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Abstract

Background: In addition to the regulatory elements already known, for instance,
transcription factors or post-translation modifications, there is growing interest in the
regulatory role played by non-coding RNA molecules (ncRNA), whose functions are
performed at a different level of biological information processing. Model organisms
provide a convenient way of working in the laboratory, and different research groups use
these models to conduct studies on the cellular mechanisms present in these organisms.
Although some ncRNAs elements have been found in the Halobacterium salinarum
model organism, we believe that not enough is known about these genomic regions.
Methods: Therefore, an in silico analysis for ncRNA identification was conducted on H.
salinarum NRC-1. Considering a data integration perspective and some available
methodologies, several machine learning models were built and used to designate
candidate ncRNAs genome regions. Results: A total of 42 new ncRNAs were identified.
Combing analysis with other available tools, it had been observed that some suggested
candidates also was found with different methodologies and thus, it highlights the
proposed results.
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Introduction 1

Notably, the progress in biological knowledge has been widely guided by genomic data 2

processing, where computational models emerge leading to a fuller understanding of 3

biological mechanisms [8]. Model organisms have been used to discover general 4

principles underlying more complex characteristics in all domains of life. Research based 5

on the study of these organisms are oriented according to various interests, including 6

those that are economical, agricultural and environmental, and those that involve 7

human health [7]. The feasibility of model organisms for experimental studies is a great 8

advantage , since they are easy to cultivate in the laboratory, and can be genetically 9

modified [1, 7]. Among these, some research groups have worked with the archeal model 10

organism Halobaterium salinarum NRC-1 and several characterization analyses have 11
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contributed to our understanding of the organism and its use in industrial 12

applications [17,20]. Despite significant advances in previous studies related to H. 13

salinarum, not enough is known about its non-coding RNAs (ncRNA) molecules. Is it 14

know ncRNAs are involved in a wide range of biological processes, acting at different 15

levels in the cell for information processing, including transcription regulation, 16

replication, RNA modification and processing, mRNA stability and translation, and also 17

protein degradation [19] . Due to its importance, many studies have been developed 18

that aim to identify and characterize this class of molecules [16]. Computational 19

approaches designed to identify ncRNAs have considered the inherent properties of such 20

molecules, including sequence conservation and structure [14,21], sequence length, 21

transcript expression [10,12] and known functional motifs [2, 6]. Unfortunately, despite 22

the existence of multiple methodologies to identify ncRNAs, it is difficult to rely on 23

available strategies solely. Thus, in the present work, we developed an integrative in 24

silico analysis to accurately predict new ncRNAs in H. salinarum NRC-1, aiming to 25

contribute to the identification of these important regulatory elements. In order to 26

ensure a significant strategy to select potential genome regions of ncRNAs, by 27

complementing the available approaches, we also applied a Machine Learning (ML) 28

based method to support our findings. Moreover, we gathered a collection of 29

experimental data to increase the reliability of our results. 30

Figure 1. Workflow of the applied non-coding RNA prediction.

Materials and Methods 31

Currently available ncRNA prediction tools 32

Some conventional methods to predict ncRNAs are based mainly on primary sequence 33

information. These approaches attempt to use homology and structure characteristics in 34

order to perform their searches against ncRNA databases. The RNAspace platform 35

http://www.rnaspace.org/ [3], for example, provides an integrated user friendly tool 36

for ncRNA identification and annotation, whose methods are based on the mentioned 37
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Table 1. Summary of the machine learning features.
Feature group Name No. of features Feature name

Expression data
RNA-seq small RNAs 7

small ExpMean, small ExpMedian, small ExpInterval, small ExpSD,
small ExpObliq, small ExpKurt, small ExpPercentage

Tilling array (growth curve) 13
tiling 01, tiling 02, tiling 03, tiling 04, tiling 05, tiling 06, tiling 07,
tiling 08, tiling 09, tiling 10, tiling 11, tiling 12, tiling 13

Sequence characteristics

Conservation 7
cons ExpMean, cons ExpMedian, cons ExpInterval, cons ExpSD,
cons ExpObliq, cons ExpKurt, cons ExpPercentage

GC content 1 %gc
ORF Distance 2 dist5Prime, dist3Prime,
No. of codons 1 CountsStop

Structure information
Minimum free energy (MFE) 8

n hairpin, n multiloop, n interloop, n bulge, loops, tpaired,
tunpaired, MFE

Structure features
Total 39

characteristics. Other approaches exploit more specific experimental data as small 38

RNA-seq (sRNA-seq) libraries; however, since these record mostly short length RNAs, is 39

expect that particular features of ncRNAs be present in the sequenced reads. The 40

approaches by both Dario [5] and Coral [12] try to use properties of sRNA-seq data 41

based on mapped reads information. Another approach, named smyRNA [18], takes 42

advantage of certain sequence motifs that are important in establishing the structure of 43

the ncRNA molecule. These sequence motifs have a differential distribution across the 44

genome and have exploited to identify new ncRNA region candidates. A further 45

interesting methodology to identify ncRNAs involves the combination and integration of 46

different data sources, since different properties capture distinct information about 47

genomic elements [14]. 48

Data sources and training set definition 49

Available experimental strand specific data were used as relevant information for model 50

building and further analysis. We integrated H. salinarium sp. NRC-1 data from small 51

RNA-seq and tiling array data over 13 points from a standard growth curve [9]. We 52

collected genome region annotations from the model organism, in order to represent 53

previous knowledge, and making possible the training set examples collection for the 54

machine learning techniques. Among these annotations, 2635 gene regions were 55

obtained from [4]. Koide et. al. [9] reported 61 putative ncRNAs regions based on tiling 56

array expression signal. Integrating several data types, they also identified 5’ and 3’ 57

UTR, and we used this information in our approach. Additionally, we obtained 41 58

predicted ncRNAs from the UCSC Genome Browser (https://genome.ucsc.edu/). These 59

candidates were raised from the snocan tool [13], which searches for motifs present in 60

the C/D box snoRNA ncRNA class. The training set data corresponds to the available 61

model organism annotated regions. As described above, we collected information about 62

the genes (CDS), UTRs and already identified ncRNAs. In order to exploit these 63

annotations and evaluate the predictive power of our ML model, we applied different 64

training set configurations by manipulating the available genomic annotated regions. In 65

one case, we used the full length of annotated regions considering the start and end of 66

the original values. In another approach, we partitioned the regions according to [11]. 67

All models were evaluated and the results will be described in the next section. 68

ML features 69

Considering all genome annotated regions, we gathered available data sources 70

corresponding to different categories and data information for the organism of interest 71

(Table 1). The small RNA-seq signal corresponds to the counts of the aligned reads (in 72

log 2 scale) and for each genome position a read-count value is associated, which 73

indicates transcript expression. Since the transcripts are fragmented and diverse, the 74

read count signal becomes unclear with several breaks, decays and oscillations. To 75
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improve the signal representation, aiming to handle this signal diversity, we tried to 76

consider the read-count shape with some ML features, including kurtosis, skewness, 77

mean, median, standard variation, interval (max – min values) and percentage of 78

expression above the mean of the all read-count in the region. 79

Another relevant information that helped us to distinguish the classes is the codon 80

triplet sequence. We considered all start and stop codon definitions from an Archaea 81

genetic code table, then we calculated the nucleotide distance from the interested region 82

to the closest start and stop codon. This was called the open reading frame (ORF) 83

distance feature. The sequence conservation measure was based on a previous method, 84

as described in Marchais et. al. [15] . Considering a BLAST hit 85

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) for each genome position, the conservation 86

index indicates the number of genomes on each position, and was weighted by its 87

phylogenetic proximity with the H. salinarum NRC-1 genome. To handle the 88

conservation information, we considered the same measures described above (kurtosis, 89

skewness, etc), which was applied to the small RNA-Seq data. We also included GC 90

content as part of sequence characteristics. Finally, secondary structure information was 91

included based on the Context Fold tool prediction results 92

(https://www.cs.bgu.ac.il/ negevcb/contextfold/) [22]. The structure prediction 93

annotation was then parsed and the sub-structures were obtained as a collection of 94

features. In summary, 39 features were used (Table 1). 95

ML model evaluation and statistical analyses 96

To precisely evaluate the predictive power of the ML classification model, several 97

standard performance measures were used, including accuracy, sensitivity, specificity, 98

ROC analysis and area under curve (AUC). These statistical evaluations involved the 99

analysis of model hypothesis variance and bias, estimated from independent test sets 100

outside of the training sets, and the cross-validation technique provided this assessment. 101

Non conventional measures were also considered to evaluate the ML model. Since many 102

biological data systems usually appear noisy, conventional classification measures may 103

not properly reflect the model behavior. Thus, we applied a new strategy based on 104

sliding window fragments to evaluate the prediction behavior sensibility. 105

Results 106

Identification framework for ncRNAs 107

To identify new ncRNA genomic regions candidates, we have combined both a newly 108

developed ML methodology and available tools to predict ncRNAs. The main 109

procedures of the developed approach are illustrated in Figure 1. First, the input data 110

were processed in order to define ML features, using both available genomic annotation 111

and representative information over these regions, such as experimental expression data 112

and sequence properties (conservation, predicted structure). Considering the ML model, 113

a sliding window strategy was applied across the entire genome. In general terms, the 114

strategy splits the genome into several overlapping fragments, then uses these fragments 115

as inference for the ML model.Subsequently, the probability ncRNA signal is obtained 116

by manipulating the probability associated with each fragment. We defined peaks of 117

high probability using signal processing procedures and then considered overlapping 118

peaks to define candidate ncRNA regions. Finally, the final candidate regions were 119

evaluated and filtered considering different experimental data and methodologies. 120
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Figure 2. Area under the curve score showing the performances of the
classifiers in 10- fold cross validation. We considered nine classifiers (Bayes Net,
BN; Decision Tree, DT; Logistic Regression, LG; Naive Bayes, NB; Random Forest, RF;
Rules Based, RB; and support vector machines (SVM) with tree kernels - polynomial,
linear and radial basis function (RBF)). Two models, M1 and M2, were generated
manipulating the training set annotations.

Predictive behavior of the ML model 121

To ensure an unbiased evaluation of our ML models, we used a procedure that involves 122

a sliding window prediction strategy across the entire H. salinarum NRC-1 genome. 123

This procedure helped us to investigate the predictive behavior of the developed ML 124

models, whose modifications reflect the different scenarios that we considered, by 125

manipulating the genomic annotations of H. salinarum NRC-1, which are used as 126

training sets. The first model (M1) uses the original information regarding the values of 127

start and end of each annotated region (coding sequence, CDS; untranslated region, 128

UTR) and the already known ncRNA available from [9]. In the second scenario (M2), 129

each annotated regions (CDS, UTR) were fragmented, considering a fixed size of 120 130

nt [11]. To visualize the performance of the applied algorithms, using these two different 131

training sets, the area under the curve (AUC) was plotted in Figure 2. 132

Among the nine algorithms tested, random forest (RF) achieved the highest AUC (of 133

0.97) with 10-fold cross-validation experiment and training set without fragmentation 134

(M1), which suggested a good separation of the training classes. However, no clear 135

elucidation of the predictive model behavior on unannotated regions arised from these 136

results. To assess the overall classification sensitivity, we applied the sliding window 137

strategy, considering the top 3 classifiers, based on the AUC measure in both models 138

(Figure2). In total, 50354 fragments were used in this step, which covered all bases of 139

the chromosome at plus strand. The fragmentation followed the same considerations 140

described in [11]. After conducting inference process for each fragment, we found the 141

ncRNA class probability value assigned to each genomic position. To map the 142

overlapping fragments cases, all overlapping positions were taken together by the mean. 143

We identified the most important regions (with high ncRNA probability) using a 144

segmentation signal approach, which basically defined the start and end of each peak by 145

checking the probability value variation, by comparing each position with the mean of 146

all probability signals. To precisely evaluate the ML model prediction sensibility, we 147

have compared the annotated regions, also used as training set, with all segmented 148

peaks obtained earlier. Peaks clearly matching the CDS or UTR regions were counted 149

as false positives. 150

A summary of the total peaks obtained is shown in Figure 3. According to the 151

results, Bayes Net algorithm on M1 had 44.8% peak overlap annotation (CDS, UTR 152

and ncRNA classes); 44.5% of them were false positive peaks. RF and support vector 153

machines- radial basis function have 41% and 31% of peaks overlapping annotations, 154

respectively. The total number of generated peaks also suggests an unwanted model 155
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Figure 3. Summary of peaks obtained by each classifier. The red bars indicate
the total peaks obtained in the top 3 area under the curve classifiers. We crossed the
peaks against all training annotations (CDS, UTR and ncRNAS). Peaks that overlap
CDS regions were considered as false positive.

prediction behavior, since a large amount of peaks are more favorable to increase the 156

false positive results. For instance, the RF approach produced 2232 high ncRNA 157

probability peaks. Based on these considerations we have noted that M2 achieved a 158

better prediction behavior results, including relatively few total peaks and a reduced 159

number of overlapping annotations. The Bayes Net classifier had, for example, 8.5% 160

peaks matching with CDS regions and 21.3 % matching with UTR regions. 161

Interestingly, the majority of false positives corresponded to UTR class (Figure 3). In 162

summary, our results show that when we partitioned training regions (M2), the signals 163

peaks displayed a more distinctive signature: reduced number of high ncRNA class 164

probability candidates and few of them mapped to annotated regions. In order to better 165

visualize these features, we plotted, using Gaggle Genome Browser 166

(http://gaggle.systemsbiology.net/docs/geese/genomebrowser/), the probability signal 167

over the entire chromosome of H. salinarum considering plus strand (Figure 4). Indeed, 168

the high peaks are clearly distinctively across the whole genome range and are mainly 169

located in intergenic regions. 170

Figure 4. Example of peaks over the genome. From Gaggle Genome Browser
window we can see tree tracks representing the probability of ncRNA signals in all
genomic positions. The highlighted probability peaks in pink was obtained from naive
Bayes results considering the M2 scenario. Boxes in yellow and orange indicates gene
annotations in the forward and reverse strand, respectively
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Combing classification peaks 171

The prediction peak results obtained by each classifier independently were integrated 172

using voting systems - regions greater than 400bp were removed. We compared all 173

peaks and selected those that intersected the same region of at least five classifiers. By 174

varying the number of overlapping predicted regions threshold value, the number of 175

candidates can be increased. On the other hand, it creates the risk of many false 176

positives. Here, we have opted to select at least 8 classifiers to chromosomes and 7 to 177

plasmids, pNRC100 and pNRC200. After this selection step, some combined candidate 178

regions were removed by the following criteria: clear false negatives (regions covering 179

90% of CDS regions and UTR), true positives (regions matching [9], ncRNAs 180

annotations) and regions overlapping known tRNA or rRNAs. As a final result, 162 181

filtered regions emerged for further inspection. 182

Figure 5. Examples of removed candidates. The highlighted regions indicate the
evaluated region and the criteria in consideration. The first nine tracks corresponds to
probability of ncRNA signals obtained by each classifier. The green bars corresponds to
start read enrichment. The heatmap corresponds to 13 expression signals of H. salinarum
in the growth curve. Finally, the light blue track corresponds to tiling array signals in
the reference condition.

Candidates regions selection criteria 183

Aiming to include a better characterization of all 162 ncRNAs candidate regions and 184

consequently to improve the evidence of a truly positive ncRNA class, we applied a 185

visual and manual inspection using the Gaggle Genome Browser tool. In addition, for 186

expression data, used as ML features, we also considered the RNA expression profile 187

during the H. salinarum growth curve. Moreover, we used tiling array probe intensities 188

for reference conditions for H. salinarum [6] and the relative enrichment of the aligned 189

start position, from the primary transcript library available in [23]. Based on this new 190

experimental information, we filtered the candidates according to the following criteria: 191

absence or weak signal of the aligned start position enrichment (Figure 5A), weak tiling 192

array peak signal (Figure 5B), regions that followed the CDS expression profile behavior 193

(Figure5C), and regions with short overlapping positions (Figure5D). At first, we 194

discarded candidate regions that were close to CDS coordinates, since it was hard to 195

distinguish between UTR and genuine ncRNA classes. However, when we subsequently 196

compared the 162 initial candidates with Transcription Start Site Associated RNAs 197

(TSSaRNAs data, available in Zaramela et. al. 2014 [23]), we surprisingly noted that 40 198

regions overlapped the same TSSaRNAs regions results. This was interesting, since both 199

methodologies are distinct and converge, in some cases, to the same findings. 200

TSSaRNA-VNG1213C (Figure 6) was experimentally evaluated in [23]. The peaks 201
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defined by the classifiers were clearly high in the ncRNA genomic region. Both growth 202

curve expression profile and reference wild type condition expression show changes 203

across the highlighted area. There is an enrichment of aligned start reads overlapping 204

the 5’ region. Based on the mentioned considerations we manually inspected all 162 205

initial candidates and produced 42 new regions as H. salinarum ncRNAs candidates. 206

Some of these are differentially expressed in the growth curve. Moreover, all candidates 207

have shown an enrichment of starting read information. 208

Figure 6. TSSaRNA-VNG1213C was experimentally evaluated in [23]. The
peaks defined by the classifiers were clearly high in the ncRNA genomic region. Both
growth curve expression profile and reference wild type condition expression show changes
across the highlighted area. There is an enrichment of aligned starting reads overlapping
the 5’ region.

Integrative prediction results 209

For a further assessment of the newly identified ncRNA genomic regions, we integrated 210

predictions combining results of different methodologies. We applied some available 211

tools and summarized as follows: similarity based approaches (YASS and BLAST), 212

essentially identifying regions related to tRNAs and rRNAs. The tRNAscan-SE tool also 213

identifies tRNAs, since it applies a more specific search. The majority of known tRNAs 214

and rRNAs also were identified by Darn (https://carlit.toulouse.inra.fr/Darn/index.php) 215

and ERPIN (https://bioinformatics.ca/links directory/tool/9822/erpin) tools. The 216

Darn approach also suggested 5 snoRNAs-CD-box overlapping: VNG1529G, 217

VNG1726G, VNG0318G, VNG1585Cm and VNG1988G genes. These results were not 218

confirmed by Snoscan [13], since they did not match with snoRNAs available in the 219

UCSC Genome Browser. ERPIN found two regions related to small nucleolar RNA, 220

overlapping VNG1654G and VNG2176H genes. RNAz 221

(https://www.tbi.univie.ac.at/w̃ash/RNAz/) obtained more interesting results, only two 222

predicted regions overlapped annotated CDS. We observed that 22 regions correspond 223
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Table 2. Genomic regions of identified non-coding RNA candidates. Canditates that
were also identified by at least one of the applied approaches are highlighted in bold.
The Expr column indicates if the region has expression variation along the growth curve.

Chromosome Start End Name Strand Expr.
chr 54801 54960 ncRNAc01 p05 forward no
chr 65881 66120 ncRNAc02 p06 forward yes
chr 119121 119320 ncRNAc03 p08 forward no
chr 223281 223384 ncRNAc04 p11 forward no
chr 281761 281840 ncRNAc05 p15 forward no
chr 464481 464520 ncRNAc06 p17 forward yes
chr 568041 568120 ncRNAc07 p20 forward yes
chr 590801 590847 ncRNAc08 p23 forward no
chr 725792 725920 ncRNAc09 p25 forward no
chr 749241 749400 ncRNAc10 p28 forward no
chr 768841 768880 ncRNAc11 p29 forward yes
chr 771472 771760 ncRNAc12 p32 forward yes
chr 990561 990840 ncRNAc13 p46 forward yes
chr 1060201 1060320 ncRNAc14 p48 forward no
chr 1186001 1186160 ncRNAc15 p53 forward no
chr 12681 12760 ncRNAc16 p01 reverse no
chr 53761 53800 ncRNAc17 p03 reverse no
chr 54361 54480 ncRNAc18 p04 reverse no
chr 153321 153440 ncRNAc19 p11 reverse no
chr 296961 297240 ncRNAc20 p13 reverse no
chr 305201 305320 ncRNAc21 p14 reverse no
chr 634161 634240 ncRNAc22 p22 reverse no
chr 883041 883160 ncRNAc23 p32 reverse yes
chr 1002681 1002840 ncRNAc24 p35 reverse no
chr 1224361 1224560 ncRNAc25 p44 reverse yes
chr 1279521 1279640 ncRNAc26 p48 reverse no
chr 1789641 1789720 ncRNAc27 p76 reverse no
chr 1902361 1902440 ncRNAc28 p79 reverse no
chr 1987801 1987960 ncRNAc29 p85 reverse yes
pNRC100 143801 143960 ncRNAc30 p12 forward yes
pNRC100 112761 113200 ncRNAc31 p01 reverse no
pNRC100 115681 115920 ncRNAc32 p05 reverse no
pNRC100 116841 117040 ncRNAc33 p09 reverse yes
pNRC100 133641 134000 ncRNAc34 p16 reverse no
pNRC200 129161 129240 ncRNAc35 p02 forward no
pNRC200 133161 133320 ncRNAc36 p03 forward yes
pNRC200 205361 205440 ncRNAc37 p05 forward no
pNRC200 223321 223520 ncRNAc38 p07 forward yes
pNRC200 274321 274360 ncRNAc39 p12 forward yes
pNRC200 155881 156160 ncRNAc40 p04 reverse no
pNRC200 244401 244560 ncRNAc41 p10 reverse yes
pNRC200 262561 262600 ncRNAc42 p13 reverse yes
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to UTR and 26 with annotated tRNAs. INFERNAL (http://eddylab.org/infernal/), 224

RNAmmer (http://www.cbs.dtu.dk/services/RNAmmer/) and AtypicalGC tools 225

predicted few, not clearly defined, regions. RNAmmer only found rRNA, and 226

INFERNAL identified the RNaseP annotated as VNGs01; 9 regions predicted by 227

INFERNAL and 14 obtained using AtypicalGC overlapped CDS. In summary, 228

considering all prediction results, about 90% of the tools successful identified regions 229

belonging to tRNAs and rRNAs. Since many regions predicted as ncRNAs in fact 230

overlapped CDS annotations, we observed many false positives and subsequently, we 231

had difficulty in evaluating the prediction results independently. Therefore, we opted to 232

report just regions filtered by the developed ML approach, highlighting those candidates 233

that were predicted under at least one of applied approaches. In total, 17 candidates (in 234

bold) of 42 matches with other approach results (Table 2). 235

Discussion 236

Model organisms offer a convenient and extensive way for research. Different research 237

groups aiming to guide their studies for a mutual and wide understanding of the cellular 238

mechanisms present on these organisms. The transcriptome complexity includes not 239

only translated transcripts, but a diversity of functional elements. The regulation of 240

gene expression occurs at several cellular levels, and are also guided by non-coding 241

elements. Identification of these non-coding molecules is a challenging task. Although 242

some ncRNAs elements have been found in the Halobacterium salinarum model 243

organism, we believe that not enough is known about these genomic regions. Therefore, 244

we applied an in silico analysis for ncRNA identification to the H. salinarum NRC-1 245

genome. Considering a data integration perspective and some available methodologies, 246

several Machine Learning models were built and used to designate candidate ncRNA 247

genomic regions. We summarize our whole list of novel ncRNA candidates suggested by 248

this work in Table 2. In total, 42 new regions were suggested as ncRNAs in H. 249

salinarum NRC-1. The sliding window approach achieved the most significant results, 250

overcoming traditional ML performance measures. Available methodologies were 251

applied and helped to find more evidence in the final results. We had difficulties in 252

evaluating candidate regions near to CDS, since it can also be associated to UTR 253

regions; however, we compared 162 candidate regions with Zaramela et. al. [23] 254

TSSaRNA results, and 25% of them were also found using a distinct methodology and 255

offer support to our findings. We believe that the final work-flow can be automated and 256

applied to other organisms (allowing comparisons with other approaches). 257
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