New Results
Towards a unified theory of efficient, predictive and sparse coding
View ORCID ProfileMatthew Chalk, View ORCID ProfileOlivier Marre, View ORCID ProfileGašper Tkačik
doi: https://doi.org/10.1101/152660
Matthew Chalk
*Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
Olivier Marre
†Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France
Gašper Tkačik
*Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
Posted June 20, 2017.
Towards a unified theory of efficient, predictive and sparse coding
Matthew Chalk, Olivier Marre, Gašper Tkačik
bioRxiv 152660; doi: https://doi.org/10.1101/152660
Subject Area
Subject Areas
- Biochemistry (4972)
- Bioengineering (3482)
- Bioinformatics (15212)
- Biophysics (6897)
- Cancer Biology (5390)
- Cell Biology (7738)
- Clinical Trials (138)
- Developmental Biology (4530)
- Ecology (7147)
- Epidemiology (2059)
- Evolutionary Biology (10227)
- Genetics (7512)
- Genomics (9786)
- Immunology (4844)
- Microbiology (13215)
- Molecular Biology (5138)
- Neuroscience (29435)
- Paleontology (203)
- Pathology (837)
- Pharmacology and Toxicology (1463)
- Physiology (2138)
- Plant Biology (4748)
- Synthetic Biology (1338)
- Systems Biology (4012)
- Zoology (768)