, it is called hybrid Petri 
net. Note that the gene expression modules are not more than entities that, in the context of 
the coherent model, phenotypically mimic and predict trajectories of differential gene 
expression but they do not represent any regulatory mechanism at the molecular level. 
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 graphical appearence of the Petri net having one part that models the MDS results 
and simulates the single cell trajectories (Fig. 7A) and other functionally coupled but 
graphically separate modular parts that model molecular events, photoreceptor 
activation, or changes in the physiological state of the cell in response to e.g. the 
photoactivation of the phytochrome (Fig. 9).  
 In an analogous line of argumentation, transitions leading to commitment can 
be identified with the help of Table 2 and employed in a modular part of a Petri net to 
assign changes of the physiological state of a cell to the transition between clusters. 
In PHO3, transition to cluster C8 that was only seen in cells committed to sporulation 
occurs via T28 or T78 while induction is mediated via T17 or T27 (Fig. 9). In cells of 
the heterokaryon, T1213 and T1113 lead to commitment, while the state of induction 
decays via T124 (Table 2). 
 
 
 
3.6. Formal assignment of the transition between clusters to the differential regulation 
of specific genes 
 
 The Petri nets in Figs. 6 and 7 model how the collective state of a cell may 
change with time depending on whether or not the cell has received a light stimulus. 
However, these Petri nets are solely referring to the states as defined by gene 
expression patterns discretized by clustering. In order to consider the differential 
regulation of specific genes upon the transition from one state to another, we 
calculated for PHO3 cells how much the mean value of the expression level for each 
considered gene differed upon the observed transitions between clusters 
(Supplementary Table 2). This yielded for each transition of the Petri net of 
Figs 6A,7A the x-fold change in the expression level of each gene that occurs upon 
firing of the transition. These values are used as arc weights in the gene expression 
modules of the Petri net. There are multiple copies of the gene expression module 
shown in Fig. 9C which are used to update the expression-level of each considered 
gene upon firing of each of the Petri net transitions of Figs 6A,7A (see legend to 
figure Fig. 9C for structural details and functionality of the Petri net module). The 
expression level of genes in terms of relative mRNA concentration is represented by 
the number of tokens in the place for its gene-specific mRNA. As each transition from 
one cluster to another is associated with the differential regulation of quite a number 
of genes, we use logic transitions and logic places for the gene-specific mRNAs to 
graphically disentangle the network in order to avoid a confusing crisscross of arcs. 
The model is constructed based on the x-fold changes in the expression level of each 
gene that occurs during switching between clusters. An example is provided for 
transitions that are involved in commitment of PHO3 cells to sporulation (x-fold 
changes, listed for transitions T28 and T78 in Table 3). By employing gene 
expression modules in the described form, we obtain not more than a formal model  
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Table 3. Differential gene expression associated with the commitment to sporulation of PHO3 cells. The x-fold changes in gene expression 
associated to firing of transitions T28 and T78 in the Petri net of Figs 6A,7A were calculated by taking the means of the expression values of each 
gene in the two clusters that were compared. The values for T28 and for T78 were then sorted for ascending x-fold changes. In the Petri net of 
Figs 6A,7A, the arc weight W(Tx,genX) entered into each gene expression module (Fig. 9C) corresponds to the x-fold change of each gene for the 
respective transition as it is provided by this table. The x-fold changes of gene expression values for all transitions of the Petri net of Figs 6A,7 is 
provided as Supplementary Table 2. 
 
 T28   pldC pikB pumA psgA pldB anxA pakA cdcA ligA rgsA pwiA pptA pldA 
Cluster 2 Mean 0.707 0.057 0.270 0.173 0.298 0.101 0.921 0.462 0.114 0.153 0.107 0.086 0.043 
Cluster 8 Mean 0.042 0.045 0.309 0.206 0.874 0.514 5.194 3.782 1.396 4.033 3.378 3.477 14.261 
 Delta -0.665 -0.013 0.038 0.033 0.576 0.413 4.273 3.320 1.282 3.880 3.271 3.391 14.218 
W(T28) x-fold 0.059 0.777 1.141 1.191 2.929 5.103 5.641 8.183 12.211 26.366 31.686 40.300 333.887 
  1/x-fold 16.897 1.287 0.876 0.839 0.341 0.196 0.177 0.122 0.082 0.038 0.032 0.025 0.003 
                              
 T78   pldC pikB psgA pumA anxA pldB ligA cdcA rgsA pakA pldA pptA pwiA 
Cluster 7 Mean 1.736 1.192 2.925 1.688 2.201 3.118 2.434 4.136 3.468 2.809 5.241 1.244 0.776 
Cluster 8 Mean 0.042 0.045 0.206 0.309 0.514 0.874 1.396 3.782 4.033 5.194 14.261 3.477 3.378 
 Delta -1.695 -1.148 -2.719 -1.379 -1.687 -2.244 -1.038 -0.354 0.565 2.385 9.020 2.234 2.602 
W(T78) x-fold 0.024 0.037 0.070 0.183 0.233 0.280 0.574 0.914 1.163 1.849 2.721 2.796 4.352 
  1/x-fold 41.490 26.782 14.199 5.466 4.284 3.567 1.743 1.094 0.860 0.541 0.368 0.358 0.230 
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of the phenotype of a cell rather than a mechanistic model representing molecular 
causality. Nevertheless, we suggest that the phenotype model is useful as it predicts 
possible single cell trajectories, decomposes complex phenotypes (Table 3) in a 
formalized manner, and therefore may serve as a scaffold for the computational 
inference of a model of the molecular causality directly from experimental data [43, 
44] (see Discussion). 
   
 
 
 
4. Discussion 
 
 
4.1. Petri net representation of single cell trajectories 
 
We have analysed differential gene expression in individual Physarum polycephalum 
plasmodia that were exposed to a differentiation-inducing far-red light stimulus pulse 
by repeatedly taking samples from the same plasmodial cells. MDS analysis revealed 
that data points were not evenly spread over the plot but formed clouds, with different 
patterns obtained for cells with different genotype. Connecting data points from single 
cell time series showed that cells followed different trajectories in the MDS plot in 
switching between clouds of data points. These trajectories obviously differed 
between cells that had or had not been exposed to far-red light and that sporulated or 
did not sporulate in response to the light stimulus. Although cells responded to a 
stimulus and eventually were committed to sporulation, their response in terms of 
differential gene expression was obviously different between individual plasmodial 
cells, as it was previously reported for the wild type [23]. Again, this behaviour was 
genotype-dependent. In the non-sporulating mutant PHO57 trajectories of stimulated 
and not stimulated cells could not even be discriminated. 
 Hierarchical clustering of the data points obtained for the cells of each 
genotype, PHO3, PHO57, and the PHO3 + PHO57 heterokaryon, identified 
significantly different clusters in each of the three data sets. These clusters mapped 
to corresponding clouds of data points in the MDS plot, confirming that both statistical 
methods delivered consistent results and assigning discretized states of gene 
expression to the clouds of data points in the MDS plot. Based on the discretized 
states, single cell trajectories were evaluated for their time-dependent switching 
between clusters. From this data set and from averaged differences in gene 
expression between clusters we reconstructed Petri net models that predict single 
cell trajectories and spontaneous or light-induced changes in gene expression of 
sporulating and not sporulating cells.  
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In order to discuss the biological relevance of our Petri net models, a couple of 
points should be mentioned. First of all, this type of Petri net is a phenotype model. It 
abstracts, mimics, and predicts the discretized behaviour of the cells in terms of 
spontaneous and stimulus-induced gene expression and the associated commitment 
to sporulation. Clearly, it is not a model that explains the cellular behaviour based on 
causal molecular mechanisms. However, it makes a systems-oriented, formalized 
approach to the analysis and decomposition of complex phenotypes, and the model 
may therefore be useful as a scaffold to reverse engineer the underlying network of 
molecular mechanisms.  
 Another critical point that should be noted is that the data sets that were 
available to construct the Petri net models are still small. With more data analysed 
the number of clusters and hence the number of places in the Petri net might change 
and the number of transitions might become larger. Hence the Petri nets shown here 
just reflect the data sets as they currently are but despite this limitation do provide a 
proof-of-principle for the Petri net based computational approach.   
 
 
 
4.2. How does the Petri net model relate to the Waddington quasipotential 
landscape? 
 
 
Conrad Hal Waddington introduced the metaphor of an epigenetic landscape to 
intuitively explain canalization of development and cell fate determination during 
embryogenesis and its dependence on gene mutations [45]. He thought of cells that 
make developmental decisions to differentiate into alternative cell types as marbles 
rolling down a landscape with multiple bifurcating valleys finally ending up in separate 
valleys that correspond to the alternative states of terminal differentiation. The 
specific topology of this landscape, according to his metaphor, is determined by an 
underlying layer of genes with ropes attached that pull the "epigenetic" landscape 
(the landscape arranged like a sailcloth above the genes) into shape [45]. Alterations 
to those genes would ultimately reshape the topology with impact on the 
development of an individual. This is where the term epigenetics originally comes 
from.  
 Theoretical considerations of multistability in boolean network models of gene 
regulatory networks has provided a theoretical basis for a possible molecular 
interpretation of Waddington's landscape. It may be understood as a quasipotential 
landscape (QPL) of a dynamic system of coupled biochemical reactions that form 
feedback loops. The valleys of the QPL then correspond to different attractors and 
the altitude of the mountaintops is a measure for the unlikeliness that the system will 
be in a particular state while the state space of the system is projected into the two-
dimensional plane [2, 46-51].  
 From bacteriophages to mammals, decision-making in the regulation of cell 
cycle, differentiation, and development is central to a wide variety of developmental 
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phenomena. Indeed, in cases where molecular mechanisms have been elucidated, it 
could be computationally demonstrated that such phenomena can be readily 
explained on the basis of bistability and multistability of the underlying biochemical 
reaction networks [52-62]. Computational approaches have also shown how well-
known kinetic mechanisms of interacting biomolecules can result in a quasipotential 
landscape with multiple attractors and how mechanisms of stem cell differentiation, 
transdifferentiation, and carcinogenesis can be understood in the context of such a 
landscape [2, 51, 63-68]. Most recently, a synthetic gene regulatory network of 
inducible promotors and transcriptional regulators with mutual inhibitions and 
autoactivations implementated in Escherichia coli, was experimentally shown to 
exhibit quadrastability. Elegant experimental and computational evidence 
demonstrated that the topology of the resulting quasipotential landscape depends on 
the connectivity within a network. The connectivity was permutated systematically by 
adding different combinations of inducers and repressors controling the promotors of 
the network, switching on and off regulatory interactions between the nodes [69].  
 The concept of a quasipotential landscape to regulate cell fate determination 
offers more than just a theoretical framework to explain multistability. It suggests that 
attractors and the multistability of functional states of the regulatory network of a cell 
can eventually be reached through several alternative pathways of cellular regulation 
that are taken and that cells can switch between stable or meta-stable states as a 
result of stochasticity or transient perturbation of the reaction network [46]. A rugged 
landscape enabling variable pathways hight have emerged from evolutionary 
constraints on the versatility, adaptability, and robustness of regulatory networks that 
have led to the development of highly complex, multistable networks in order to gain 
a sufficient degree of fitness. Obviously, variable pathways connecting different 
attractors of a QPL might not only lead to states of disease but also be exploited for 
rationally-designed medical treatment [67, 70].  
 Variable pathways for switching between two states of cell differentiation have 
been directly demonstrated in the unicellular eukaryote Physarum polycephalum 
quite a number of years ago [71]. Morphological intermediates in the form of mitotic 
figures and cytoskeletal rearrangements that occur during the development of an 
amoebal cell into a plasmodium were directly observed in the light microscope [71]. 
At the molecular level, the variability of pathways has also been demonstrated for the 
development of the P. polycephalum plasmodium into fruiting bodies (sporulation) 
which is another differentiation process that occurs in the course of the life cycle [23]. 

Can a Petri net as a predictive model for single cell trajectories be helpful to 
retrive information about the Waddington quasipotential landscape? As biochemical 
reactions are driven by differences in the chemical potential, statistically significant 
different single cell trajectories of measured observables (like mRNA concentrations 
or changes in the abundance or covalent modification of proteins) will ultimately 
reflect differences in causal mechanisms or processes that influence these 
observables. The clouds of data points in the MDS plots indicate states of the system 
that are likely while the white regions indicate states that are less likely and the 
density of data points, at high sample size, is a measure of the likeliness that the 
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system adopts a certain state. In this work, such relatively likely states have been 
discretized by hierarchical clustering and modeled as places of a Petri net as shown 
by the cartoon of Fig. 10. The probabilities that the system transits from one state to 
the other can be encoded as rate constants assigned to stochastic Petri net 
transitions. Hence, we assume that single cell trajectories, e.g. as projected into the 
plane of an MDS plot or as predicted by a corresponding Petri net model, do reflect 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Interpretation of Petri net places and transitions in the context of the Waddington 
quasipotential landscape. The cartoon suggests that some of the places of the Petri nets of 
Figs. 6 and 7 may represent states of gene expression (represented by the marble and the 
token) that correspond or lead to basins of attraction of the Waddington quasipotential 
landscape. Upon light stimulation, the topology of the quasipotential landscape of 
unstimulated cells (A) is remodeled (B) so that the system is exposed to new basin(s) of 
attraction. This might for example occur when photoactivation of the phytochrome 
photoreceptor alters certain steady states within the regulatory network. 

Systems state 

Q
ua

si
po

te
nt

ia
l 

A 

B C 

Systems state 

Q
ua

si
po

te
nt

ia
l 

A 

B C 

C 

D 

E 

C 

D 

E 

Pr 

Pfr Light 

A 

B 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 11, 2017. ; https://doi.org/10.1101/151878doi: bioRxiv preprint 

https://doi.org/10.1101/151878


-30- 

Werthmann & Marwan, Revised 

 
 
pathways that are taken through the QPL. Accordingly, we propose that the Petri 
nets of Figs. 6,7 as executable models do reflect aspects of structure and dynamics 
of the QPL of a cell of a given genotype. As indicated by the dynamic behaviour and 
by the T-invariants of the Petri nets derived for strain PHO3 and for the 
PHO3 + PHO57 heterokaryon, the system can transit between certain states that are 
meta-stable or even stable. At least some of these states may correspond to basins 
of attraction. Upon photo-stimulation, stimulus-dependent Petri net transitions are 
enabled, as the topology of the QPL has changed and the system now moves to a 
new basin of attraction through states indicated by the Petri net places. Accordingly, 
responsiveness of the topology of the QPL to differentiation-inducing stimuli in the 
Petri net framework is modeled in the form of specific transitions that, if enabled, 
allow the system to proceed to a new state of attraction.  
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