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Abstract. ​ ​Mass spectrometry with data-independent acquisition (DIA) has emerged as a promising method to greatly 

improve the comprehensiveness and reproducibility of targeted and discovery proteomics, in theory systematically 

measuring all peptide precursors within a biological sample. Despite the technical maturity of DIA, the analytical 

challenges involved in discriminating between peptides with similar sequences in convoluted spectra have limited its 

applicability in important cases, such as the detection of single-nucleotide polymorphisms and alternative site localizations 

in phosphoproteomics data. We have developed Specter, an open-source software tool that uses linear algebra to 

deconvolute DIA mixture spectra directly in terms of a spectral library, circumventing the problems associated with typical 

fragment correlation-based approaches. We validate the sensitivity of Specter and its performance relative to other 

methods by means of several complex datasets, and show that Specter is able to successfully analyze cases involving 

highly similar peptides that are typically challenging for DIA analysis methods.  

 

1 Introduction 

Mass spectrometry with data-dependent acquisition (DDA) is the method of choice for large-scale discovery proteomics, enabling the                 

rapid measurement of the abundances of thousands of proteins in a sample without any prior knowledge of its contents. While it is a                       

powerful technique for the identification of high-abundance proteins in individual samples, DDA faces a fundamental limit in terms of                   

reproducibility and comprehensiveness due to the stochastic nature of its data gathering process ​1​. This inhibits the consistent detection                  

of proteins across samples and undermines efforts to identify particular proteins as biomarkers of disease or measure their differential                   

abundance between multiple conditions of interest. As a result, targeted strategies such as parallel reaction monitoring (PRM) or                  

selected reaction monitoring (SRM) have been developed in order to guarantee the measurement of low-abundance analytes or the                  

observation of pre-specified targets across multiple samples ​2​, but this gain in specificity comes at the cost of vastly limiting the range of                      
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observable precursors. 

Data-independent acquisition (DIA) is a relatively new approach that combines the reproducibility of SRM with the breadth of DDA                   

by simultaneously fragmenting all precursors whose mass-to-charge ( ​m/z ​) ratios fall into one of a small number of wide windows that                    

traverse the entire ​m/z range. This results in convoluted MS2 spectra whose fragment ion intensities may be comprised of contributions                    

from multiple peptide precursors and which are far more complex to analyze than their DDA counterparts.  

The new challenges posed by DIA demand specialized software tools for downstream analysis ​3–7 . Most of these are targeted                   

methods that require a user-provided spectral library defining the search space of peptides (and, in turn, proteins) that can be identified                     

and quantified in the acquired data. These targeted tools are for the most part derived heuristically from corresponding methods for                    

DDA and PRM analysis, in which library members are scored against acquired MS2 spectra based on characteristics such as normalized                    

dot product, fragment ion correlation, and chromatographic peak shape. Although these scores typically penalize assignments to library                 

spectra whose annotated ​b ​or ​y ​fragment ions are judged to exhibit interferences, these methods do not rigorously account for the                     

confounding effects of precursor cofragmentation, resulting in a limited ability to distinguish precursors with shared spectral features.                 

Alternatively, untargeted methods ​4,5,8 aim to deconvolute the data directly without the use of spectral libraries based on the grouping                   

of fragment ions with correlated elution profiles. This analysis takes into account both MS1 and MS2 intensity information in order to                     

score correlated peak groups but implicitly discards fragments with significant interferences due to their poor correlation with a                  

precursor’s elution profile. Although a promising route for the discovery of previously unobserved analytes, the fact that this approach                   

uses no prior information as provided by a spectral library may cause it to suffer from a high false negative rate in complex samples ​9                        

and makes it more susceptible to missing data than targeted methods when attempting to quantify analytes across  multiple conditions.  

Here we describe Specter, an algorithm for the identification and quantification of spectral library members within DIA data. It is                    

based on recognizing and formalizing the fundamental distinction between DIA and DDA, namely the cofragmentation of potentially                 

large numbers of precursors, some of which may share fragment ion ​m ​/ ​z ​ratios. Specter is based on a principled mathematical                    

formulation of the cofragmentation problem, which is then solved by means of linear algebra. As opposed to the usual approach                    

involving detection of correlated chromatographic profiles of selected precursor fragment ions, spectral deconvolution takes place               

purely at the MS2 level and involves the entire sequence of ​m/z coordinates and relative intensities of library spectra peaks. This allows                      

for the direct calculation of extracted ion chromatograms of fractional contributions of library precursors to MS2 spectra, which can                   

then be visualized and analyzed using traditional chromatographic approaches​10​.  

This approach is neither spectrum-centric (it does not match acquired MS2 spectra to those in a database) nor peptide-centric (it                     

does not assess the evidence for individual library members within the acquired data), in contrast to all other existing methods. Rather,                     

it is "combination-centric", in that it identifies and quantifies the single ​combination ​of library spectra that best explains an acquired                    

MS2 spectrum. This approach removes the need to reduce spectra to curated fragment ions, carries an intrinsically low false discovery                    

rate, and allows us to distinguish precursors with highly similar library spectra such as those originating from single-nucleotide                  

polymorphisms or positional isomers in phosphoproteomics data. Moreover, the linear algebraic framework establishes a meaningful               
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notion of the quantification of a precursor within a single DIA MS2 spectrum independently from chromatographic information. Specter                  

is able to analyze DIA-type data from any instrument vendor and acquisition scheme (e.g. SWATH or MS ​E ​), and requires only three                     

inputs: an experimental data file in centroided mzML format, a spectral library in Bibliospec’s blib format ​11​, and a user-specified mass                    

accuracy parameter (either as an absolute ​m/z value or a parts-per-million tolerance). Retention time information in the library is                   

optional, and retention time normalization is not required, though it might improve the speed and quality of the results. Specter is built                      

on the open-source distributed computing framework Apache Spark and is available as an open-source software tool at                 

https://github.com/rpeckner-broad/Specter. 

 

2 Results 

2.1 Specter is based on an algebraic approach to deconvolving mixed spectra 

Specter is based on the hypothesis that every MS2 spectrum ​S ​acquired in the course of a DIA run is a ​linear combination ​of the spectra                          

of the precursors that are cofragmented to acquire it (disregarding the effects of biochemical noise, instrument error, and experimental                   

variability in a peptide’s fragmentation pattern). This is because the total number of ions with a particular ​m/z ​ratio in ​S ​is, in ideal                        

terms, simply the sum of the number of ions with that ​m ​/ ​z ​contributed by each of the constituent precursors of ​S ​. Furthermore, the                       

number of ions with a certain ​m ​/ ​z ​that are produced by any one of these cofragmented precursors is entirely determined by the                      

precursor’s fragmentation pattern (its pure spectrum) and abundance at the time ​S ​is acquired.  

The recognition that mixed mass spectra are linear combinations of pure ones has long been an established principle in gas                    

chromatography-mass spectrometry​12,13 and, more recently, metabolomics ​14,15​. However, so-called matrix methods for spectral            

deconvolution have for the most part not taken shape in usable software for GC-MS applications ​13​, and to the best of our knowledge                      

Specter is the first software tool to apply linear deconvolution to mass spectrometry proteomics data. 

The linear combination principle  is illustrated by Figure 1 and takes the form of the matrix equation 

S ​=​ ​ ​Lc ​+ ​N 

   =  ​c​
1​ × ​L ​1​ + ​c​2​ × ​L ​2​ + · · · + ​c​

m​ ​× ​L ​
m​ ​+ ​N​, (1) 

where ​S ​is a vector containing the intensities of the peaks of the DIA MS2 spectrum at their respective ​m ​/ ​z ​values; ​L ​is a matrix whose                          

columns are the library spectra ​L ​1​, ​L ​2​, . . . , ​L ​
m
​under consideration, normalized so that their total ion intensities are all equal to one; ​N ​is                            

a vector of noise whose components are unknown; and the vector ​c = ​( ​c ​1​, ​c ​2​, . . . , ​c ​
m​) ​, which Specter calculates by nonnegative linear                          

regression (Methods §4.4), describes the quantitative contribution of each library spectrum to the mixed spectrum ​S ​(see §2.1.1 below).                   

Equation (1) formalizes the fundamental difference between DIA and DDA, namely the cofragmentation of multiple precursors, by                 

treating precursor cofragmentation mathematically as the addition of library spectra (Fig. 1). The linear algebra framework allows us to                   
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calculate the quantitative contribution of each library precursor (constituting a column of the matrix ​L ​) to each MS2 spectrum in terms                     

of the coefficients ​c ​
i ​. These algebraic coefficients are calculated for each MS2 spectrum and then analyzed further to determine the final                     

identifications and quantifications of library members. 

 

 

Figure 1: ​Specter uses linear algebra to formally deconvolute MS2 spectra derived from cofragmented precursors​. (a) Mixed spectra                  

are linear combinations of pure spectra. Pure spectra of two hypothetical precursors are shown. Their cofragmentation results in                  
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addition of their pure spectra to obtain a mixed spectrum containing fragment ion intensities from both precursors. Fragments with                   

identical ​m ​/ ​z ​ratios in the two pure spectra, whose positions are indicated by the dashed lines, lead to peaks in the mixed spectrum                       

whose intensities are composed of contributions from both precursors. (b) In DDA, precursors are selected in decreasing order of                   

abundance and fragmented separately to form MS2 spectra that are typically composed of a single precursor. In DIA, groups of                    

precursors whose ​m ​/ ​z ​ratios fall into the same wide window are fragmented simultaneously to form mixed MS2 spectra. (c) Specter                    

finds the quantitative combination of library spectra that most closely matches the acquired DIA spectrum by linearly deconvolving the                   

mixed spectrum into pure components from the library. The coefficient of each library spectrum is the total ion intensity of the                     

corresponding precursor within the acquired spectrum. 

2.1.1 Specter coefficients are readily interpreted as total ion intensities 

Protein quantification is critical for the inference of regulatory function and discovery of disease biomarkers. The total ion intensity of a                     

precursor in an MS2 spectrum, meaning the sum of the absolute intensities of all fragment ions produced by that precursor in the                      

spectrum, is the basic unit of quantification in label-free DIA mass spectrometry. This is in contrast to the MS1-based intensity typically                     

employed in DDA, where most MS2 spectra are comprised of a single precursor (or, occasionally, a small number thereof). Total ion                     

intensity determined at the MS2 level is a more sensitive mode of quantification for DIA spectra comprised of multiple cofragmented                    

precursors, as some of these may be of too low an abundance to be reliably quantified at the MS1 stage. 

The series of Specter coefficients associated to a given library member has a natural interpretation as a calculated total ion                    

chromatogram (Methods §4.5). We measure the overall similarity of this calculated chromatogram to an ideal Gaussian-like elution                 

profile by scoring its height, variance, skewness and kurtosis (Methods §4.5). Scores of this type are commonly used for quality                    

assessment of total ion chromatograms ​10​, and we show below in §2.2.1 that they accurately differentiate the Specter chromatograms of                   

false positive decoy identifications from those of true positive precursors. 

 

2.2 Specter is as accurate as targeted manual analysis in terms of both identification and quantification 

We used Specter to analyze DIA data generated as part of a study to compare the quantitative performance of different DIA methods ​16​.                      

These data were obtained by spiking a commercially-available digest of five equimolar bovine proteins into an ​S. cerevisiae ​lysate digest                    

at ten levels ranging from 0 amol to 30 fmol per injection, and analyzing each spike-in sample in triplicate on a Q-Exactive Orbitrap HF                        

using DIA (Methods §4.8). Specter was applied to each resulting data file using a spectral library consisting of 887 yeast and 72 bovine                       

precursors that was acquired from a DDA run of the 30 fmol spike-in sample. Independently, a targeted manual analysis of the                     

unprocessed data for the bovine peptides was performed in Skyline using the same library. 

Specter accurately calculates the total ion intensities of each of the bovine peptides across the spike-in concentrations and                  

replicates (Fig. 2). The elution profiles calculated by Specter agree extremely well with expert annotation in terms of both total ion                     

intensities and the retention times at which they are identified (Figure 2(a) and Supplementary Fig. 1). Furthermore, the quantifications                   
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derived by calculating the area under the calculated Specter chromatogram for each precursor (Methods §4.6) exhibit the expected                  

linear increase with spike-in concentration (Figure 2(b)). They also agree with manual expert quantification, with the Pearson correlation                  

for all fifty-five peptides from all of the bovine proteins over all spike-ins over the limit of detection of 300 amol being 0.93 (Figure 2(c)).                         

While manual quantifications are determined from the extracted ion chromatograms of only pre-selected fragment ions, quantification                

by Specter incorporates every peak present in its library spectrum. Thus, some differences between the quantifications are expected.                  

Furthermore, by analyzing the same data with three different libraries, we found that the coefficients calculated by Specter are robust                    

with respect to spectral library noise and incompleteness (Supplementary Figure 1). 

 

Figure 2: ​Total ion chromatograms calculated by Specter are as accurate as those from manual targeted analysis of DIA data for both                      

identification and quantification​. Bovine proteins were spiked into yeast lysate over an increasing range of concentrations, and each                  

spike-in sample was analyzed in triplicate in DIA mode. (a) Total ion chromatograms determined by manual quantification in Skyline for                    

the peptide VLVLDTDYKK from the bovine protein β-lactoglobulin, mirrored by those calculated by Specter, for four spike-in levels.                  

Each colored line within each panel describes the total ion chromatogram for this precursor within a single replicate run. Note the                     

increasing ​y ​-axis scales. (b) Means of quantifications by Specter (area under the Specter chromatogram) over replicates for the five                   
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identified peptides from bovine β-lactoglobulin over the range of spike-in volumes, together with linear fits (dotted lines). Error bars                   

indicate standard error across replicates. (c) Quantifications by Specter vs. manual for all fifty-five identified peptides from all bovine                   

proteins in all replicates. 

 

 

2.2.1 The false discovery rate of Specter is intrinsically low 

We adopted the common target/decoy approach ​17,18 to assess the false discovery rate of Specter. We expect that, when decoys are                    

added to a spectral library, at most a very small percentage of precursors initially identified by Specter should be decoys even before                      

cutoffs on chromatographic scores are introduced. “Initially identified” means that the precursor’s sequence of Specter coefficients                

exhibits a peak consisting of at least five coefficients greater than 1 in consecutive MS2 spectra (Methods §4.5)  

Instead of using computationally generated decoy spectra, we augmented the focused spectral library with data from an ​E. coli                   

spectral library, although no E. coli proteins were present in the sample. We then examined the identifications and quantifications                   

calculated by Specter for ​E. coli peptides (composing 98% of the combined library). Our expectation was that this large, experimentally                    

acquired decoy library would pose a more substantial challenge than a smaller library consisting of artificial spectra, both due to its size                      

relative to the “on-target” library and because its members have general spectral features that may be lacking in synthetic decoys (such                     

as isotope distributions and fragment ion traces not of ​b ​or ​y ​type). Of the 959 yeast/bovine library precursors, 757 were identified by                       

Specter in all three replicate DIA runs of the 30 fmol spike-in sample (78% of the yeast/bovine library), while 381 of the 48,131 ​E. coli                         

precursors were identified in all three replicates (0.8% of the ​E. coli library), yielding a 1% false discovery rate (Methods §4.8.1). We                      

have also implemented a target-decoy strategy based on constructing synthetic spectra when Specter is applied in general (Methods                  

§4.7 and Supplementary Figure 3). 

A summary comparison of the identifications and quantifications calculated by Specter for the yeast and bovine library precursors                  

versus the ​E. coli decoys is shown in Figure 3. Once the Specter coefficients for all precursors and MS2 spectra have been calculated                       

according to Equation (1), a set of four scores for each precursor is calculated based on the shape and height of the total ion                        

chromatogram formed by the time series of that precursor’s Specter coefficients (§2.1.1, Methods §4.5, and Supplementary Note 1.3).                  

These are then combined into a single score by means of linear discriminant analysis ​19​. Based on these linear discriminant scores,                    

Specter clearly distinguishes the yeast/bovine library precursors from those in the ​E. coli library (Fig. 3(b),( c)). While 381 false positive ​E.                      

coli identifications have scores above the threshold of 2 for identification with a 1% FDR, they are lower overall than those of the 757                        

true positives (Fig. 3(c)), so that a more stringent FDR could be applied without a dramatic loss of true positive identifications.                     
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Figure 3: ​The false discovery rate of Specter is inherently below ​1%​. ​(a) Specter identifies a far higher proportion of true positive                      

yeast/bovine library members than false positive E. coli library members (79% vs 0.8%). (b) Distributions of linear discriminant scores                   

based on Specter coefficients of all precursors from both libraries. (c) Distributions of linear discriminant scores for only identified                   

precursors (linear discriminant score > 2). 

 

2.3 Specter is able to distinguish precursors with highly similar spectra 

Spectral libraries may often contain spectra that share a significant number of peaks. Biological processes, such as non-synonymous                  

single-nucleotide polymorphisms (SNPs) in coding regions or alternative localizations for post-translational modifications (PTMs), can              

result in peptides whose spectra contain a paucity of discriminating fragment ions. Ambiguous shared features are typically deemed                  

’interferences’ and excluded from consideration in analysis of DIA data. Such a strategy runs the risk of limiting biological insight, as                     

differential expression of certain SNPs or PTMs may lie at the heart of some disease phenotypes ​20​. We aimed to test Specter’s ability to                       

distinguish between extremely similar library spectra with large numbers of shared fragments and to compare this analysis to results                   

obtained using the normalized dot product, the tool used by most other targeted DIA analysis methods to quantify spectral similarity. 

We designed an experiment to perform DIA analysis of groups of synthetic peptides whose sequences differ only in single amino                    

acids or by the transposition of a pair of adjacent amino acids. We used three families of synthetic peptides, each consisting of                      

precursors whose spectra are highly similar and whose ​m ​/ ​z ​ratios (in charge state +2) fall into the same isolation windows for DIA (Fig. 4                        

and Supplementary Table B). We then prepared a series of three mixtures (Methods §4.9), in each of which a random set of members of                        

each family was chosen to be spiked into both an ​E. coli lysate digest and a neat background. Each spike-in was then acquired via DIA                         

mass spectrometry, for a total of twelve DIA runs (duplicate runs of both the E. coli ​and neat background samples for three distinct                       

spike-in mixtures). Analysis was performed by Specter using a spectral library consisting of 48,131 E. coli precursors together with the                    

spectra of the synthetic peptides (Methods §4.9).  
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Figure 4: ​Specter chromatograms of groups of synthetic peptides with highly similar spectra​. Members of each of three groups of highly                     

similar peptides (spectra shown on left) were chosen at random to be spiked into both an ​E. coli lysate and neat background in each of twelve                          

DIA runs. Chromatograms for each peptide calculated by Specter in each replicate run of each mixture are shown on right. Actual combinations                      

of peptides in runs are indicated on far right, with each color corresponding to a distinct member of each group (only data from runs in the ​E.                           

coli ​background are shown). (a) A single amino acid substitution. (b) Two unique substitutions at the N-terminal position, creating identical                    

y-ion series for all family members. (c) A larger family consisting of substitutions and transpositions at various positions in the sequence.                     

Comparison of chromatograms for each peptide in this family as calculated by Specter vs. normalized dot product for each mixture (only data                      

for one replicate per mixture is shown). 

 

Specter is able to distinguish between the synthetic precursors within each family despite their extremely similar library spectra, the                   

cofragmentation of several precursors within each group (indicated by overlapping chromatograms), and the presence of the complex ​E.                  

coli ​background (Fig. 4; results for the neat background are similar but not shown). Even in cases where coelution is not observed, the                       

fact that library retention time information was not used for the Specter analysis demonstrates its ability to separately identify                   

precursors based purely on features of MS2 spectra. In contrast, the normalized dot product is unable to disambiguate the members of                     

a group of six peptides with extremely similar spectra (Fig. 4c). Specter correctly identified all but one peptide (LPVLANVGQIR) in all                     

runs. 

We had the prior expectation that this unidentified peptide would be problematic. To construct the spectral library for this experiment,                    

data were acquired for each peptide in isolation and subjected to DDA-style database search with Spectrum Mill to assign                   

peptide-spectral matches. LPVLANVGQIR was the only one of the eleven synthetic peptides whose fragmentation failed to yield any                  

unique product ions of sufficient intensity for Spectrum Mill to unambiguously distinguish its spectrum from those of the other                   

members of its group. Instead, Spectrum Mill assigned the sequence LPVLA​VN​GQIR and/or LPVLAN​GV ​QIR to the spectrum derived from                  

LPVLANVGQIR in spite of repeated acquisition. It is very likely that the spurious peaks observed for the peptides LPVLA​VN​GQIR and                    

LPVLAN​GV ​QIR between 3300 and 3400 seconds are due to LPVLANVGQIR’s ambiguous fragmentation profile (Fig. 4(c)).  

 

2.4 Distinguishing positional isomers in phosphoproteomics data from biomedical samples 

To illustrate Specter’s ability to distinguish similar precursors in a real-world application, we found examples of positional isomers (peptides                   

with identical amino acid sequences but with post-translational modifications in different positions) with overlapping elution profiles in DIA                  

data that are separately identified and quantified by Specter. This type of analysis is challenging for DDA approaches depending on where                     

fragmentation spectra are sampled during elution, and it has only recently been explored for DIA data​21​. We analyzed 84 DIA runs of a set of                         

phosphopeptide-enriched samples obtained from PC3 prostate cancer cells subjected to a panel of 28 kinase pathway inhibitors in biological                   

triplicate on a Thermo Q-Exactive Plus HF. Analysis was performed using a 12,546-member phosphopeptide library constructed from ten DDA                   
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runs of the phosphoproteome of PC3 cells subjected to a subset of the kinase inhibitor perturbations. This library contained 176 sets of                      

unambiguous positional isomers, as determined by Spectrum Mill’s variable modification location score (Methods §4.12). 

Specter identified both of the positional isomers GYYS[+80]PYSVSGSGSTAGSR (S4613, in reference the position of the phosphorylated                

serine on the underlying protein) and GYYSPYSVS[+80]GSGSTAGSR (S4618) in 75 of the 84 runs, and for most of these cases the isomers’ elution                       

profiles overlapped in retention time (Figure 5(a)). ​We used Specter to disambiguate and quantify the ratio of ion currents from the two                      

positional isomers, which appear to follow disparate patterns of phosphorylation across the perturbations (Figure 5(c)). 

 

 

Figure 5: ​Specter distinguishes close positional isomers with overlapping chromatographic profiles. ​(a) ​Top, first panel: ​Raw extracted ion                  

chromatograms for the unique fragments from each of the positional isomers in a DIA run of PC3 cells treated with TG101348. ​Top, second                       

panel: ​Extracted ion chromatograms for the shared fragments from the isomers. ​Bottom: ​Specter chromatograms for each of the positional                   

isomers. (b) The spectra of the positional isomers. (c) Mean ratios across replicates of the quantifications of the isomers by Specter                     

(S4613/S4618) across twenty-eight chemical perturbations. Error bars indicate standard error across replicates.  
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The peptide ​GYYSPYSVSGSGSTAGSR is a constituent of the cytoskeletal cross-linking protein plectin, located in the last of six highly                   

homologous repeat domains comprising plectin’s C-terminus ​. The sequence SPYS within this peptide is a known binding motif for CDK1, and it                     

has been shown by ​site-directed mutagenesis that CDK1 phosphorylates plectin somewhere in repeat domain 6​22​. This phosphorylation was                  

believed to occur at threonine 4,539 based on analysis of CDK1 binding motifs. However, the decreased ratio of S4613/S4618 after                    

treatment with the CDK inhibitor dinaciclib indicates that S4613 (the first serine of the SPYS motif) may be the actual target of                      

phosphorylation by CDK1, or may be cophosphorylated with T4539 given the proximity of these residues in repeat 6.  

At the same time, plectin is also known to be a substrate of ​MAP kinase-interacting serine/threonine-protein kinase 2 ​(MNK2),                   

which targets a site in repeat 6 distinct from the target site of CDK1​22,23​. Several of the perturbations we analyzed (selumetinib and                      

PD0325901) target the MEK/ERK pathway, part of the MAPK signaling cascade that could regulate the activity of MNK2. Supporting this,                    

ERK inhibitors have been shown to prevent plectin phosphorylation by MNK2​23​. In contrast, the mean S4613/S4618 ratio is lower for the                     

p38 inhibitor losmapimod than for either MEK inhibitor, and p38 inhibitors do not prevent MNK2 phosphorylation of plectin ​23​. Taken                   

together, these considerations suggest that serine 4,613 is phosphorylated by CDK1 and not by MNK2, with the converse being true of                     

serine 4,618.  

2.5 Label-free quantification by DIA with Specter is more reproducible and exhibits a broader dynamic range than DDA 

A central pair of premises underlying DIA are that it allows for the detection of analytes with low relative abundance and does not suffer from                         

the inconsistencies of stochastic precursor selection ​24​. To test these principles with Specter, an unfractionated ​E. coli ​lysate was measured with                    

both DDA and DIA strategies, each performed back-to-back in triplicate on the same instrument (Methods §4.9). The DIA runs were analyzed by                      

Specter using a spectral library containing 48,131 precursors obtained from DDA runs of ten fractions of the lysate (the same library as used in                        

§2.2 and §2.3), while analysis of the DDA runs was performed using MaxQuant (Methods §4.11). The MaxQuant “match between runs” option                     

was disabled in order to examine replicate reproducibility directly without ​a posteriori ​ resolution of missing values.  

We found that DIA with analysis by Specter is more reproducible than DDA, due to large numbers of precursors which are identified                      

in one replicate DDA run but not another, or which exhibit high variability in their quantifications between runs (Supplementary Figure 4(a)). In                      

contrast, identification and quantification in DIA by Specter are highly reproducible, while the total numbers of peptide and protein                   

identifications (12,204 and 1,190, respectively) are comparable to those obtained with DDA (14,407 and 1,350) in the common precursor range                    

of 389-1015 m/z (we only consider a protein to be identified if at least two of its unique peptides are identified). These observations are                        

quantified by Pearson correlation coefficients (Supp. Fig. 4(b); average ​r​2 ​across DDA replicates = 0.72, average ​r​2 ​across DIA replicates = 0.98).                      

The broader dynamic range of DIA is quantified by the distributions of relative precursor quantifications. The dynamic range of DDA spans                     

roughly four orders of magnitude (~1.6x10 ​6 ​ - 2.5x10​10​), while that of DIA with Specter spans more than five (~3.5x10​5​ - 7.4x10​10​). 
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2.6 Comparison to other DIA analysis methods with LFQBench 

We used Specter to analyze a publicly available dataset generated for LFQBench ​9​, an R package that enables the comparison of label-free                     

quantification results of the five most commonly used DIA analysis tools: OpenSWATH ​3​, Skyline​25​, Spectronaut​7​, DIA-Umpire​4​, and PeakView                 

(aka SWATH 2.0). These data were obtained by mixing together the proteomes of three species (human, yeast, and ​E. coli ​) in two different                       

samples, A and B, at defined ratios and analyzing the mixtures by SWATH ​26 on an AB SCIEX TripleTOF 6600 with 64 variable-width windows.                       

Successful analysis should recapitulate, on average across all identified peptides, the known ratios at which the proteomes were combined                   

(namely 2:1 for yeast, 1:1 for human, and 1:4 for ​E. coli ​). 

We used a spectral library provided by the study’s authors (Methods §4.12) in order to make the most direct comparison possible to the                       

reported results. Specter identified 40,343 of the 44,294 library peptides, corresponding to 4,733 proteins (where we only consider a protein to                     

be identified if at least two of its unique peptides are identified in the same sample). The ranges of the number of identifications by the other                          

library-based tools were 35,517 – 42,439 peptides and 4,518– 4,692 proteins. 677 library peptides were identified by Specter only, the most of                      

the five tools (Figure 6(a)) . Figure 6 (b) displays the log-ratios log​2​(A/B) of the most precise peptide quantifications between the two samples                       

(coefficient of variation across replicates < 10%) as reported by Specter and the five other tools as functions of the peptides’ intensities in                       

sample B. The horizontal dotted lines indicate the log-transformed ratios at which the proteomes were mixed in the two samples. We                     

calculated the accuracy of quantification by Specter following the LFQ Bench study methods and compared to the other tools (Supplementary                    

Table C) ​9​. Specter is more accurate than all five of the other tools in quantifying the ​E. coli ​peptides, which have the most extreme expected                         

ratio (1st, 2nd and 3rd tertile mean accuracies of the five non-Specter tools = 0.635, 0.38, and 0.182 vs 0.16, 0.16, and 0.18 for Specter,                         

respectively).  

The maximum similarities (normalized dot products) between the unique Specter identifications and all other library spectra are, in a                   

statistically significant fashion, higher overall than these values for the unique Spectronaut identifications (Supplementary Figure 5), with a                  

mean of 0.74 as opposed to 0.64 for Spectronaut ( ​p ​-value of one-sided Kolmogorov-Smirnov test = 5.24 x 10​−16​). This shows that the 677                       

unique peptide identifications from Specter complement the identifications from the other tools by including precursors that other methods                  

might deliberately exclude or inaccurately identify due to their similarity to other analytes. 

3 Discussion 

The mixed mass spectra produced by DIA are, in ideal terms, linear combinations of pure spectra. While the constituents of such a                      

combination and their abundances are difficult to measure precisely due to shared fragments, biochemical noise, instrument inaccuracy, and                  

inconsistencies in a peptide’s fragmentation profile across experiments, we have shown that a linear model enables a principled and effective                    

approach to spectral deconvolution. We have shown that Specter integrates the identification of precursors with their quantification, since                  

these are achieved simultaneously through Equation (1) - only precursors with nonzero coefficients can be considered identified, and these                   

coefficients at the same time quantify the intensity of each precursor. This allows for the calculation ​in silico ​of total ion chromatograms for all                        
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library precursors without recourse to individual fragment ion traces, which is an important feature in cases where the user’s spectral library                     

lacks fragment ion annotations.  

 

Figure 6: ​Analysis of a public dataset by Specter and five other software tools. ​(a) Overlap in peptide and protein identifications from Specter                       

and the four library-based tools. At least two peptides associated to a given protein must be identified in order to consider the protein                       

identified. (b) Log-ratios of high-precision peptide quantifications (CV across replicates < 10%) for the two LFQ Bench samples from all six tools,                      

plotted against intensity in sample B. The expected logarithms of these ratios are indicated by the horizontal dotted lines. Specter                    

quantifications are shown as is, while those for all other tools were scaled to a common range by the authors of the LFQ Bench study. 

 

Specter exhibits a novel ability to separately identify and quantify precursors with highly similar library spectra, even when these                   

precursors are coisolated and cofragmented. As far as we are aware, this type of analysis has not previously been directly shown to be possible                        

for DIA data, despite its potential importance from the perspective of biomedical discovery. In fact, several existing methods include rules to                     

explicitly disallow such cases from consideration by either discarding shared fragments or excluding all but one member of a given group of                      

precursors with similar spectra​3,5,6​. 
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In terms of practical advantages for working biochemists, our analysis of differential regulation of positional phospho-isomers across                 

a series of perturbations of prostate cancer cells by kinase pathway inhibitors illustrates the kinds of biological insights that may be gained as a                        

result of Specter’s ability to distinguish between similar library analytes while maintaining a low false discovery rate. Furthermore, Specter’s                   

robustness against incompleteness and noise within a spectral library reduces the need for fractionation and time-consuming curation of                  

fragment ions. Given Specter’s use of all features in precursor fragmentation patterns, in general the ideal spectral library for a given DIA                      

experiment should be generated from DDA runs of the samples under consideration using the same instrument.  

In the future, we aim to increase Specter’s scope to allow for the characterization of non-library analytes based on correlations                    

between fragment ion elution profiles, in a spirit similar to DIA Umpire​4​. This will expand on the linear model of Equation (1) to explicitly                        

account for the linear contributions of unknown analytes to sequential MS2 spectra while simultaneously identifying and quantifying known                  

library members. Specter is compatible with every instrument type and acquisition scheme, and is available as an open-source software tool                    

( ​https://github.com/rpeckner-broad/Specter​). We also intend to introduce an online interface to which researchers may submit their data for                 

analysis by Specter for users without access to a computing cluster or Apache Spark. 

Specter helps to fulfill DIA’s promise to provide numbers of peptide and protein identifications comparable to DDA while exhibiting                   

greater reproducibility across runs and a broader dynamic range. We expect that its high sensitivity and specificity will accelerate the pace of                      

research both into DIA methods generally and into novel applications enabled by the unbiased, reproducible observation and differential                  

quantification of proteins in a broad spectrum of biological contexts.  

4 Materials and methods 

All ​mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE ​27 partner repository                 

with the dataset identifier PXD006722, and can be accessed using the credentials 

 ​Username: ​reviewer67898@ebi.ac.uk 

 ​Password: ​IJfZeE4w 

4.1 Mass spectrometry data processing 

All raw mass spectrometry data files (in either Thermo RAW or AB Sciex WIFF format) were converted to mzML format using ProteoWizard                      

MSConvert version 3.0.6141 with peak picking (centroiding). Spectral libraries are accepted in Skyline’s blib format ​25​, which can be constructed                   

from any of the common MS search results file formats​28​. 

4.2 Python environment and parallelization over MS2 spectra with Apache Spark 

Specter is written in Python 2 and runs on Apache Spark, a highly efficient cluster computing framework that enables the parallelization of                      

Specter’s core algorithm over all MS2 spectra acquired in the course of a DIA run. All analyses in this paper were performed using Python 2.7.11                         
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and Spark 1.6.0 on a computing cluster with 48 identical cores (Intel Xeon CPU E5-2697 v2 @ 2.70GHz) and 250 GB RAM. mzML files are                         

exposed to Python using the run.Reader() function from the Python package pymzml v. 0.7.7. Python v. >= 2.7.9 and v < 3 is required to                         

guarantee compatibility with Spark and the packages used by Specter. A Python list is constructed, each of whose elements is a two-column                      

matrix containing the ​m ​/ ​z ​coordinates and intensities of the peaks of an acquired MS2 spectrum, and this is converted to a Spark resilient                       

distributed dataset (RDD) via the parallelize() method. The Spark mapPartitions() method is then applied to this RDD to distribute the analysis                     

of the individual MS2 spectra over the computing cluster. The results are returned to the driver node as a list via the collect() method, and                         

subsequently written to a csv file containing the Specter coefficients of each precursor within each MS2 spectrum for downstream processing.                    

A typical DIA experiment file (~3-5 GB) can be analyzed with a spectral library of ~20,000 precursors in under thirty minutes by this workflow. 

 

4.3 Constructing the reference spectra library matrix 

To construct the library spectra matrix ​L ​in Equation (1), an instrument mass accuracy parameter δ is required. For the data analyzed in this                        

paper, all of which was acquired on high resolution instruments (Thermo Q exactive Orbitrap or AB Sciex TripleTOF 6600), δ was set to 10                        

parts per million (ppm) for Orbitrap data and 30 ppm for TripleTOF data. Let ​S ​be an acquired MS2 spectrum from the DIA run. ​S ​is analyzed                           

using only a subset of the provided spectral library, since there are physical constraints on the possible presence of a given library member in                        

S ​.The set of library members used to analyze ​S ​is determined by the following conditions (where ​L ​denotes a candidate library precursor): 

1. The ​m ​/ ​z ​ratio of ​L ​must lie inside the precursor isolation window from which ​S ​was acquired. 

2. At least five of the ​m ​/ ​z ​ratios of the peaks of the spectrum of ​L ​must appear as ​m ​/ ​z ​ratios of peaks ​S ​. 

3. If the library includes retention time information, and the library retention times are directly comparable to those in the DIA experiment                     

(as is the case if e.g. the library was generated from DDA runs of the same samples on the same instrument, or both the library and                          

acquired spectra have had their retention times normalized), then the library retention time for ​L ​must be no more than five minutes                      

greater or less than the time of the scan (this time window can be omitted or adjusted by the user). 

While retention time information in the library is optional, it both speeds the analysis by limiting the set of precursors considered for each scan                        

and improves the quality of the results, and so is highly encouraged to be included in cases that the library and DIA spectra are gathered in                          

comparable timeframes. 

For each MS2 scan ​S ​, the ​m ​/ ​z ​coordinates of the peaks of the library spectra are then binned with the ​m ​/ ​z ​coordinates of the peaks of ​S ​to                            

obtain a vector of intensities whose length equals the number of peaks of ​S ​(Supplementary Note 1.1)​. ​Each library spectrum is normalized so                       

that its total ion intensity is one, and these normalized spectra are arranged as the columns of a matrix ​L whose number of rows equals the                          

length of ​S.   
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4.4 Finding the optimal combination 

Let ​S ​be an MS2 scan from the DIA experiment, represented as a vector of ​n ​intensity values. In order to account for peaks of library spectra not                            

matching peaks in ​S ​, as described above, we append a zero to the end of this vector so that it has length ​n+1. This extra zero serves to penalize                             

the linear contributions of library spectra that have peaks with significant intensities that aren’t present in ​S. Let ​L ​be the corresponding matrix                   
     

of normalized reference spectra constructed above (see also Supplementary Note 1.1). Our aim, as stated in Equation (1), is to find the                      

nonnegative linear combination of the columns of ​L ​(the normalized library spectra) that best explains ​S ​, i.e. is closest to it in terms of Euclidean                         

distance. Some peaks of ​S ​may not be close to any of the peaks of the reference spectra, as determined using the mass accuracy δ, and these                           

may be discarded from the analysis as they don’t affect the determination of the optimal linear combination (Supplementary Note 1.2), i.e. we                      

project the spectrum ​S ​to the linear span of the library spectra prior to analysis. 

With these unnecessary peaks removed, the optimal linear combination of the reference spectra is determined as the solution of the                    

corresponding nonnegative least squares problem, which finds the vector ​c ​of length ​m ​(where ​m ​is the number of spectral library members),                      

all of whose entries are nonnegative, such that the matrix product of ​L ​with ​c ​is as close as possible to ​S in the Euclidean norm among all such                             

nonnegative vectors (Supplementary Note 1.2). 

4.5 Peptide identification from Specter coefficients 

From the mathematical formulation above, we see that for every MS2           spectrum ​S ​acquired in the DIA run, Specter produces a          

vector ​c ​of nonnegative coefficients, each of which is associated to a            particular precursor in the spectral library. Each coefficient        

associated by Specter to a library member in a given MS2 spectrum may be directly interpreted as the sum of the intensities of the fragments                         

produced by that member’s precursor within that spectrum. This is a straightforward consequence of the fact that the library spectra are                     

normalized to have total ion intensity one (Methods §4.3): when such a normalized spectrum ​L ​is multiplied by a coefficient ​c ​(meaning that the                        

intensities of all of its peaks are multiplied by this constant), it’s clear that the total ion intensity of the resulting scaled spectrum ​c x L ​is nothing                            

other than ​c ​. Since the aim of Specter is to represent every acquired DIA MS2 spectrum ​S ​as a linear combination (Equation 1) 

S ​=​ ​c​
1​ × ​L ​1​ + ​c​2​ × ​L ​2​ + · · · + ​c​

m​ ​× ​L ​
m​ ​+ ​N​, 

it follows that the total ion intensity of the ​i ​-th library spectrum ​L ​
i
​in ​S ​is simply the Specter coefficient ​c ​

i ​. Indeed, the multiplication of a                          

library spectrum ​L ​by a coefficient ​c ​is the mathematical analogue of the physical fragmentation of ​c ​molecules of the precursor whose                      

library spectrum is ​L ​.  

Considering all MS2 spectra sequentially, this gives us an ​m x r ​matrix of coefficients, where ​m ​is the number of members of the                        

spectral library and ​r ​is the number of MS2 scans. Each row of this matrix is then a time series describing the "elution profile" of Specter                          

coefficients of a library precursor across the course of the experiment (so that most entries of each row are zero). We consider a library                        

precursor to be identified by Specter if this elution profile contains a peak (local maximum) of at least five consecutive coefficients which are                       

larger than 1 (where coefficients are only considered consecutive if they are calculated relative to sequential MS2 spectra for which the                     

precursor satisfies the conditions of §4.3). This is a physical constraint that recognizes that total ion intensities smaller than 1 can’t possibly                      
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correspond to meaningful signal. 

As it is possible that peaks such as these may arise by chance, giving rise to false identifications, we employ several chromatographic peak                       

scores in order to rank the quality of our identifications and enable a target-decoy approach for FDR estimation ​10​. First, define a peak                      

associated to an identified precursor to be a local maximum within a consecutive series of at least five Specter coefficients larger than one;                       

then define the largest peak to be the peak with the highest summit among all peaks. The four scores associated to the precursor are then 1)                          

the Specter coefficient at the apex of the largest peak, 2) the variance of the coefficients within the largest peak, 3) the skewness of these                         

coefficients, and 4) the kurtosis of these coefficients. Equations for these scores are given in Supplementary Note 1.3. Taken as a set, these four                        

scores measure the extent to which the largest peak within the precursor’s Specter chromatogram resembles an ideal Gaussian elution                   

profile​10​. Rather than enforcing a strict match to a Gaussian, however, we use these scores to develop statistics for confident identifications                     

based on the presumably poor peak shape of false positives (§2.2.1). These four scores are combined into a single score via linear discriminant                       

analysis in order to establish cutoffs to separate target and decoy spectra (see §2.2.1 and §4.7 below). 

 

4.6 Peptide quantification from Specter coefficients 

Since the output of Specter is affected by experimental noise and the presence of precursors for which library spectra may not exist, filtering of                        

the Specter elution profile of each precursor is essential to obtain accurate quantifications. In order to avoid bias arising from parametric filters,                      

we apply a Kolmogorov-Zurbenko filter with three iterations and windows of width three to smooth the Specter elution profile; this is                     

essentially an iterated moving window average​29​. The quantification of the precursor is then calculated as the area under the largest peak of                      

this filtered profile. 

4.7 Decoy spectra generation 

Our approach to the generation of decoy spectra is developed in the spirit of strategies that generate decoy spectra directly from real library                       

spectra, rather than beginning with random transformations of the sequences of library peptides and subsequently generating decoy spectra                  

based on theoretical fragmentation. The set of decoy spectra used to analyze a given ​m ​/ ​z ​window is constructed by first choosing a random                       

subset of all library precursors whose ​m ​/ ​z ​ratios do not fall into this window, where this subset is chosen to have the same size as the set of                            

true library spectra for this window. We then construct the decoy spectra for this window by shifting the ​m ​/ ​z ​coordinates of all peaks of these                         

non-window spectra by 20 ​m ​/ ​z ​. This method combines the main approaches of Lam et al. ​17 and Cheng et al. ​17,18 In order to avoid distorting the                         

quantifications of non-decoy library members through the influence of decoy spectra in Equation (1), we take a two-pass approach: first, a                     

hybrid target and decoy library is used in order to determine linear discriminant score thresholds (based on the set of scores from §4.5) to                        

achieve a false discovery rate below 1%. Specter is then rerun with the target library only, and only identified library precursors whose linear                       

discriminant scores lie above the determined threshold are retained. 
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4.8  Bovine spike-in experiment 

800 ul of soluble ​S. cerevisiae ​proteins were determined by BCA to be at a concentration of 4 ug/ul. This was placed into a vial of PPS                           

(Expedeon Inc.) to make it about 0.1% PPS and 45 ul of 1 M ABC added to give it pH 8. 20 ul of 500 mM TCEP was added and reduction                               

occurred at 37℃ 1200 rpm for an hour. The sample was cooled to room temp and 22 ul 500 mM iodoacetamide added for 30 minutes in the                           

dark. The reduced and alkylated protein solution was added sequentially to three vials (each containing 20 ug Promega trypsin) for a total of                       

60 ug trypsin. This had argon blown over the top to displace oxygen prior to 37℃ 1200 rpm overnight. 60 ul of 10% TFA was used to acidify to                             

pH 2 the next day prior to passing it sequentially over three 30 mg Oasis MCX cartridges ( ​Waters Corporation) for cleaning ​by dual mode solid                         

phase extraction. Prior to the spike-in experiments, the complex matrix was run four times to condition the liquid chromatography column.  

An equimolar six protein digest (Bruker-Michrom) was spiked into the ​S. cerevisiae ​lysate digest over four orders of magnitude                   

(0amol, 10amol, 30amol, 100amol, 300amol, 1fmol, 3fmol, 10fmol, 30fmol). DIA data were acquired on a Q-Exactive HF (Thermo Fisher                   

Scientific). The maximum fill time for an isolation window was set to 60 milliseconds. MS1 and MS2 scans were acquired with resolving power                       

30,000 and 60,000 respectively. The AGC target for MS1 scans was set to 1e6 ions and 1e5 ions per isolation window for MS1 and MS2 scans                          

respectively. A total of 20 x 20​m ​/ ​z ​non-overlapping windows were used to traverse the range from 500​−​900 ​m ​/ ​z ​. 1.2 µg of sample was used                        

per injection. A 75 µm inner diameter fused silica column was packed with 40 cm of reversed-phase C12 Jupiter resin (Phenomenex) and used                       

to separate the sample across a 90-minute linear acetonitrile gradient from 0 to 25% Buffer B. Chromatography was performed using an                     

EASY-nLC II (Thermo Fisher Scientific) system set to a flow rate of 250 nL/min. Buffer A was 2% ACN, 0.1% formic acid, and 97.9% water. Buffer                          

B was 99.9% ACN and 0.1% formic acid. 

A spectral library was generated by first searching a DDA run (with the same MS1 parameters as above) of the 30 fmol spike-in sample with                         

Spectrum Mill v. B.06.01.201 using a FASTA containing the six bovine protein sequences as well as the UniProt ​S. cerevisae ​S288c protein                      

sequences. Results were auto-validated to a FDR of 1%. This yielded a PepXML search results file, which was loaded into Skyline v. 3.6.0.10162                       

in order to generate a spectral library of 959 yeast and bovine precursors in blib format​30​. 

4.8.1 False discovery rate estimation 

Of the 959 yeast/bovine library precursors, 757 were identified by Specter in all three replicate DIA runs (78% of the yeast/bovine library), 

while 381 E. coli peptides were identified in all three replicates (0.8% of the E. coli library). Thus, if a decoy library of the same size as the 

yeast/bovine library were constructed by choosing 959 of the 48,131 E. coli library spectra uniformly at random, the estimated false discovery 

rate would be 

381/48131) 59/(757 (381/48131) 59) .01.( * 9 +  * 9 ≈ 0  

However, when we attempted to actually choose random subsets of 959 precursors from the E. coli library to serve as decoy libraries, we 

found after twenty such random choices that Specter never assigned a nonzero coefficient to any E. Coli precursor from these smaller subsets 

(note moreover that a single non-zero coefficient would be inadequate for identification, as it is the time series of such coefficients over the 

entire DIA run that is assessed to identify precursors, §4.5). This suggests that the 381 false positive E. coli peptides discussed above are 
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symptomatic of the size of the E. coli library, in contrast to the much smaller yeast/bovine library, as this vastly increases the number of 

degrees of freedom for constructing linear combinations of precursors that most closely match the acquired data. 

4.9 Synthetic peptide experiment 

Synthetic peptides were obtained through New England Peptide Inc. (Gardner, MA), pre-dissolved in 30% acetonitrile (ACN), 0.1% formic acid                   

(FA) and diluted to 100 µM in the same solvent. 

To obtain library spectra for the synthetic peptides, each peptide was injected individually at 50 fmol, 200 fmol and 1 pmol on column with                        

wash runs in between. On-line liquid chromatography was performed with an EASY nano-LC 1000 UHPLC (Thermo). Separation was performed                   

on a 20 cm, 75 µm i.d. column, packed in-house with 1.9 micron C18-AQ beads (Dr. Maisch) with a gradient from 2% ACN to 55% ACN over a 20                             

minute gradient. The data were acquired using a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific, Waltham, MA) in                  

data-dependent top 12 mode using a resolution of 70,000 for MS1 and 17,500 for the MS2 scans. Dynamic exclusion was disabled to obtain                       

MS2 multiple times for each precursor across the peak. The resulting raw files were searched using Spectrum Mill v. B.06.01.201 with a FASTA                       

containing only the sequences of the synthetic peptides and common contaminants. The best-scoring spectrum for each precursor was then                   

chosen to serve as the precursor’s library spectrum. 

DH5α ​Escherichia coli were grown in Luria broth at 37 °C overnight. Cells were pelleted by centrifugation, washed once with cold                     

phosphate buffered saline, flash frozen in liquid nitrogen and stored at -80 °C until processing. To generate ​E. coli lysate digest, the cell pellet                        

was thawed on ice. Once thawed, lysozyme (Sigma) was added to the the pellet and placed on ice with periodic vortexing until viscous. The cells                         

were resuspened in 8 M urea, 50 mM ammonium bicarbonate (ABC) plus protease inhibitors (Roche) and the solution was sonicated with a                      

probe sonicator for 2 min, 3 s on, 2 off, until no longer viscous. After centrifugation at 15,000 x ​g for 30 min at 4 °C, protein concentration was                             

measured by Bradford assay (BioRad). Disulfide bridges were reduced with 10 mM TCEP (tris(2-carboxyethyl)phosphine, Thermo) and alkylated                 

with 10 mM iodoacetamide (Thermo) for 30 min at room temperature in the dark. The lysate was diluted to 1.5 M urea with 50 mM ABC and                           

digested overnight with a trypsin-to-substrate ratio of 1:100. The digest was desalted using C18 Sep-Pak (Waters). After vacuum centrifugation                   

dried peptides were resuspended to 1 mg/mL in 30% ACN/0.1% FA and stored at -80 °C. 

To generate library spectra of the ​E. coli digest, peptides were fractionated using a Stage tip ​31 packed with sulphonated poly                    

(styrenedivinylbenzene) resin (SDB-RPS, EMPORE). 100 µg of digest was fractionated starting from 20 mM ammonium hydroxide, pH 10,                  

increasing the percentage of ACN at steps of 5, 10, 12.5, 15, 17.5 20, 25, 30, 35 and 50%. Assuming equal mass distribution, 1 µg of fractionated                           

digest was analysed by LC-MS2. Data were acquired on the same instruments as above with changes to the LC gradient and the data                       

acquisition. Peptides were separated on-line with an 85 min gradient from 6% 0.1% FA (buffer A) to 30% 0.1% FA, 90% ACN (buffer B), followed                         

by an increase to 60% buffer B over nine minutes. The mass spectrometer was set to acquire data at a resolution of 70,000 and an AGC setting                           

of 3e6 for MS1. MS2 resolution was 17.5K, AGC 5e4, and maximum inject time of 100 ms. The top 12 ions identified within the precursor scan                          

of 300-2000 ​m ​/ ​z ​of at least doubly charged were selected for HCD at a normalized collision energy (NCE) of 25. Raw files were searched by                         

SpectrumMill v. B.06.01.201 using the NCBI E. coli K12 DH10B FASTA sequence database (a FASTA for DH5α was unavailable) and                    

auto-validated to a false discovery rate of 1%. The results were exported as a PepXML summary file, which was imported into Skyline v.                       
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3.6.0.10162 to generate a spectral library consisting of 48,131 precursors. This spectral library was exported in blib format ​25,28 for later use by                      

Specter. 

For spike-in experiments, synthetic peptide mixtures were constructed according to Table A below. 20 injections worth of peptide mixtures                   

for each of the zero, single, or double drop out samples were created. The pools were then equally divided either as synthetic peptides alone,                        

or into the same ​E. coli digest described above. In either case, roughly equal amounts of synthetic peptide material was loaded on column,                       

regardless of whether or not ​E coli background was present. For runs containing lysate background approximately 1.5 µg of E. coli digest was                       

loaded on column. Data-dependent acquisition was performed on a Q-Exactive Plus HF mass spectrometer, where MS1 scans were measured at                    

a resolution of 60,000 and an AGC setting of 3e6 and maximum injection time of 20 ms. MS2 scans on the top 15 peaks doubly charged and                           

above were acquired at a resolution of 15,000, AGC target of 5e4 and maximum inject time of 50 ms. Isolation widths were set to 1.7 Th with a                            

0.3 Th offset. NCE was set to 28 and dynamic exclusion was set to 15 s. 

Data-independent acquisition (DIA) data were acquired with MS1 parameters as above (range: 300-1200 ​m ​/ ​z ​) and then using 22 Th wide                    

windows for MS2 with a default charge state of 4 at a resolution of 30,000. AGC target was set to 1e6, maximum inject time was set to 50 ms,                             

and a loop count of 27. NCE was set to 27. A total of 56 x 22 Th DIA windows were used to traverse ​m ​/ ​z ​range from 400-1000, wherein the                              

range is actually traversed twice but the windows are offset by 50%. The window centers can be found in Table B (SI). LC and nanospray                         

parameters were identical to those described in Abelin et. al​32​. 

 

Peptide Mixture 1 Mixture 2 Mixture 3 

GFSASSAR • • • 

GFSANSAR  • • 

IVQDYLEK   • 

TVQDYLEK  • • 

AVQDYLEK • • • 

LPLVLANGQIR  • • 

LPVVLANGQIR   • 

LPVLVANGQIR • • • 

LPVLAVNGQIR • • • 

LPVLANVGQIR  • • 

LPVLANGVQIR   • 
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Table A: ​Design for the experiment of §2.3​. A dot indicates that the peptide was spiked into the indicated mixture. 

4.10 Positional isomers in drug-perturbed cellular systems 

Sample preparation and experimental procedures were identical to those described in Abelin et. al. ​32​, and DIA runs were performed                   

with the same parameters used in the synthetic peptide experiment described above in §4.9. Drug treatments and concentrations are                   

shown in Table B below. Ten randomly chosen phosphoenriched samples of PC3 cells treated with the perturbations highlighted in red                    

in Table B were measured by DDA (acquired with the same settings as the DDA runs described in §4.9). Results were searched using                       

Spectrum Mill as above with a FASTA containing the 2014 UniProt Human proteome and 150 common contaminants. Phosphorylation                  

of serine, threonine and tyrosine were set as variable modifications. The resulting pepXML files were imported into Skyline to construct                    

a redundant blib containing multiple PSMs for each precursor. Search results were further filtered by variable modification location                  

score so that only spectra for which phosphosites could be unambiguously localized were retained, and the highest scoring spectra for                    

each precursor were extracted from the redundant blib to obtain a nonredundant spectral library consisting of only confidently                  

localized phosphopeptides. Specter was applied to the 84 DIA runs using this spectral library and a 10 p.p.m. mas accuracy. 

 

 

Compound Number Compound Concentration (uM) 

1 DMSO 0.1% 

2 Selumetinib 5.5 

3 PD0325901 4 

4 Everolimus 0.1 

5 vemurafenib 10 

6 TG101348 8 

7 Tofacitinib 0.4 

8 Pravastatin 0.75 

9 PD-0332991 0.5 

10 Dinaciclib 4.5 

11 RO4929097 3.5 

12 BMS-906024 0.5 

13 Verteporfin 5 

14 vorinostat 1 

15 SCH 900776 5.5 

16 VX-970 0.1 

17 losmapimod 0.25 

18 PRI-724 1.7 

19 dactolisib 1 

20 afuresertib 2.5 

21 BYL719 0.25 
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22 Pazopanib 40 

23 Nilotinib 3 

24 lenalidomide 1 

25 AR A014418 3 

26 IPI145 0.5 

27 staurosporine 1 

28 PS-1145 10 
Table B: ​Drug treatments and concentrations for phosphoenriched PC3 samples ​. 

4.11 E. coli​ DDA analysis with MaxQuant 

RAW files obtained from triplicate DDA runs of the unfractionated ​E. coli digest described above were imported into MaxQuant v. 1.5.5.1.                     

These were searched using the same FASTA as used by Spectrum Mill above with all default settings for Orbitrap instruments ( ​Match between                      

runs ​was disabled in order to assess replicate reproducibility). Results were analyzed using the evidence.txt output table. Only precursors with                    

posterior error probability < 0.01 were retained, and the top scoring MS2 spectrum for each of these precursors within each replicate was used                       

to determine precursor quantifications within each run. Protein identifications (based on all three replicates) were determined from the                  

proteinGroups.txt output table. 

4.12 LFQ Bench dataset 

All data were downloaded from the ProteomeXchange (data set identifier PXD002952). Raw WIFF files from the HYE124 dataset (with 64                    

variable width windows on a Triple TOF 6600) were converted to mzML using ProteoWizard as described above. We used a spectral library                      

provided by the study’s authors (ecolihumanyeast_concat_mayu_IRR_cons_openswath_64w_var_curated.csv) which consisted of precursors          

with annotated fragment ions in CSV format compatible with OpenSWATH. The mass accuracy parameter δ was set to 30 ppm. 

For comparisons to other analyses, only the results from the first iteration of the LFQBench study were used. This was based on the                       

consideration of the optimizations and open discussion among software developers that took place for the second iteration, in which we did                     

not participate.  
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