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 2 

Abstract: 24 
 25 
Finding a sought visual target object requires combining visual information about a scene with a 26 
remembered representation of the target to create a “target match” signal that indicates when a 27 
target is in view. Target match signals have been reported to exist within high-level visual brain 28 
areas including inferotemporal cortex (IT), where they are mixed with representations of image 29 
and object identity. However, these signals are not well understood, particularly in the context of 30 
the real-world challenge that the objects we search for typically appear at different positions, 31 
sizes, and within different background contexts. To investigate these signals, we recorded 32 
neural responses in IT as two rhesus monkeys performed a delayed-match-to-sample object 33 
search task in which target objects could appear at a variety of identity-preserving 34 
transformations. Consistent with the existence of behaviorally-relevant target match signals in 35 
IT, we found that IT contained a linearly separable target match representation that reflected 36 
behavioral confusions on trials in which the monkeys made errors. Additionally, target match 37 
signals were highly distributed across the IT population, and while a small fraction of units 38 
reflected target match signals as target match suppression, most units reflected target match 39 
signals as target match enhancement. Finally, we found that the potentially detrimental impact 40 
of target match signals on visual representations was mitigated by target match modulation that 41 
was approximately (albeit imperfectly) multiplicative. Together, these results support the 42 
existence of a robust, behaviorally-relevant target match representation in IT that is configured 43 
to minimally interfere with IT visual representations. 44 

	45 

	46 
Introduction: 47 
 48 
Finding a sought visual target object requires combining incoming visual information about the 49 
identities of the objects in view with a remembered representation of a sought target object to 50 
create a “target match” signal that indicates when a target has been found. During visual target 51 
search, target match signals have been reported to emerge in the brain as early as visual areas 52 
V4 (Bichot et al., 2005; Chelazzi et al., 2001; Haenny et al., 1988; Kosai et al., 2014; Maunsell 53 
et al., 1991) and IT (Chelazzi et al., 1998; Chelazzi et al., 1993; Eskandar et al., 1992; Gibson 54 
and Maunsell, 1997; Leuschow et al., 1994; Mruczek and Sheinberg, 2007; Pagan et al., 2013; 55 
Woloszyn and Sheinberg, 2009). However, we understand very little about the nature of target 56 
match signals, their behavioral relevance, and how these signals are mixed with visual 57 
representations.  58 
 59 
The nature of the target match signal has been investigated most extensively with traditional 60 
versions of the delayed-match-to-sample (DMS) paradigm, which involves the presentation of a 61 
cue image indicating a target’s identity, followed by the presentation of a random number of 62 
distractors and then a target match (e.g. Haenny et al., 1988; Miller and Desimone, 1994; Pagan 63 
et al., 2013). During classic DMS tasks in which the cue is presented at the beginning of each 64 
trial (and the match is thus a repeat later on), IT has been reported to reflect target match 65 
information with approximately equal numbers of neurons preferring target matches versus 66 
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those preferring distractors (i.e. “target match enhancement” and “target match suppression”, 67 
respectively; Miller and Desimone, 1994; Pagan et al., 2013). Upon observing that target match 68 
suppression also follows from the repetition of distractor images within a trial, and thus cannot 69 
account for a signal that corresponds to a “target match” behavioral report, some have 70 
speculated that target match enhancement alone reflects the signal used to make behavioral 71 
judgments about whether a target match is present (Miller and Desimone, 1994). Others have 72 
proposed that the responses of both target match enhanced and suppressed subpopulations 73 
are incorporated to make behavioral judgments, particularly when a task requires 74 
disambiguating changes in firing rate due to the presence of a target match from other factors 75 
that impact overall firing rate, such as stimulus contrast (Engel and Wang, 2011). Notably, no 76 
study to date has produced compelling evidence that either IT target match enhancement or 77 
suppression accounts for (or correlates with) behavioral reports (e.g. on error trials). 78 
 79 
Another limitation of the traditional DMS paradigm is that the cue image tends to be an exact 80 
copy of the target match, whereas real-world object search involves searching for an object that 81 
can appear at different positions, sizes and background contexts. One DMS study examined IT 82 
neural responses during this type of object variation and reported the existence of target match 83 
signals under these conditions (Leuschow et al., 1994). However, we still do not understand 84 
how IT target match signals are intermingled with IT invariant object representations of the 85 
currently-viewed scene. One intriguing proposal (Fig 1) suggests how visual and target match 86 
signals might be multiplexed to minimize the interference between them. That is, insofar as 87 
visual representations of different images are reflected as distinct patterns of spikes across the 88 
IT population (reviewed by DiCarlo et al., 2012), this translates into a population representation 89 
in which visual information is reflected by the population vector angle (Fig 1, ‘Visual 90 
modulation’). If the introduction of target match modulation also changes population vector 91 
angles in IT, this could result in perceptual confusions about the visual scene. However, if target 92 
match modulation amounts to multiplicative rescaling of population response vector lengths, this 93 
would minimize interference when superimposing visual memories and target match 94 
representations within the same network (Fig 1, ‘Target match modulation’). The degree to 95 
which the target match signal acts in this way remains unknown.  96 
 97 
 98 
Figure 1. Multiplexing visual and target match representations. Shown are the hypothetical 99 
population responses to two images, each viewed (at different times) as target matches versus 100 
as distractors, plotted as the spike count response of neuron 1 versus neuron 2. In this 101 
scenario, visual information (e.g. image or object identity) is reflected by the population 102 
response pattern, or equivalently, the angle that each population response vector points. In 103 
contrast, target match information is reflected by changes in population vector length (e.g. 104 
multiplicative rescaling). Because target match information does not impact vector angle in this 105 
hypothetical scenario, superimposing target match information in this way would mitigate the 106 
impact of intermingling target match signals within underlying perceptual representations.   107 
 108 
 109 
To investigate the nature of the IT target match signal, its behavioral relevance, and how it 110 
intermingles with IT visual representations, we recorded neural signals in IT as monkeys 111 
performed a modified delayed-match-to-sample task in which they were rewarded for indicating 112 
when a target object appeared across changes in the objects’ position, size and background 113 
context.  114 
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Results: 115 
 116 
The invariant delayed-match-to-sample task (IDMS) 117 
 118 
To investigate the target match signal, we trained two monkeys to perform an “invariant 119 
delayed-match-to-sample” (IDMS) task that required them to report when target objects 120 
appeared across variation in the objects’ positions, sizes and background contexts. In this task, 121 
the target object was held fixed for short blocks of trials (~3 minutes on average) and each block 122 
began with a cue trial indicating the target for that block (Fig 2a, “Cue trial”). Subsequent test 123 
trials always began with the presentation of a distractor and on most trials this was followed by 124 
additional distractors and then an image containing the target match (Fig 2a, “Test trial”). The 125 
monkeys’ task required them to fixate during the presentation of distractors and make a saccade 126 
to a response dot on the screen following target match onset to receive a reward. In cases 127 
where the target match was presented for 400 ms and the monkey had still not broken fixation, 128 
a distractor stimulus was immediately presented. To minimize the predictability of the match 129 
appearing as a trial progressed, on a small subset of the trials the match did not appear and the 130 
monkey was rewarded for maintaining fixation. Our experimental design differs from other 131 
classic DMS tasks (e.g. Miller and Desimone, 1994; Pagan et al., 2013) in that it does not 132 
incorporate a cue at the beginning of each test trial, to better mimic real-world object search 133 
conditions in which target matches are not repeats of the same image presented shortly before.   134 
	135 
 136 
Figure 2. The invariant delayed-match-to-sample task. a) Each block began with a cue trial 137 
indicating the target object for that block. On subsequent trials, no cue was presented and 138 
monkeys were required to maintain fixation throughout the presentation of distractors and make 139 
a saccade to a response dot following the onset of the target match to receive a reward. b) The 140 
experiment included 4 objects presented at each of 5 identity-preserving transformations (“up”, 141 
“left”, “right”, “big”, “small”), for 20 images in total. In any given block, 5 of the images were 142 
presented as target matches and 15 were distractors. c) The complete experimental design 143 
included looking “at” each of 4 objects, each presented at 5 identity-preserving transformations 144 
(for 20 images in total), viewed in the context of looking “for” each object as a target. In this 145 
design, target matches (highlighted in gray) fall along the diagonal of each “looking at” / “looking 146 
for” transformation slice. d) Percent correct for each monkey, calculated based on both misses 147 
and false alarms (but disregarding fixation breaks). Mean percent correct is plotted as a function 148 
of the position of the target match in the trial. Error bars (SEM) reflect variation across the 20 149 
experimental sessions. e) Histograms of reaction times during correct trials (ms after stimulus 150 
onset) during the IDMS task for each monkey, with means indicated by arrows and labeled.  151 
 152 
 153 
 154 
 155 
Our experiment included a fixed set of 20 images, including 4 objects presented at each of 5 156 
transformations (Fig 2b). Our goal in selecting these specific images was to make the task of 157 
classifying object identity challenging for the IT population and these specific transformations 158 
were built on findings from our previous work (Rust and DiCarlo, 2010). In any given block (e.g. 159 
a squirrel target block), a subset of 5 of the images would be considered target matches and the 160 
remaining 15 would be distractors (Fig 2b). Our full experimental design amounted to 20 images 161 
(4 objects presented at 5 identity-preserving transformations), all viewed in the context of each 162 
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of the 4 objects as a target, resulting in 80 experimental conditions (Fig 2c). In this design, 163 
“target matches” fall along the diagonals of each looking at / looking for matrix slice (where 164 
“slice” refers to a fixed transformation; Fig 2c, gray). For each condition, we collected at least 20 165 
repeats on correct trials. Monkeys generally performed well on this task (Fig 2d; mean percent 166 
correct monkey 1 = 96%; monkey 2 = 87%). Their mean reaction times (computed as the time 167 
their eyes left the fixation window relative to the target match stimulus onset) were 332 ms and 168 
364 ms (Fig 2e).  169 
 170 
As two monkeys performed this task, we recorded neural activity in IT using 24-channel probes. 171 
We performed two types of analyses on these data. The first type of analysis was performed on 172 
the data recorded simultaneously across units within a single recording session (n=20 sessions, 173 
including 10 sessions from each monkey). The second type of analysis was performed on data 174 
that was concatenated across different sessions to create a pseudopopulation after screening 175 
for units based on their stability, isolation, and task modulation (see Methods; n=204 units in 176 
total, including 108 units from monkey 1 and 96 units from monkey 2; S1 Dataset). For all but 177 
four of our analyses (Fig 4b, 4d, 8, 9), we counted spikes in a window that started 80 ms 178 
following stimulus onset (to allow stimulus-evoked responses time to reach IT) and ended at 250 179 
ms, which was always before the monkeys’ reaction times on these trials. For all but two of our 180 
analyses (Fig 6, 7d), the data are extracted from trials with correct responses. 181 
 182 
 183 
 184 
 185 
 186 
 187 
Target match signals were reflected in IT during the IDMS task 188 

 189 
Distributions of stimulus-evoked firing rates for the 204 units recorded in our experiment are 190 
shown in Figure 3. As is typical of IT and other high-level brain areas, we encountered a 191 
heterogeneous diversity of units with regard to their tuning to different aspects of the IDMS task. 192 
Figure 4a depicts the responses of four example units, plotted as five slices through our 193 
experimental design matrix (Fig 2c), where each slice corresponds to viewing each of the four 194 
objects at a fixed transformation (‘Looking AT’) in the context of searching for each of the four 195 
objects as a target (‘Looking FOR’). Different types of task modulation produce distinct structure 196 
in these response matrices. Visual modulation translates to vertical structure, (e.g. looking at the 197 
same image while looking for different things) whereas target modulation translates to horizontal 198 
structure (e.g. looking for the same object while looking at different things). In contrast, target 199 
match modulation is reflected as a differential response to the same images presented as target 200 
matches (which fall along the diagonal of each slice) versus distractors (which fall off the 201 
diagonal), and thus manifests as diagonal structure in each slice.  202 
 203 
Figure 3. Firing rate distributions. The firing rate response to each stimulus was calculated as 204 
the mean across 20 trials in a window 80 - 250 ms following stimulus onset. a) Grand mean 205 
firing rate across all 80 conditions. b) Maximum firing rates across the 80 conditions. Arrows 206 
indicate the means (n=204 units).  207 

Figure 4. Quantifying modulation in IT during the IDMS task. a) The response matrices 208 
corresponding to four example IT units, plotted as the average response to five slices through 209 
the experimental design, where each slice (a 4x4 matrix) corresponds to viewing each of four 210 
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objects (‘Looking AT’) in the context of each of four objects as a target (‘Looking FOR’), at one 211 
transformation (‘Big’, ‘Left’, ‘Right’, ‘Small’, ’Up’).  To compute these responses, spikes were 212 
counted in a window 80 –250 ms following stimulus onset, averaged across 20 repeated trials, 213 
and rescaled from the minimum (black) to maximum (white) response across all 80 conditions. 214 
b) Firing rate modulations were parsed into constituent types, where modulation was quantified 215 
in units of standard deviation around each unit’s grand mean spike count (see Results). The 216 
evolution of average modulation magnitudes (across all the units for each animal; monkey 1: n = 217 
108, monkey 2: n = 96), shown as a function of time relative to stimulus onset. The shaded area 218 
indicates the spike count window used for subsequent analyses. c) Average modulation 219 
magnitudes computed using the spike count window depicted in panel b. d) The average 220 
temporal evolution of visual modulation plotted against the average temporal evolution of target 221 
match modulation for groups of units organized into quantiles. Units with either target match or  222 
visual modulation (n=203 of 204 units) were sorted by their ratios of target match over visual 223 
modulation, computed in a window 80-250 ms following stimulus onset. The temporal evolution 224 
of the mean across the population (black dotted line) is plotted among the temporal evolution of 225 
each 25% quartile of the data, as well as the 95-100% quantile (labeled). Start times of each 226 
trajectory (0 ms after stimulus onset) are indicated by a blue dot whereas end times of each 227 
trajectory (250 ms after stimulus onset) are indicated by a red dot. 228 
	229 
The first example unit (Fig 4a, ‘visual, selective’) only responded to one image (object 3 230 
presented in the “big” transformation) and was unaffected by target identity. In contrast, the 231 
second example unit (‘Fig 4a, ‘visual, invariant’) responded fairly exclusively to one object, but 232 
did so across four of the five transformations (all but “up”). This unit also had modest target 233 
match modulation, reflected as a larger response to its preferred object (object 1) when it was a 234 
distractor (i.e. when searching for targets 2-4) as compared to when it was a target (i.e. when 235 
searching for target 1). In other words, this unit exhibited target match suppression. The third 236 
example unit (“Fig 4a, ‘one-object target match detector’) consistently responded with a high 237 
firing rate to object 3 presented as a target match across all transformations, but not to other 238 
objects presented as target matches. This unit thus exhibited a form of target match 239 
enhancement that was selective for object identity. The fourth example unit (“Fig 4a, ‘four-object 240 
target match detector’) responded in a compelling way with a higher firing rate response to 241 
nearly any image (any object at any transformation) presented as a target match as compared 242 
to as a distractor, or equivalently target match enhancement that was invariant to object identity. 243 
Given that the IDMS task requires an eye movement in response to images presented as target 244 
matches and fixation to the same images presented as distractors, this unit reflects something 245 
akin to the solution to the monkeys’ task. 246 
 247 
To quantify the amounts of these different types of modulations across the IT population, we 248 
applied a procedure that quantified different types of modulation in terms of the number of 249 
standard deviations around each unit’s grand mean spike count (Pagan and Rust, 2014b). Our 250 
procedure includes a bias-correction to ensure that modulations are not over-estimated by trial 251 
variability and it is similar to a multi-way ANOVA, with important extensions (see Methods). 252 
Modulation magnitudes were computed for the types described above, including visual, target 253 
identity, and target match modulation, as well as “residual” modulations that are reflected as 254 
nonlinear interactions between the visual stimulus and the target identity that are not captured 255 
by target match modulation (e.g. specific distractor conditions). Notably, this analysis defines 256 
target match modulation as a differential response to the same images presented as target 257 
matches versus distractors, or equivalently, diagonal structure in the transformation slices 258 
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presented in Fig 4a. Consequently, units both like the “one-object target match detector” as well 259 
as the “four-object target match detector” reflect target match modulation, as both units have a 260 
diagonal component to their responses. What differentiates these two units is that the “one-261 
object target match detector” also reflects selectivity for image and target identity, reflected in 262 
this analysis as a mixture of target match, visual, and target identity modulation.  263 
 264 
Figure 4b illustrates these modulations computed in a sliding window relative to stimulus onset 265 
and averaged across all units recorded in each monkey. As expected from a visual brain area, 266 
we found that visual modulation was robust and delayed relative to stimulus onset (Fig 4b, 267 
black). Visual modulation was considerably larger in monkey 1 as compared to monkey 2. 268 
Target match modulation (Fig 4b, red) was also (as expected) delayed relative to stimulus onset 269 
and was smaller than visual modulation, but it was well above the level expected by noise (i.e. 270 
zero) and was similar in magnitude in both animals. In contrast, a robust signal reflecting 271 
information about the target identity (Fig 4b, green) appeared before stimulus onset in monkey 1 272 
and was weaker but also present in monkey 2, consistent with a persistent working memory 273 
representation. Note that because the IDMS task was run in blocks with a fixed target, target 274 
identity information was in fact present before the onset of each stimulus. Lastly, we found that 275 
residual modulation was also present but was smaller than target match modulation in both 276 
animals (Fig 4b, cyan). In sum, for a brief period following stimulus onset, visual and target 277 
signals were present, but target match signals were not. After a short delay, target match 278 
signals appeared as well. When quantified in a window positioned 80 to 250 ms following 279 
stimulus onset and computed relative to the size of the target match signal (Fig 4c), visual 280 
modulation was considerably larger than target match modulation (monkey 1: 2.9x, monkey 2: 281 
2.0x; Fig 4c, gray), whereas the other types of modulations were smaller than target match 282 
modulation (target modulation, monkey 1: 0.9x, monkey 2: 0.5x, Fig 4c green; residual 283 
modulation, monkey 1: 0.6x, monkey 2: 0.9x Fig 4c, cyan).  284 
 285 
To what degree do these population average traces (Fig 4b) reflect the evolution of visual and 286 
target match signals in the same units as opposed to different units? To address this question, 287 
we ranked units by their ratios of target match and visual modulation, and grouped them into 288 
quantiles of neighboring ranks. Fig 4d shows a plot of the temporal evolution of visual 289 
modulation plotted against the evolution of target match modulation for each 25% quartile. The 290 
lowest-ranked quartile (Fig 4d, red) largely traversed and then returned along the y-axis, 291 
consistent with units that were nearly completely visually modulated. Of interest was whether 292 
quartiles with higher ratios of target match modulation would traverse the x-axis in an analogous 293 
fashion (reflecting pure target match modulation) or whether these units would begin as visually 294 
modulated and become target match modulated at later times. The trajectories for all three 295 
higher quartiles (Fig 4d, orange, green, blue) reflected the latter scenario, as they all began with 296 
a visually dominated component positioned above the unity line (Fig 4d, gray dashed). Later, the 297 
trajectories become more horizontal, indicative of the emergence of target match modulation. 298 
Similarly, the trajectory confined to just the top 5% (n=8) units (Fig 4d, purple dashed) began 299 
with a visually dominated component that later evolved into strong target match modulation. 300 
These results suggest that the evolution of visual to target match modulation is not happening 301 
within distinct subpopulations, but rather is reflected within individual units. 302 
 303 
To summarize, the results presented thus far verify the existence of a target match signal in IT 304 
that is on average ~40% of the size of the visual modulation. Additionally, while the arrival of 305 
target match modulation was delayed relative to the arrival of visual modulation, both types of 306 
modulation tend to be reflected in the same units (as opposed to distinct subpopulations). 307 
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 308 
 309 
IT target match information was reflected as a highly distributed, linearly separable 310 
representation 311 
 312 
The IDMS task required monkeys to determine whether each condition (an image viewed in the 313 
context of a particular target block) was a target match or a distractor. This task ultimately maps 314 
all the target match conditions onto one behavioral response (a saccade) and all the distractor 315 
conditions onto another (maintain fixation), and as such, this task can be envisioned as a two-316 
way classification across changes in other parameters, including changes in target and image 317 
identity (Fig 5a). One question of interest is the degree to which the target match versus 318 
distractor classification can be made with a linear decision boundary (or equivalently a linear 319 
decoder) applied to the IT neural data, as opposed to requiring a nonlinear decoding scheme. In 320 
a previous study, we assessed the format of IT target match information in the context of the 321 
classic DMS task design (Pagan et al., 2016; Pagan et al., 2013) and found that while a large 322 
component was linear, a considerable nonlinear (quadratic) component existed as well. 323 
 324 
To quantify the amount and format of target match information within IT, we began by 325 
quantifying cross-validated performance for a two-way target match versus distractor 326 
classification with a weighted linear population decoder (a Fisher Linear Discriminant, FLD). 327 
Linear decoder performance began near chance and grew as a function of population size, 328 
consistent with a robust IT target match representation (Fig 5b, white). To determine the degree 329 
to which a component of IT target match information was present in a nonlinear format that 330 
could not be accessed by a linear decoder, we measured the performance of a maximum 331 
likelihood decoder designed to extract target match information regardless of its format 332 
(combined linear and nonlinear, Pagan et al., 2016; Pagan et al., 2013, see Methods). 333 
Performance of this nonlinear decoder (Fig 5b, gray) was slightly higher than the linear decoder 334 
for the pooled data (p = 0.022), and was not consistently higher in both animals (monkey 1 p = 335 
0.081; monkey 2 p = 0.647). These results suggest that under the conditions of our 336 
measurements (e.g. the population sizes we recorded and the specific images used), IT target 337 
match information is reflected almost exclusively in a linearly separable format during the IDMS 338 
task. These results are at apparent odds with our previous reports of how IT target match 339 
information is reflected during a classic DMS task (see Discussion).  340 
 341 
 342 
Figure 5. IT target match information is reflected via weighted linear scheme. a) The target 343 
search task can be envisioned as a two-way classification of the same images presented as 344 
target matches versus as distractors. Shown are cartoon depictions where each point depicts a 345 
hypothetical response of a population of two neurons on a single trial, and clusters of points 346 
depict the dispersion of responses across repeated trials for the same condition. Included are 347 
responses to the same images presented as target matches and as distractors. Here only 6 348 
images are depicted but 20 images were used in the actual analysis. The dotted line depicts a 349 
hypothetical linear decision boundary. b) Linear (FLD) and nonlinear (maximum likelihood) 350 
decoder performance as a function of population size for a pseudopopulation of 204 units 351 
combined across both animals, as well as for the data recorded in each monkey individually 352 
(monkey 1: n = 108 units; monkey 2: n = 96 units.) Error bars (SEM) reflect the variability that 353 
can be attributed to the random selection of units (for populations smaller than the full dataset) 354 
and the random assignment of training and testing trials in cross-validation. c) Linear (FLD) 355 
decoder performance as a function of the number of top-ranked units removed. Shaded error 356 
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(SEM) reflects the variability that can be attributed to the random assignment of training and 357 
testing trials in cross-validation. 358 
 359 
 360 
Next, we wanted to better understand how target match information was distributed across the 361 
IT population. We thus performed an analysis targeted at the impact of excluding the N “best” 362 
target match units for different values of N, with the rationale that if it were the case that the 363 
majority of target match information was carried by a small subpopulation of units, performance 364 
should fall quickly when those units are excluded. For this analysis, we considered the 365 
magnitude but not the sign of the target match modulation (whereas we address questions 366 
related to parsing target match modulation by sign, or equivalently target match enhancement 367 
versus suppression, below in Figure 7). To perform this analysis, we excluded the top-ranked IT 368 
units via a cross-validated procedure (i.e. based on the training data; see Methods). Consistent 369 
with a few units that carry target match signals that are considerably stronger than the rest of 370 
the population, we found that the slope of the performance drop following the exclusion of the 371 
best units was steepest for the top 8% (n=16) ranked units, and that these units accounted for 372 
~25% of total population performance (Fig 5c). However, it was also the case that population 373 
performance continued to decline steadily as additional units were excluded, and consequently, 374 
population performance could not be attributed to a small fraction of top-ranked units alone (Fig 375 
5c). For example, a 50% decrement in performance required removing 27% (n=55/204) of the 376 
best-ranked IT population, and mean +/- SEM performance remained above chance up to the 377 
elimination of 78% (n=160/204) of top-ranked units. These results are consistent with target 378 
match signals that are strongly reflected in a few units (such as Fig 4a example unit 4), and are 379 
more modestly distributed across a large fraction of the IT population (such as Fig 4a example 380 
unit 2). 381 
 382 
Taken together, these results suggest that IT target match information is reflected by a weighted 383 
linear scheme and that target match performance depends on signals that are broadly 384 
distributed across most of the IT population. 385 
 386 
 387 
Projections along the IT linear decoding axis reflected behavioral confusions 388 
 389 
Upon establishing that the format of IT target match information during the IDMS task was linear 390 
(on correct trials), we were interested in determining the degree to which behavioral confusions 391 
were reflected in the IT neural data. To measure this, we focused on the data recorded 392 
simultaneously across multiple units within each session, where all units observed the same 393 
errors. With this data, we trained the linear decoder to perform the same target match versus 394 
distractor classification described for Fig 5 using data from correct trials, and we measured 395 
cross-validated performance on pairs of condition-matched trials: one for which the monkey 396 
answered correctly, and the other for which the monkey made an error. On correct trials, target 397 
match performance grew with population size and reached above chance levels in populations 398 
of 24 units (Fig 6, black).  On error trials, mean +/- SE of decoder performance fell below 399 
chance, and these results replicated across each monkey individually (Fig 6, white). These 400 
results establish that IT reflects behaviorally-relevant target match information insofar as 401 
projections of the IT population response along the FLD decoding axis co-vary with the 402 
monkeys’ behavior.   403 
 404 
 405 
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Figure 6. The IT FLD linear decoder axis reflects behavioral confusions. Linear decoder 406 
performance, applied to the simultaneously recorded data for each session, after training on 407 
correct trials and cross-validating on pairs of correct and error trials matched for condition. Error 408 
bars (SEM) reflect the variability that can be attributed to the random selection of units (for 409 
populations smaller than the full dataset) and the random assignment of training and testing 410 
trials in cross-validation. Results are shown for the data pooled across all sessions (main plot, 411 
n= 20 sessions) as well as when the sessions are parsed by those collected from each animal 412 
(monkey 1, n=10 sessions; monkey 2, n=10 sessions). 413 
 414 
	415 
Behaviorally-relevant target match signals were reflected as combinations of target 416 
match enhancement and suppression: 417 

 418 
As described in the introduction, the IT target match signal has largely been studied via the 419 
classic DMS paradigm (which includes the presentation of the cue at the beginning of the trial) 420 
and previous results have reported approximately balanced mixtures of target match 421 
enhancement and suppression (Miller and Desimone, 1994; Pagan et al., 2013). While some 422 
have speculated that target match enhancement alone reflects the behaviorally-relevant target 423 
match signal (Miller and Desimone, 1994), others have argued that enhancement and 424 
suppression are both behaviorally-relevant (Engel and Wang, 2011). The results presented 425 
above demonstrate that during the IDMS task, the representation of target match information is 426 
largely linear, and projections along the FLD weighted linear axis reflect behavioral confusions. 427 
To what degree does IT target match information, including the reflection of behavioral 428 
confusions, follow from units that reflect target match information with target enhancement 429 
(positive weights) as compared to target suppression (negative weights)? In our study, this 430 
question is of particular interest in light of the fact that our experimental design does not include 431 
the presentation of a cue at the beginning of each trial, and thus minimizes the degree to which 432 
target match suppression follows passively from stimulus repetition. 433 
 434 
To investigate this question, we computed a target match modulation index for each unit as the 435 
average difference between the responses to the same images presented as target matches 436 
versus as distractors, divided by the sum of those two quantities. This index takes on positive 437 
values for target match enhancement and negative values for target match suppression. In both 438 
monkeys, this index was significantly shifted toward positive values (Fig 7a; Wilcoxon sign rank 439 
test, monkey 1: mean = 0.063 p = 8.44e-6; monkey 2: mean = 0.071, p = 2.11e-7). Notably, while 440 
these distributions were dominated by units that reflected target match enhancement, a small 441 
fraction of IT units in both monkeys reflected statistically reliable target match suppression as 442 
well (fraction of units that were significantly target match enhanced and suppressed, 443 
respectively, monkey 1: 49.1%, 17.6%; monkey 2: 41.7%, 8.3%; bootstrap significance test, 444 
p<0.01).  445 
 446 
 447 
Figure 7. Target match signals are reflected as mixtures of enhancement and suppression. a) A 448 
target match modulation index, computed for each unit by calculating the mean spike count 449 
response to target matches and to distractors, and computing the ratio of the difference and the 450 
sum of these two values. Dark bars in each histogram indicate the proportions for all units 451 
(Monkey 1: n = 108; monkey 2: n = 96) whereas gray bars indicate the fractions of units whose 452 
responses to target matches versus distractors were statistically distinguishable (bootstrap 453 
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significance test, p<0.01). Arrows indicate the distribution means. b) Target match modulation 454 
index, computed and plotted as in (a), but after excluding responses to repeated presentation of 455 
the same object within a trial. Included are units in which there were at least 10 repeated trials 456 
for each condition (n = 176 of 204 possible units). c) Performance of the FLD classifier for the 457 
combined population (n=204 units), computed for all units (as described for Fig 5b), target 458 
match enhanced units (“E units”) or target match suppressed units (“S units”). d) Performance of 459 
the FLD classifier for populations of size 24 recorded in each session when trained on correct 460 
trials and tested on condition-matched pairs of correct (“Corr.”) and error (“Err.”) trials (as 461 
described for Fig 6), computed for all units, E units, and S units.   462 
 463 
 464 
In our experiment, the same images were not repeated within a trial but the same objects, 465 
presented under different transformations, could be. To what degree did the net target match 466 
enhancement that we observed follow from distractor suppression as a consequence of 467 
adaptation to object repetitions? To assess this, we recomputed target match modulation 468 
indices in a manner than only incorporated the responses to the first presentation of each object 469 
in a trial. Because this sub-selection reduced the number of distractor trials available for each 470 
condition, we equated these with equal numbers of (randomly selected) target match trials. A 471 
unit was only incorporated in the analysis if it had at least 10 trials per condition, yielding a 472 
subpopulation of 176 (of 204 possible) units. In the absence of distractor object repetitions, 473 
target match indices remained shifted toward net enhancement (Fig 7b; Wilcoxon sign rank test, 474 
mean = 0.078 p = 8.09e-11;  fraction of units that were significantly target match enhanced and 475 
suppressed, respectively: 30.0%, 6.3%, bootstrap significance test, p <0.01), and the target 476 
match indices computed without repeated distractors were not statistically distinguishable from 477 
target match indices computed for the full dataset equated for numbers of trials, randomly 478 
selected (not shown; mean = 0.067, p = 0.33). We thus conclude that the dominance of target 479 
match enhancement in our population was not a consequence of distractor suppression that 480 
follows from object repetitions within a trial.  481 
 482 
To determine the degree to which target match enhanced versus target match suppressed units 483 
contributed to population target match classification performance, we computed performance of 484 
the FLD linear decoder when isolated to the target match enhanced or target match suppressed 485 
subpopulations. More specifically, we focused on the combined data across the two monkeys 486 
(to maximize the numbers of units, particularly given small fraction that were target match 487 
suppressed), and we computed performance for variants of the FLD classifier in which the sign 488 
of modulation was computed for each unit based on the training data. Cross-validated 489 
performance was determined for either the subset of target match enhanced units or the subset 490 
of target match suppressed units with the goal of determining their respective contributions to 491 
overall population performance (while accounting for the fact that their proportions were not 492 
equal). When the analysis was isolated to target match enhanced units (“E units”), performance 493 
was virtually identical to the intact population (Fig 7c, mean+/- SEM performance for all units = 494 
90.9+/-0.02% vs. E units = 90.6+/-0.02%), consistent with target match enhancement as the 495 
primary type of modulation driving population performance. When the analysis was isolated to 496 
target match suppressed units (“S units”), performance on correct trials was lower than that of 497 
the intact population but still well above chance (Fig 7c, performance for S units = 64.4+/-498 
0.03%). This suggests that while target match suppressed units are smaller in number, the 499 
target match suppressed units that do exist do in fact carry reliable target match signals. 500 
 501 
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What were the relative contributions of E units versus S units to error trial confusions? To 502 
address this question, we repeated the error trial analysis described above for Figure 6, but 503 
isolated to E or S units. Specifically, we repeated the analysis presented in Figure 6 where we 504 
considered the simultaneously recorded data collected across 24 units for each session, but 505 
isolated to the E or S units as described for Figure 7c (based on the training data), and we 506 
compared cross-validated performance on condition-matched correct versus error trials. E units 507 
classified correct trials above chance and misclassified error trials below chance at rates similar 508 
to the entire population (Fig 7d, “All units” vs. “E units”), consistent with a larger overall 509 
proportion of E units. In contrast, performance of the S units on correct trials was weaker and 510 
mean +/- SEM performance was not above chance (53.0+/- 0.04%; Fig 7d “S units, Corr.”), 511 
consistent with smaller numbers of these units in IT.  Similarly, performance of S units on 512 
correct trials was slightly but not significantly higher than performance on error trials (mean +/- 513 
SE performance on error trials = 46.6+/-0.02%; p = 0.090, Fig 7d, “S units, Err.”). These results 514 
indicate that the reflection of behavioral confusions in the IT neural data arises primarily from the 515 
activity of E units, but suggest that behavioral confusions may also be weakly reflected in S 516 
units. 517 
 518 
As a complementary analysis of behavioral relevance, we also examined the degree to which 519 
the responses to target matches reflected pre-saccadic activity by comparing the same 520 
responses time-locked to stimulus onset versus saccade onset (Fig 8). The saccade-aligned 521 
response was smaller and more diffuse than the stimulus-aligned response and saccade-522 
aligned responses peaked well before saccade onset (~200 ms), suggesting that on average, IT 523 
responses to target matches do not reflect characteristic pre-saccadic activity. 524 
 525 
Figure 8. Comparison of stimulus-aligned versus reaction time-aligned responses to target 526 
matches. a) Grand mean PSTH across all units (n=204) for all target match stimuli, aligned to 527 
stimulus onset. b) Grand mean PSTH across all units (n=204) for all target match stimuli, 528 
aligned to behavioral reaction time.  529 
	530 
Together, these results suggest that in the IDMS experiment, target match signals were 531 
dominated by target match enhancement, but a smaller, target match suppressed subpopulation 532 
exists as well. Additionally, they suggest that the reflection of behavioral confusions in IT neural 533 
responses could largely be attributed to units that are target match enhanced, but behavioral 534 
confusions were weakly reflected in units that are target match suppressed. Finally, while IT 535 
responses reflect behavioral confusions, they were not well-aligned to reaction times.  536 
 537 
 538 
The IT target match representation was configured to minimize interference with IT visual 539 
representations: 540 

 541 
As a final topic of interest, we wanted to understand how the representation of target match 542 
information was multiplexed with visual representations in IT and more specifically, whether IT 543 
had a means of minimizing the potentially detrimental impact of mixing these two types of 544 
signals. One possible way to achieve this is multiplicative rescaling, as described in Figure 1. To 545 
what degree is this happening in IT? As a first step toward addressing this question, we 546 
quantified the impact of target match modulation as the representational similarity between the 547 
IT population response vectors corresponding to the same images presented as target matches 548 
versus as distractors, using a scale-invariant measure of similarity (the Pearson correlation, 549 
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reviewed by Kriegeskorte and Kievit, 2013). More specifically, we measured the Pearson 550 
correlation between pairs of population response vectors via a split-halves procedure (see 551 
Methods), and we compared the representational similarity for the same images presented as 552 
target matches versus as distractors with other benchmarks in our experiment, including: within 553 
the same experimental condition (i.e. random splits across repeated trials); between images 554 
containing different transformations of the same object; and between images containing different 555 
objects. 556 
 557 
Shown in Figure 9a is the representational similarity matrix corresponding to all possible 558 
pairwise combinations of the 20 images used in this experiment, averaged across the matrices 559 
computed when the pairs of response vectors under consideration were target matches and 560 
when they were distractors, computed with spike count windows 80-250 ms relative to stimulus 561 
onset (see Methods). The matrix is organized such that the five transformations corresponding 562 
to each object are grouped together. Figure 9b reorganizes the data into plots of the mean and 563 
standard error of representational similarity computed for different pairwise comparisons. As 564 
expected, we found that the representational similarity was the highest for random splits of the 565 
trials corresponding to the same images, presented under the same conditions (Fig 9b, “Same 566 
image & condition”, mean = 0.43), which can be regarded as the noise ceiling in our data. In 567 
comparison, the representational similarity was significantly lower for different transformations of 568 
the same object (Fig 9b, “Different transforms.”; mean = 0.14; p = 1.14e-8) as well as for different 569 
objects (Fig 9b, “Different objects”; mean = -0.02; p = 1.92e-29). We note that a representational 570 
similarity value of zero reflects the benchmark of IT population responses that are orthogonal, 571 
and this was the case for the representation of different objects in IT. It was also the case that 572 
representational similarity was significantly lower for different objects as compared to different 573 
transformations of the same object (p=1.43e-7), consistent with an IT representation that was 574 
tolerant to changes in identity-preserving transformations. With these benchmarks established, 575 
what impact did target match modulation have on IT visual representations? The average 576 
representational similarity for the same images presented as target matches as compared to 577 
distractors was significantly lower than the noise ceiling (Fig 9b, “Matches versus distractors”; 578 
mean = 0.28; p = 2.09e-7) but was significantly higher than presenting the same object under a 579 
new transformation (Fig 9b, p = 0.0016) or presenting a different object (Fig 9b, p = 3.057e-20). 580 
These results suggest that the multiplexing of IT target match signals was not perfect, but also 581 
had a smaller impact on the population response than changing either the transformation in 582 
which an object was viewed in or the object in view. These results, computed for broad spike 583 
count windows (80-250 ms), were qualitatively replicated in narrower windows positioned early 584 
(80-130 ms), midway (140-190 ms) and late (200-250 ms) relative to stimulus onset (Fig 9c).  585 
Most notably, representational similarity for matches and distractors remained significantly 586 
higher than representational similarity for different transformations of the same object in all 587 
epochs (Fig 9c, “Mtch. v. Dstr.” vs. “Diff. trans.”, early p = 0.0023, mid p = 0.0081, late p = 588 
0.0092). These results confirm that the impact of target match modulation on IT population 589 
representational similarity remains modest throughout the stimulus-evoked response period.  590 
	591 
Figure 9. Target match signaling has minimal impact on the IT visual population response. a) 592 
The representational similarity matrix, computed as the average Pearson correlation between 593 
the population response vectors computed for all possible pairs of images. Before computing 594 
the correlations between pairs of population response vectors, the responses of each unit were 595 
z-normalized to ensure that correlation values were not impacted by differences in overall firing 596 
rates across units (see Methods). Correlations were computed based on a split halves 597 
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procedure. Shown are the average correlations, computed between images with a fixed target 598 
and averaged across all possible targets, as well as averaged across 1000 random splits. The 599 
matrix is organized such that different transformations of the same object are grouped together, 600 
in the same order as depicted in Fig 2. b) The average representational similarity, computed 601 
across: “Same image and condition”: different random splits of the 20 trials into two sets of 10 602 
trials each; “Different transforms.”: images containing different transformations of the same 603 
object, computed with a fixed target identity; “Different objects”: images containing different 604 
objects, computed with a fixed target identity; “Match versus distractor”: the same image viewed 605 
as a target match as compared to as a distractor, averaged across all 9 possible distractor 606 
combinations (see Methods). c) The analysis described for panel b applied to different time 607 
epochs. Error bars (SEM) reflect variability across the 20 images.  608 
 609 
To what degree does the modest impact of target match modulation follow from the 610 
multiplicative mechanism highlighted in Figure 1? One requirement for multiplicative population 611 
responses are individual units whose responses are themselves multiplicatively rescaled. To 612 
determine the degree to which our recorded IT units were multiplicative, we computed the 613 
impact of target match modulation as a function of stimulus rank and compared it to the 614 
benchmarks expected for multiplicative rescaling as well as other alternatives (including 615 
subtraction and sharpening; Fig 10a,c). Specifically, we ranked the responses of each unit to the 616 
20 images separately (after averaging across target matches and distractors), and we then 617 
computed the average across all units at each rank for target matches and distractors 618 
separately. Average IT target match modulation was much better described as multiplicative 619 
than as subtractive or sharpening (Fig 10b,d). 620 
 621 
Figure 10. The impact of target match modulation on the visual responses of individual units.  622 
a) Cartoon depiction of the impact of different types of target match modulation on the rank-623 
ordered responses to different images. b) Mean and SEM of the rank-order responses across 624 
units, after ranking the responses for each unit separately (based on the averaged response to 625 
target matches and distractors). c) The cartoons in panel a, replotted as the difference between 626 
target matches and distractors at each rank to visualize the differences between them. d) The 627 
analysis described in panel c, applied to the data in panel b, reveals that the impact of target 628 
match modulation is better described as multiplicative than as subtractive or as sharpening.  629 
 630 
A second requirement for multiplicative population response vectors is homogeneity in target 631 
match modulation across units (Fig 11a, cyan). Variation across units in terms of the 632 
magnitudes of target match modulation (Fig 11a, left, red), and/or variation that includes 633 
mixtures of target match enhancement and suppression (Fig 11a, right, red) can produce 634 
changes in population response vector positions that could be confounded with changes in the 635 
visual identity, if the variations were sufficiently large. Where does the amount of target match 636 
modulation heterogeneity that we observed (e.g. Fig 7a) fall relative to the benchmarks of the 637 
best versus worst format that it could possibly take? To investigate this question, we performed 638 
a series of data-based simulations targeted at benchmarking our results relative to “best case” 639 
and “worse case” scenarios for multiplexing given the magnitudes of target match modulation in 640 
our data. As a first “replication” simulation, we replicated the responses recorded for each unit 641 
by preserving the magnitudes and types of signals as well as each unit’s grand mean spike 642 
count and we simulated trial variability with an independent, Poisson process (see Methods). 643 
The pattern of representational similarities reflected in the raw data (Fig 9b) were approximated 644 
in simulation (Fig 11b), suggesting that this simulation procedure was effective at capturing 645 
important elements of the data. In the other simulations described below, we began in the same 646 
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way: by preserving the amounts and types of visual, target and residual modulation recorded in 647 
each unit, as well as each unit’s grand mean firing rate. What differed between the simulations 648 
was how that target match modulation was distributed across units. 649 
 650 
To simulate the “best case scenario” in our data, we approximated multiplicative rescaling by 651 
distributing the total target match modulation across units in equal proportions relative to their 652 
magnitudes of visual modulation. In this simulation, target match modulation was introduced 653 
with the same sign (target match enhancement) across all units, consistent with the average 654 
sign reflected in the raw data (Fig 7a). Representational similarity between target matches and 655 
distractors in this multiplicative, same-sign simulation was statistically indistinguishable from the 656 
noise ceiling (Fig 11c, p = 0.395), confirming intuitions that a population can (in principle) 657 
multiplex target match signals in a multiplicative manner that has minimal interference with 658 
visual representations. To simulate a “worse case scenario” for our data, we increased the 659 
amount of target match modulation heterogeneity across units by both distributing target match 660 
modulation uniformly (as opposed to proportionally) across units as well as preserving the 661 
original sign of each unit’s target match modulation (i.e. target match enhancement or 662 
suppression). Representational similarity between target matches and distractors in this 663 
uniform, mixed-sign simulation fell to levels measured for different transformations of the same 664 
object (Fig 11c), confirming that our data do not reflect a “worst case scenario” given the 665 
magnitudes of target match modulation that we observed. Together, these results suggest that 666 
in line with Fig 1, the impact of target match modulation on IT visual representations is modest 667 
(Fig 9) as a consequence of modulation that is approximately (albeit imperfectly) multiplicative, 668 
due both to individual units with target match modulation that is multiplicative on average, as 669 
well as target match modulation that is approximately (albeit imperfectly) functionally 670 
homogenous.   671 
	672 
Figure 11. Benchmarking the impact of target match modulation heterogeneity across units.  a) 673 
Cartoon depiction of how heterogeneity across units in target match modulation magnitudes 674 
(left) and modulation signs (right) can lead to changes in the population response to the same 675 
images presented as target matches versus distractors. b) Three simulated variants of the 676 
recorded data (see Results), including target match modulation for each unit that was: 677 
replicated; enforced to be multiplicative and reflected with the same-sign across all units (i.e. 678 
target match enhancement); enforced to be uniform and reflected with mixed-signs across units 679 
(i.e. target match enhancement or suppression, as determined by the original data). 680 
 681 
  682 
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Discussion: 683 
 684 
Successfully finding a sought target object, such as your car keys, requires your brain to 685 
compute a target match signal that reports when a target is in view. Target match signals have 686 
been reported to exist in IT, but these signals are not well understood, particularly in the context 687 
of the real-world problem of searching for an object that can appear at different identity-688 
preserving transformations.  We recorded responses in IT as two monkeys performed a 689 
delayed-match-to-sample task in which a target object could appear at different positions, sizes, 690 
and background contexts. We found that the IT population reflected a target match 691 
representation that was largely linear, and that it reflected behavioral confusions on trials in 692 
which the monkeys made errors. IT target match signals were broadly distributed across most 693 
IT units, and while they were dominated by target match enhancement, we also found evidence 694 
for reliable target match suppression. Finally, we found that IT target match modulation was 695 
configured in such a manner as to minimally impact IT visual representations. Together, these 696 
results support the existence of a robust, behaviorally-relevant target match representation in IT 697 
that is multiplexed with IT visual representations. 698 
 699 
Our results support the existence of a robust target match representation in IT during this task 700 
that reflects confusions on trials in which the monkeys make errors (Fig 6); this result has not 701 
been reported previously. One earlier study also explored the responses of IT neurons in the 702 
context of a DMS task in which, like ours, the objects could appear at different identity-703 
preserving transformations (Leuschow et al., 1994), but this study did not sort neural responses 704 
based on behavior. Another study examined IT neural responses as monkeys performed a 705 
visual target search task that involved free viewing as well as image manipulation during the 706 
time of the saccade (Mruczek and Sheinberg, 2007). They reported higher firing rates in IT 707 
neurons during trial sequence that normally led to a reward (an association between a target 708 
object and a saccade to a response target) versus swap trials in which this sequence was 709 
disrupted. Another study (from our lab) used a classic DMS design reported that IT population 710 
classifications on error trials fell to chance (Pagan et al., 2013), but this study did not find 711 
evidence for significant error trial misclassifications.   712 
 713 
IT target match signals have been investigated most extensively in IT via a classic version of the 714 
delayed-match-to-sample (DMS) paradigm where each trial begins with a visual cue indicating 715 
the identity of the target object, and this cue is often the same image as the target match 716 
(Eskandar et al., 1992; Miller and Desimone, 1994; Pagan et al., 2013). In this paradigm, 717 
approximately half of all IT neurons that differentiate target matches from distractors do so with 718 
enhanced responses to matches whereas the other half are match suppressed (Miller and 719 
Desimone, 1994; Pagan et al., 2013). Because match suppressed responses also follow from 720 
the repetition of distractors within a trial, some have speculated that the match enhanced 721 
neurons alone carry behaviorally-relevant target match information (Miller and Desimone, 1994). 722 
In general agreement with those notions, the target match signal is dominated by target match 723 
enhancement in situations where the cue and target match are presented at different locations 724 
(Chelazzi et al., 1993). Conversely, others have argued that a representation comprised 725 
exclusively of match enhanced neurons would confuse the presence of a match with 726 
modulations that evoke changes in overall firing rate, such as changes in stimulus contrast 727 
(Engel and Wang, 2011). Additionally, these authors proposed that match suppressed neurons 728 
could be used in these cases to disambiguate target match versus stimulus-induced modulation. 729 
In our experiment, the IDMS task was run in blocks containing a fixed target to minimize the 730 
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impact of passive stimulus repetition of the target match. We found evidence for net target 731 
match enhancement in our data (Fig 7a), and that this in turn translated into a type of 732 
homogeneity that minimized the potentially detrimental impact of target match modulation on 733 
visual representations (Fig 11).  However, we also found evidence for a smaller subpopulation 734 
of units that reflected reliable target match suppression. Whether the amount of target match 735 
suppression that we observed is sufficient for the disambiguation strategy proposed by Engel 736 
and Wang (2011) is thus unclear - because our experiment did not include variation in 737 
parameters that change overall firing rate (such as contrast), we cannot directly test it with our 738 
data.  739 
 740 
How does the target match signal arrive in IT? Computation of the target match signal requires a 741 
comparison of the content of the currently-viewed scene with a remembered representation of 742 
the sought target. The existence of target match signals in IT could reflect the implementation of 743 
the comparison in IT itself or, alternatively, this comparison might be implemented in a higher-744 
order brain area (such as prefrontal cortex) and fed-back to IT. Examination of the timing of the 745 
arrival of this signal in IT (which peaks at 150 ms; Fig 4b) relative to the monkeys’ median 746 
reaction times (~340 ms; Fig 2e), does not rule out the former scenario. The fact that neural 747 
responses to target matches were more time locked to stimulus onset than they are to reaction 748 
times suggests that this activity does not reflect classic signatures of motor preparation. 749 
Additional insights into whether or not target match signals are computed in IT might be gained 750 
through analyses of the responses on cue trials, particularly with regard to whether signatures of 751 
the visually-evoked responses to cues persist throughout each block, however, our experimental 752 
design included too few cue presentations for such analyses. Thus while our data are consistent 753 
with target match computations within IT cortex, we cannot definitively distinguish this proposal 754 
from alternative scenarios with this data. Additionally, in this study monkeys were trained 755 
extensively on the images used in these experiments and future experiments will be required to 756 
address the degree to which these results hold under more everyday conditions in which 757 
monkeys are viewing images and objects for the first time.   758 
 759 
In a previous series of reports, we investigated target match signals in the context of the classic 760 
DMS design in which target matches were repeats of cues presented earlier in the trial and each 761 
object was presented on a gray background (Pagan and Rust, 2014a; Pagan et al., 2016; 762 
Pagan et al., 2013). One of our main findings from that work was that the IT target match 763 
representation was reflected in a partially nonlinearly separable format, whereas an IT 764 
downstream projection area, perirhinal cortex, contained the same amount of target match 765 
information but in a format that was largely linearly separable. In the data we present here, we 766 
did not find evidence for a nonlinear component of the IT target match representation, reflected 767 
as consistently higher performance of a maximum likelihood as compared to linear decoder (Fig 768 
5b). The source of these differences is unclear. They could arise from the fact that the IDMS 769 
task requires an “invariant” visual representation of object identity, which first emerges in a 770 
linearly separable format in the brain area that we are recording from (Rust and DiCarlo, 2010), 771 
whereas in more classic forms of the DMS task, the integration of visual and target information 772 
could happen in a different manner and/or a different brain area. Alternatively, these differences 773 
could arise from the fact that during IDMS, images are not repeated within a trial, and the 774 
stronger nonlinear component revealed in DMS may be produced by stimulus repetition. It may 775 
also be the case that nonlinearly separable information is in fact present in IT during IDMS but 776 
was not detectable under the specific conditions used in our experiments. For example, the 777 
proportion of nonlinearly separable information grows as a function of population size, and it 778 
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may be the case that it is detectable during IDMS for larger sized populations. Our current data 779 
cannot distinguish between these alternatives.  780 
 781 
Our results also add to the growing literature that suggests the brain “mixes” the modulations for 782 
different task-relevant parameters within individual neurons, even at the highest stages of 783 
processing (Freedman and Assad, 2009; Kobak et al., 2016; Mante et al., 2013; Meister et al., 784 
2013; Raposo et al., 2014; Rigotti et al., 2013; Rishel et al., 2013; Zoccolan et al., 2007). A 785 
number of explanations have been proposed to account for mixed selectivity. Some studies 786 
have documented situations in which signal mixing is an inevitable consequence of the 787 
computations required for certain tasks, such as identifying objects invariant to the view in which 788 
they appear (Zoccolan et al., 2007). Others have suggested that mixed selectivity may be an 789 
essential component of the substrate required to maintain a representation that can rapidly and 790 
flexibly switch with changing task demands (Raposo et al., 2014; Rigotti et al., 2013). Still others 791 
have maintained that broad tuning across different types of parameters is important for learning 792 
new associations (Barak et al., 2013). Our results suggest that IT mixes visual and target match 793 
information within individual units. This could reflect the fact that the comparison of visual and 794 
target match information happens within IT itself, and multiplexing is simply a byproduct of that 795 
computation. Alternatively, if the comparison is performed elsewhere, this would reflect its 796 
feedback to IT for some unknown purpose. In either case, our results suggest that the 797 
multiplexing happens in a manner that is largely but imperfectly multiplicative (Fig 10-11) and 798 
thus configured to minimize interference of visual representations when also signaling target 799 
match information. 800 
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METHODS 809 
 810 
Experiments were performed on two adult male rhesus macaque monkeys (Macaca mulatta) 811 
with implanted head posts and recording chambers. All procedures were performed in 812 
accordance with the guidelines of the University of Pennsylvania Institutional Animal Care and 813 
Use Committee and this study was approved under protocol 804222. 814 
 815 
The invariant delayed-match-to-sample (IDMS) task: 816 
 817 
All behavioral training and testing was performed using standard operant conditioning (juice 818 
reward), head stabilization, and high-accuracy, infrared video eye tracking. Stimuli were 819 
presented on an LCD monitor with an 85 Hz refresh rate using customized software 820 
(http://mworks-project.org). 821 
 822 
As an overview, the monkeys’ task required an eye movement response to a specific location 823 
when a target object appeared within a sequence of distractor images (Fig 2a).  Objects were 824 
presented across variation in the objects’ position, size and background context (Fig 2b).  825 
Monkeys viewed a fixed set of 20 images across switches in the identity of 4 target objects, 826 
each presented at 5 identity-preserving transformations (Fig 2c). Monkeys were trained 827 
extensively on the set of 20 images shown in Fig 2b before testing. We ran the task in short 828 
blocks (~3 min) with a fixed target before another target was pseudorandomly selected. Our 829 
design included two types of trials: cue trials and test trials (Fig 2a). Only test trials were 830 
analyzed for this report. 831 
 832 
Trials were initiated by the monkey fixating on a red dot (0.15°) in the center of a gray screen, 833 
within a square window of ±1.5°, followed by a 250 ms delay before a stimulus appeared. Cue 834 
trials, which indicated the current target object, were presented at the beginning of each block 835 
and after three subsequent trials with incorrect responses. To minimize confusion, cue trials 836 
were designed to be distinct from test trials and began with the presentation of an image of each 837 
object that was distinct from the images used on test trials (a large version of the object 838 
presented at the center of gaze on a gray background; Fig 2a). Test trials, which are the focus 839 
of this report, always began with a distractor image, and neural responses to this image were 840 
discarded to minimize non-stationarities such as stimulus onset effects. Distractors were drawn 841 
randomly from a pool of 15 possible images within each block without replacement until each 842 
distractor was presented once on a correct trial, and the images were then re-randomized. On 843 
most trials, a random number of 1-6 distractors were presented, followed by a target match (Fig 844 
2a).  On a small fraction of trials, 7 distractors were shown, and the monkey was rewarded for 845 
fixating through all distractors. Each stimulus was presented for 400 ms (or until the monkeys’ 846 
eyes left the fixation window) and was immediately followed by the presentation of the next 847 
stimulus.  Following the onset of a target match image, monkeys were rewarded for making a 848 
saccade to a response target within a window of 75 – 600 ms to receive a juice reward.  In 849 
monkey 1 this target was positioned 10 degrees above fixation; in monkey 2 it was 10 degrees 850 
below fixation.  If 400 ms following target onset had elapsed and the monkey had not moved its 851 
eyes, a distractor stimulus was immediately presented. If the monkey continued fixating beyond 852 
the required reaction time, the trial was considered a “miss”. False alarms were differentiated 853 
from fixation breaks via a comparison of the monkeys’ eye movements with the characteristic 854 
pattern of eye movements on correct trials: false alarms were characterized by the eyes leaving 855 
the fixation window via its top (monkey 1) or bottom (monkey 2) outside the allowable correct 856 
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response period and traveling more than 0.5 degrees whereas fixation breaks were 857 
characterized by the eyes leaving the fixation window in any other way. Within each block, 4 858 
repeated presentations of the 20 images were collected, and a new target object was then 859 
pseudorandomly selected.  Following the presentation of all 4 objects as targets, the targets 860 
were re-randomized.  At least 20 repeats of each condition were collected.  Overall, monkeys 861 
performed this task with high accuracy. Disregarding fixation breaks (monkey 1: 11% of trials, 862 
monkey 2: 8% of trials), percent correct on the remaining trials was as follows: monkey 1: 96% 863 
correct, 1% false alarms, and 3% misses; monkey 2: 87% correct, 3% false alarms, and 10% 864 
misses.  865 
 866 
 867 
Neural recording:  868 
 869 
The activity of neurons in IT was recorded via a single recording chamber in each monkey. 870 
Chamber placement was guided by anatomical magnetic resonance images in both monkeys, 871 
and in one monkey, Brainsight neuronavigation (https://www.rogue-research.com/). The region 872 
of IT recorded was located on the ventral surface of the brain, over an area that spanned 4 mm 873 
lateral to the anterior middle temporal sulcus and 15-19 mm anterior to the ear canals. Neural 874 
activity was largely recorded with 24-channel U probes (Plexon, Inc) with linearly arranged 875 
recording sites spaced with 100 mm intervals, with a handful of units recorded with single 876 
electrodes (Alpha Omega, glass-coated tungsten). Continuous, wideband neural signals were 877 
amplified, digitized at 40 kHz and stored using the OmniPlex Data Acquisition System (Plexon). 878 
Spike sorting was done manually offline (Plexon Offline Sorter). At least one candidate unit was 879 
identified on each recording channel, and 2-3 units were occasionally identified on the same 880 
channel. Spike sorting was performed blind to any experimental conditions to avoid bias. A 881 
multi-channel recording session was included in the analysis if the animal performed the task 882 
until the completion of 20 correct trials per stimulus condition, there was no external noise 883 
source confounding the detection of spike waveforms, and the session included a threshold 884 
number of task modulated units (>4 on 24 channels). The sample size (number of units 885 
recorded) was chosen to approximately match our previous work (Pagan and Rust, 2014a; 886 
Pagan et al., 2016; Pagan et al., 2013).  887 
	888 
For all the analyses presented in this paper except Fig 4b,d, Fig 8, and Fig 9c, we measured 889 
neural responses by counting spikes in a window that began 80 ms after stimulus onset and 890 
ended at 250 ms. On 1.9% of all correct target match presentations, the monkeys had reaction 891 
times faster than 250 ms, and those instances were excluded from analysis such that spikes 892 
were only counted during periods of fixation. When combining the units recorded across 893 
sessions into a larger pseudopopulation, we screened for units that met three criteria. First, units 894 
had to be modulated by our task, as quantified by a one-way ANOVA applied to our neural 895 
responses (80 conditions * 20 repeats) with p < 0.01. Second, we applied a loose criterion on 896 
recording stability, as quantified by calculating the variance-to-mean for each unit (computed by 897 
fitting the relationship between the mean and variance of spike count across the 80 conditions), 898 
and eliminating units with a variance-to-mean ratio > 5. Finally, we applied a loose criterion on 899 
unit recording isolation, quantified by calculating the signal-to-noise ratio (SNR) of the waveform 900 
(as the difference between the maximum and minimum points of the average waveform, divided 901 
by twice the standard deviation across the differences between each waveform and the mean 902 
waveform), and excluding (multi)units with an SNR < 2. This yielded a pseudopopulation of 204 903 
units (of 563 possible units), including 108 units from monkey 1 and 96 units from monkey 2.  904 
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 905 
Quantifying single-unit modulation magnitudes: 906 
 907 
To quantify the degree to which individual units were modulated by different types of task 908 
parameters (Fig 4b-d), we applied a bias-corrected procedure described in detail by (Pagan and 909 
Rust, 2014b) and summarized here. Our measure of modulation is similar to a multi-way 910 
ANOVA, with important extensions. Specifically, a two-way ANOVA applied to a unit’s 911 
responses (configured into a matrix of 4 targets * 20 images * 20 trials for each condition) would 912 
parse the total response variance into two linear terms, a nonlinear interaction term, and an 913 
error term. We make 3 extensions to the ANOVA analysis. First, an ANOVA returns measures 914 
of variance (in units of spike counts squared) whereas we compute measures of standard 915 
deviation (in units of spike count) such that our measures of modulation are intuitive (e.g., 916 
doubling firing rates causes signals to double as opposed to quadruple). Second, while the 917 
linear terms of the ANOVA map onto our “visual” and “target identity” modulations (after 918 
squaring), we split the ANOVA nonlinear interaction term into two terms, including target match 919 
modulation (i.e. Fig 2c gray versus white) and all other nonlinear “residual” modulation. This 920 
parsing is essential, as target match modulation corresponds to the signal for the IDMS task 921 
whereas the other types of modulations are not. Finally, raw ANOVA values are biased by trial-922 
by-trial variability (which the ANOVA addresses by computing the probability that each term is 923 
higher than chance given this noise) whereas our measures of modulation are bias-corrected to 924 
provide an unbiased estimate of modulation magnitude. 925 
 926 
The procedure begins by developing an orthonormal basis of 80 vectors designed to capture all 927 
types of modulation with intuitive groupings. The number of each type is imposed by the 928 
experimental design.  This basis 𝒃 included vectors 𝒃! that reflected 1) the grand mean spike 929 
count across all conditions (𝒃!, 1 dimension), 2) whether the object in view was a target or a 930 
distractor (𝒃!, 1 dimension), 3) visual image identity (𝒃! − 𝒃!", 19 dimensions), 4) target object 931 
identity (𝒃!! − 𝒃!", 3 dimensions), and 5) “residual”, nonlinear interactions between target and 932 
object identity not captured by target match modulation (𝒃!" − 𝒃!", 56 dimensions). A Gram-933 
Schmidt process was used to convert an initially designed set of vectors into an orthonormal  934 
basis.  935 
 936 
Because this basis spans the space of all possible responses for our task, each trial-averaged 937 
vector of spike count responses to the 80 experimental conditions 𝑹 can be re-expressed as a 938 
weighted sum of these basis vectors. To quantify the amounts of each type of modulation 939 
reflected by each unit, we began by computing the squared projection of each basis vector 940 
𝒃!  and 𝑹. An analytical bias correction, described and verified in (Pagan and Rust, 2014b), was 941 
then subtracted from this value:  942 
 943 

 (8) 𝑤!! = (𝑹 ∙ 𝒃!!)! −
!!! ∙(𝒃𝒊

𝑻)𝟐

!
 944 

 945 
where 𝜎!! indicates the trial variance, averaged across conditions (n=80), and where m indicates 946 
the number of trials (m=20).  When more than one dimension existed for a type of modulation, 947 
we summed values of the same type. Next, we applied a normalization factor (1/(n-1)) to convert 948 
these summed values into variances.  Finally, we computed the square root of these quantities 949 
to convert them into modulation measures that reflected the number of spike count standard 950 
deviations around each unit’s grand mean spike count.   951 
 952 
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Target match modulation was thus computed as: 953 
 954 

(9) 𝜎!" = !
!!!

∙ 𝑤!!  955 

 956 
visual modulation was computed as: 957 
 958 

(10) 𝜎!"# =
!

!!!
∙ 𝑤!!!"

!!!  959 

 960 
target identity modulation was computed as: 961 
 962 

(11) 𝜎!" =
!

!!!
∙ 𝑤!!!"

!!!!  963 

 964 
and residual modulation was computed as: 965 
	966 

(12) 𝜎!"# =
!

!!!
∙ 𝑤!!!"

!!!"  967 

 968 
 969 
When estimating modulation population means (Fig 4b,c), the bias-corrected squared values 970 
were averaged across units before taking the square root.  Because these measures were not 971 
normally distributed, standard error about the mean was computed via a bootstrap procedure. 972 
On each iteration of the bootstrap (across 1000 iterations), we randomly sampled values from 973 
the modulation values for each unit in the population, with replacement. Standard error was 974 
computed as the standard deviation across the means of these newly created populations.  975 
 976 
To quantify the sign of the modulation corresponding to whether an image was presented as a 977 
target match versus as a distractor (Fig 7a,b), we calculated a target match modulation index for 978 
each unit by computing its mean spike count response to target matches and to distractors, and 979 
computing the ratio of their difference and their sum.  980 
 981 
 982 
Population performance: 983 
 984 
To determine the performance of the IT population at classifying target matches versus 985 
distractors, we applied two types of decoders: a Fisher Linear Discriminant (a linear decoder) 986 
and Maximum Likelihood decoder (a nonlinear decoder) using approaches that are described 987 
previously in detail (Pagan et al., 2013) and are summarized here. 988 
 989 
When applied to the pseudopopulation data (Fig 5b, Fig 7b), all decoders were cross-validated 990 
with the same resampling procedure. On each iteration of the resampling, we randomly shuffled 991 
the trials for each condition and for each unit, and (for numbers of units less than the full 992 
population size) randomly selected units. On each iteration, 18 trials from each condition were 993 
used for training the decoder, 1 trial was used to determine a value for regularization, and 1 trial 994 
from each condition was used for cross-validated measurement of performance.   995 
 996 
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To ensure that decoder performance was not biased by unequal numbers of target matches and 997 
distractors, on each iteration of the resampling we included 20 target match conditions and 20 998 
(of 60 possible) distractor conditions.  Each set of 20 distractors was selected to span all 999 
possible combinations of mismatched object and target identities (e.g. objects 1, 2, 3, 4 paired 1000 
with targets 4, 3, 2, 1), of which there are 9 possible sets. To compute proportion correct, a 1001 
mean performance value was computed on each resampling iteration by averaging binary 1002 
performance outcomes across the 9 possible sets of target matches and distractors, each which 1003 
contained 40 test trials. Mean and standard error of performance was computed as the mean 1004 
and standard deviation of performance across 1000 resampling iterations. Standard error thus 1005 
reflected the variability due to the specific trials assigned to training and testing and, for 1006 
populations smaller than the full size, the specific units chosen.   1007 
 1008 
 1009 
Fisher Linear Discriminant: 1010 
 1011 
The general form of a linear decoding axis is:  1012 
 1013 
(1)  𝑓 𝒙 =  𝒘!𝒙 + 𝑏,  1014 
 1015 
where w is an N-dimensional vector (where N is the number of units) containing the linear 1016 
weights applied to each unit, and b is a scalar value. We fit these parameters using a Fisher 1017 
Linear Discriminant (FLD), where the vector of linear weights was calculated as: 1018 
 1019 
(2) 𝒘 = Σ!𝟏(𝜇! − 𝜇!) 1020 
 1021 
and b was calculated as: 1022 
 1023 
 (3) 𝑏 = 𝒘 ∙ !

!
(𝜇! + 𝜇!) = !

!
𝜇!!Σ!𝟏𝜇! −  !

!
𝜇!!Σ!𝟏𝜇! 1024 

 1025 
Here 𝜇! 𝑎𝑛𝑑 𝜇! are the means of the two classes (target matches and distractors, respectively) 1026 
and the mean covariance matrix is calculated as: 1027 
 1028 
 (4) Σ = !!!!!

!
 1029 

 1030 
where Σ! and Σ! are the regularized covariance matrices of the two classes. These covariance 1031 
matrices were computed using a regularized estimate equal to a linear combination of the 1032 
sample covariance and the identity matrix 𝐼 (Pagan et al., 2016): 1033 
 1034 
(5) Σ! =  𝛾 Σ! + (1 − 𝛾) ∙ 𝐼 1035 
 1036 
We determined 𝛾 by exploring a range of values from 0.01 to 0.99, and we selected the value 1037 
that maximized average performance across all iterations, measured with the cross-validation 1038 
“regularization” trials set aside for this purpose (see above). We then computed performance for 1039 
that value of  𝛾 with separately measured “test” trials, to ensure a fully cross-validated measure. 1040 
Because this calculation of the FLD parameters incorporates the off-diagonal terms of the 1041 
covariance matrix, FLD weights are optimized for both the information conveyed by individual 1042 
units as well as their pairwise interactions.    1043 
 1044 
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To compare FLD performance on correct versus error trials (Fig 6, 7d), we used the same 1045 
methods described above with the following modifications. First, the analysis was applied to the 1046 
simultaneously recorded data within each session, and the correlation structure on each trial 1047 
was kept intact on each resampling iteration.  Second, when more than 24 units were available, 1048 
a subset of 24 units were selected as those with the most task modulation, quantified via the p-1049 
value of a one-way ANOVA applied to each unit’s responses (80 conditions * 20 repeats). 1050 
Finally, on each resampling iteration, each error trial was randomly paired with a correct trial of 1051 
the same condition and cross-validated performance was performed exclusively for these pairs 1052 
of correct and error responses.  As was the case for the pseudopopulation analysis, training 1053 
was performed exclusively on correct trials. A mean performance value was computed on each 1054 
resampling iteration by averaging binary performance outcomes across all possible error trials 1055 
and their condition-matched correct trial pairs, and averaging across different recording 1056 
sessions. Mean and standard error of performance was computed as the mean and standard 1057 
deviation of performance across 100 resampling iterations. Standard error thus reflected error in 1058 
a manner similar to the pseudopopulation analysis - the variability due to the specific trials 1059 
assigned to training and testing and, for populations smaller than the full size, the specific units 1060 
chosen.   1061 
 1062 
In the case of the ranked-FLD (Fig 5c), all units were considered on each resampling iteration, 1063 
and weights were computed for each unit (with the training data) as described by Equation 2. 1064 
Weights were then ranked by their magnitude (the absolute values of the signed quantities) and 1065 
the top N units were selected for different population size N. Finally, both the weights and the 1066 
threshold were recalculated before cross-validated testing with the training data. In the case of 1067 
the signed versions of the FLD (which isolated the analysis to target matched enhanced or 1068 
suppressed units, Fig 7c-d), the process was similar in that all units were considered on each 1069 
resampling iteration and weights were computed for each unit (with the training data) as 1070 
described by Equation 2. Weights were then isolated to all of those that were positive “E units” 1071 
or all that were negative “S units”.  Finally, the weights and the threshold were recalculated 1072 
before cross-validated testing with the training data. 1073 
 1074 
 1075 
Maximum likelihood decoder: 1076 
 1077 
As a measure of total IT target match information (combined linear and nonlinear), we 1078 
implemented the maximum likelihood decoder (Fig 5b) introduced in our previous work (Pagan 1079 
et al., 2016; Pagan et al., 2013). We began by using the set of training trials to compute the 1080 
average response ruc of each unit u to each of the 40 conditions c. We then computed the 1081 
likelihood that a test response k was generated from a particular condition as a Poisson-1082 
distributed variable: 1083 
 1084 
 (7) 𝑙𝑖𝑘!,!(𝑘) =

(!!")!∙!!!!"

!!
 1085 

 1086 
The likelihood that a population response vector was generated in response to each condition 1087 
was then computed as the product of the likelihoods of the individual units. Next, we computed 1088 
the likelihood that each test vector arose from the category target match as compared to the 1089 
category distractor as the product of the likelihoods across the conditions within each category.  1090 
We assigned the population response to the category with the maximum likelihood, and we 1091 
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computed performance as the fraction of trials in which the classification was correct based on 1092 
the true labels of the test data.  1093 
 1094 
 1095 
Representational similarity: 1096 
 1097 
Before computing representational similarity (Fig 9a), the responses of each unit were z-1098 
normalized to have a mean of zero and standard deviation of 1. To compute measures of the 1099 
representational similarity between pairs of population response vectors, the 20 repeated trials 1100 
for each (of 80) experimental conditions were randomly split into two sets of 10 trials, and the 1101 
average population response vector was computed. To obtain measures of the noise ceiling, 1102 
Pearson correlation was computed between many random splits of the data for each of the 80 1103 
conditions. The mean across 1000 random splits was computed for each condition and the 1104 
values were averaged across the splits as well as the 4 target conditions for each image, 1105 
resulting in 20 correlations values (1 for each image). Fig 9b “Same image and condition” 1106 
depicts the mean and standard deviation across the 20 images. Measures of the 1107 
representational similarity between different conditions were computed in a comparable way, by 1108 
also selecting 10 (of 20) trials before computing the mean population response vectors. To 1109 
measure the representational similarity between the same objects presented at different 1110 
transformations, Pearson correlation was computed for all possible pairs of the 5 images 1111 
corresponding to each object under the conditions of a fixed target. A mean value was 1112 
computed as the average across 1000 random splits and the pairwise comparison between 1 1113 
image and other images containing the same object for each of 20 images, and Fig 9b “Different 1114 
transforms.” depicts the mean and standard deviation across the 20 images. Fig 9b “Different 1115 
objects” was computed in a similar manner, but for all possible pairs of one image and the 1116 
images containing other objects. Finally, Fig 9b “Match versus distractor” was computed in a 1117 
similar manner, but for all possible pairs of one image presented as a target match (viewing an 1118 
image while looking for that object as a target) and the three distractor conditions (the three 1119 
other targets).  The same procedures were carried out for Fig 9c and 11b. 1120 
 1121 
Simulations: 1122 
 1123 
To better understand our results, we performed a number of data-based simulations (Fig 11b).  1124 
Each simulation began by computing the bias-corrected weights for each unit as described 1125 
above. For the “replication” simulation, we rectified bias-corrected modulations that fell below 1126 
zero, recomputed the noise-corrected mean spike count responses for each condition, and 1127 
generated trial variability with an independent Poisson process. 1128 

For the “multiplicative, same-sign” simulation, we replaced the target match modulation for each 1129 
unit with an amount that ensured the population total was distributed proportional to each unit’s 1130 
total visual modulation (Equation 10), and always reflected as target match enhancement.  For 1131 
the “uniform, mixed-sign” simulation, we replaced each unit’s target match modulation with the 1132 
same amount, reflected with the sign determined in the original data.   1133 
 1134 
Statistical tests: 1135 
 1136 
When comparing performance between the FLD and maximum likelihood classifier (Fig 5b), we 1137 
reported P values as an evaluation of the probability that differences were due to chance. We 1138 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/152181doi: bioRxiv preprint 

https://doi.org/10.1101/152181
http://creativecommons.org/licenses/by-nd/4.0/


 26 

calculated P values as the fraction of resampling iterations on which the difference was flipped 1139 
in sign relative to the actual difference between the means of the full data set (for example, if the 1140 
mean of decoding measure 1 was larger than the mean of decoding measure 2, the fraction of 1141 
iterations in which the mean of measure 2 was larger than the mean of measure 1).  1142 
 1143 
When evaluating whether each unit had a statistically different response to target matches as 1144 
compared to distractors (Fig 7a-b, light bars), we recomputed each unit’s modulation index by 1145 
resampling trials with replacement on n = 1000 resampling iterations. A unit was considered as 1146 
statistically significant if its resampled modulation indices were flipped in sign from the unit’s 1147 
actual modulation index less than 0.01% of the resampling iterations. When evaluating whether 1148 
the single unit modulation indices (Fig 7a-b) were significantly different from zero, we reported P 1149 
values as computed by a Wilcoxon sign rank test. When evaluating whether the single unit 1150 
modulation indices computed without repeated distractors (Fig 7b) were significantly different 1151 
from modulation indices computed with repeated distractors, we reported P values computed via 1152 
a matched t test.  1153 
 1154 
When comparing the representational similarity of different groupings of the IT population 1155 
response (Fig 7b), we computed a mean Pearson correlation value for each of the 20 images 1156 
(as described above), and reported P values as the probability that the observed differences in 1157 
means across the 20 images were due to chance via a two-sample t-test. 1158 
 1159 
Animal husbandry, enrichment, and care: 1160 
 1161 
Monkeys received a nutritionally balanced diet of biscuits as well as daily supplements of fruit 1162 
and nuts. Monkeys were housed in Allentown cages with space that exceeded the minimums 1163 
described in the “Guide for Care and Use of Laboratory Animals”. Additionally, monkeys had 1164 
periodic access to larger playcages that included a variety of enrichment items, such as swings. 1165 
Monkeys were also provided daily enrichment by social housing when possible and through the 1166 
introduction of toys, games, and puzzles that involved manipulation to receive food treats. To 1167 
maintain task motivation, access to water was regulated prior to experimental sessions. 1168 
Monkeys received a minimum 20 mL/kg of water a day five days a week and a minimum of 40 1169 
mL/kg on the other two days. When off study, animals were allowed unrestricted access to 1170 
water. Animals on regulated access were monitored daily for health status and hydration. Daily 1171 
hydration status was assessed by body weight, skin turgor, urine and fecal output, and overall 1172 
demeanor. Following this study, both animals were used in one other neurophysiology study. 1173 
Following the conclusion of the second study, both animals were euthanized in a manner 1174 
consistent with the recommendations of the Panel on Euthanasia of the American Veterinary 1175 
Medical Association, including sedation followed by the introduction of the euthanasia solution 1176 
Euthasol. 1177 
 1178 
 1179 
S1 Dataset. IT neural data. The data include the spike count responses recorded from each 1180 
monkey, organized into 5-dimensional matrices as units (monkey 1: n = 108; monkey 2: n = 96) 1181 
x targets (n = 4) x objects (n = 4) x transformations (n = 5) x trials (n = 20). Spikes were counted 1182 
from 80 to 250 ms, and were extracted from trials with correct responses.  1183 
 1184 
 1185 
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