1 Deriving C₄ photosynthesis parameters by fitting intensive A/C_i curves

2 Haoran Zhou ¹ , Erol Akçay ¹ and Brent R. Hellik	2	Haoran Zhou	¹ , Erol Akçay ¹	and Brent R.	Helliker
--	---	-------------	--	--------------	----------

3

⁴ ¹Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA

- 6 *Correspondence:* Haoran Zhou
- 7 Address: 433 S University Ave.
- 8 314 Leidy Labs
- 9 Philadelphia, PA 19104
- 10 Phone: 1-215-808-7042
- 11 Email: haoranzh@sas.upenn.edu
- 12 Brent R. Helliker: helliker@sas.upenn.edu
- 13 Erol Akçay: eakcay@sas.upenn.edu
- 14 Running head: Deriving C₄ photosynthesis parameters

15 ABSTRACT

16 Measurements of photosynthetic assimilation rate as a function of intercellular CO_2 (A/C_i 17 curves) are widely used to estimate photosynthetic parameters for C_3 species, yet few 18 parameters have been reported for C₄ plants, because of a lack of estimation methods. Here, 19 we extend the framework of widely-used estimation methods for C₃ plants to build 20 estimation tools by exclusively fitting intensive A/C_i curves (6-8 more sampling points) for 21 C₄ using three versions of photosynthesis models with different assumptions about carbonic 22 anhydrase processes and ATP distribution. We use simulation-analysis, out-of-sample tests, 23 existing in vitro measurements and chlorophyll-fluorescence-measurements to validate the 24 new estimation methods. Of the five/six photosynthetic parameters obtained, sensitivity 25 analyses show that maximal-Rubisco-carboxylation-rate, electron-transport-rate, maximal-26 PEP-carboxylation-rate and carbonic-anhydrase were robust to variation in the input parameters, while day-respiration and mesophyll-conductance varied. Our method provides 27 28 a way to estimate carbonic anhydrase activity, a new parameter, from A/C_i curves, yet also 29 shows that models that do not explicitly consider carbonic anhydrase yield approximate 30 results. The two photosynthesis models, differing in whether ATP could freely transport 31 between RuBP and PEP regeneration processes yielded consistent results under high light, 32 but they may diverge under low light intensities. Modeling results show selection for 33 Rubisco of low specificity and high catalytic rate, low leakage of bundle sheath and high 34 PEPC affinity, which may further increase C_4 efficiency. 35 *Kew words:* A/C_i curves, C₄, estimation method, nonlinear curve fitting, photosynthesis parameters, V_{cmax} , electron transport, PEP carboxylation rate, carbonic anhydrase 36 37

38	Abbreviations: a, light absorptance of leaf; Ac, Rubisco carboxylation assimilation rate; AEE,
39	RuBP carboxylation and PEPc carboxylation limitation assimilation; AET, RuBP
40	regeneration and PEP carboxylation limitation assimilation; A_g , gross CO ₂ assimilation rate
41	per unit leaf area; A_j , RuBP regeneration assimilation rate; A_n , net CO ₂ assimilation rate per
42	unit leaf area; ATE, RuBP carboxylation and PEPc regeneration limitation assimilation; ATT,
43	RuBP regeneration and PEPc regeneration limitation assimilation; α , the fraction of O ₂
44	evolution occurring in the bundle sheath; c , scaling constant for temperature dependence for
45	parameters; CaL, Lower boundary CO ₂ under which assimilation is limited by RuBP
46	carboxylation and PEPc carboxylation; CaH, Higher boundary CO ₂ above which
47	assimilation is limited by RuBP regeneration and PEPc regeneration; C_{bs} , bundle sheath
48	CO2 concentration; C_i , intercellular CO ₂ concentration; C_m , mesophyll CO2 concentration;
49	$\Delta H_{\rm a}$, energy of activation for temperature dependence for parameters; $\Delta H_{\rm d}$, energy of
50	deactivation for temperature dependence for parameters; ΔS , entropy for temperature
51	dependence for parameters; ϕ_{PSII} , quantum yield; $\gamma^*(25)$, the specificity of Rubisco at 25°C;
52	$g_{\rm bs}$, bundle sheath conductance for CO ₂ ; $g_{\rm bso}$, bundle sheath conductance for O ₂ ; $g_{\rm m}$,
53	mesophyll conductance for CO ₂ ; <i>I</i> , light intensity; $J_{max}(25)$, maximum rate of electron
54	transport at 25°C; $K_c(25)$, Michaelis-Menten constant of Rubisco activity for CO ₂ at 25°C;
55	$K_{\rm o}(25)$, Michaelis-Menten constants of Rubisco activity for O ₂ ; $K_{\rm p}(25)$, Michaelis-Menten
56	constants of PEP carboxylation for CO ₂ ; O_{bs} , O ₂ concentration in the bundle sheath cells;
57	Q_{10} for K_p , temperature sensitivity parameter for K_p ; R , the molar gas constant; R_d , daytime
58	respiration; R_{dbs} , daytime respiration in bundle sheath cells; R_{dm} , daytime respiration in
59	mesophyll cells; Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; RuBP,
60	ribulose-1,5-bisphosphate; T_k , leaf absolute temperature; V_c , velocity of Rubisco

- 61 carboxylation; $V_{\text{cmax}}(25)$, maximal velocity of Rubisco carboxylation at 25°C; V_p , PEP
- 62 carboxylation; V_{pc} , PEPc reaction rate; $V_{pmax}(25)$, maximal PEP carboxylation rate at 25°C;
- 63 V_{pr} , PEP regeneration rate; x, the maximal ratio of total electron transport could be used for
- 64 PEP carboxylation.
- 65

66 1. INTRODUCTION

67	Key photosynthetic parameters allow for the assessment of how biochemical and
68	biophysical components of photosynthesis affect net carbon assimilation in response to
69	environmental changes, phenotypic/genotypic differences, and genetic modification. The
70	changes in net assimilation (A_n) that occur along with the changes of intercellular CO ₂
71	concentration (C_i) —or A/C_i curves— are widely used to estimate photosynthetic parameters
72	for C_3 species. In particular, the method by Sharkey et al. (2007), based on the C_3
73	photosynthesis model of Farquhar et al. (1980; FvCB model), has been one of the most
74	widely used tools since it is based exclusively on A/C_i curves, which are easy to measure in
75	both lab and field conditions.
76	
77	Fewer estimates of photosynthetic parameters have been reported for C ₄ species, as there has
78	been a lack of accessible C ₄ estimation methods. Several recent studies, however, used A/C_i
79	curves to estimate photosynthesis parameters based on the C_4 photosynthesis model of von
80	Caemmerer (2000) (Ubierna et al., 2013; Bellasio et al., 2015). These studies use partial
81	A/C_i curves; measuring assimilation rates for only a few CO ₂ concentrations coupled with
82	ancillary measurements of chlorophyll fluorescence and/or 2% O2. While these estimation
83	methods lead to estimates of photosynthetic parameters, the additional measurements they
84	require make estimation more cumbersome for field work or large-scale sampling.
85	Theoretically, it is possible to estimate photosynthetic parameters by exclusively fitting A/C_i
86	curves to a C_4 photosynthesis model. In this paper, we propose the method to estimate C_4
87	photosynthesis parameters using only A/C _i curves.
88	

89	There are several potential problems with A/C_i –based estimation methods for C ₃ plants that
90	carry over to existing C_4 methods (Gu et al. 2010); it is therefore important to develop a C_4
91	estimation method with improvements to solve the general problems and drawbacks outlined
92	below. First, the structure of the FvCB model makes it easy to be over-parameterized.
93	Second, a general shortcoming for the estimation methods is that they require an artificial
94	assignment of the RuBP regeneration and Rubisco carboxylation limitation states to parts of
95	the A/C_i curves (Xu and Baldocchi, 2003; Ethier et al., 2006; Ubierna et al., 2013; Bellasio
96	et al., 2015), which has turned out to be problematic (Type I methods) (Gu et al. 2010).
97	These methods assume constant transition points of limitation states for different species.
98	Furthermore, Type I methods tend to minimize separate cost functions of different limitation
99	states instead of minimizing a joint cost function. Some recent estimation methods for C ₃
100	species ameliorate these problems by allowing the limitation states to vary at each iterative
101	step of minimizing the cost function (Type II methods; Dubois et al., 2007; Miao et al.,
102	2009; Yin et al., 2009; Gu et al., 2010). However, for these type II methods, additional
103	degrees of freedom in these "auto-identifying" strategies can lead to over-parameterization if
104	limitation states are allowed to change freely for all data points. Gu et al. (2010) also pointed
105	out that existing Type I and Type II methods fail to check for inadmissible fits, which
106	happen when estimated parameters lead to an inconsistent identification of limitation states
107	from the formerly assigned limitation states. More specifically to C ₄ , the recently developed
108	C ₄ estimation methods artificially assign limitation states for A/C _i curves (Ubierna et al.,
109	2013; Bellasio et al., 2015) and also did not check for inadmissible fits.
110	

111 We developed methods to estimate photosynthetic parameters for C₄ species based solely on

112	fitting intensive A/C_i curves to a C ₄ photosynthesis model (von Caemmerer, 2000). The
113	intensive A/C_i curves (A/C_i curves with 6-8 more sampling points than the common A/C_i for
114	C ₃ species) are important for two reasons: First, at low C_i , the slope of A/C_i is very steep and
115	the assimilation rate saturates quickly. Second, C ₄ species have more photosynthetic
116	parameters as the carbon concentrating mechanism adds complexity. Additionally, carbonic
117	anhydrase catalyzes the first reaction step for C_4 photosynthesis (Jenkins et al., 1989), and it
118	has been commonly assumed to not limit CO_2 uptake in estimation methods and C_4 models
119	(von Caemmerer, 2000; Yin et al., 2011b). Recent studies, however, showed evidence of
120	potential limitation by carbonic anhydrase (von Caemmerer et al., 2004; Studer et al., 2014;
121	Boyd et al., 2015; Ubierna et al., 2017).
122	
123	Therefore, first, we built estimation methods using two different fitting procedures of
124	Sharkey et al. (2007) and Yin et al. (2011b) without considering carbonic anhydrase activity.
125	Then, we add carbonic anhydrase limitation into the estimation method. We can also use this
126	approach to examine how the carbonic-anhydrase-limitation assumption impacts parameter
127	estimation, and whether the modeling of C_4 photosynthesis can be simplified by omitting it.
128	All together, our method estimates five to six photosynthesis parameters: (1) maximum
129	carboxylation rate allowed by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco)
130	(V_{cmax}) , (2) rate of photosynthetic electron transport (<i>J</i>), (3) day respiration (R _d), (4)
131	maximal PEP carboxylation rate (V_{pmax}), (5) mesophyll conductance (g_m), and optionally (6)
132	the rate constant for carbonic anhydrase hydration activity (k_{CA}). These approaches yield the
133	following improvements to eliminate common problems occurring in the previous C_3 and C_4
134	estimation methods: avoiding over-parameterization, maximizing joint cost function, freely

135	determining transition points instead of assigning in advance, and checking for inadmissible
136	fits. Second, since both RuBP regeneration and PEP regeneration need ATP (Hatch, 1987),
137	we also examine two different assumptions about ATP distribution between RuBP
138	regeneration and PEP regeneration in C ₄ photosynthesis models. Third, we validate the
139	estimation methods in four independent ways, using: (i) simulation tests using A/C_i curves
140	generated using our model with known parameters and adding random errors, (ii) out of
141	sample test, (iii) existing in vitro measurements and (iv) Chlorophyll fluorescence
142	measurement. Finally, we used the C_4 photosynthesis model to perform sensitivity analyses
143	and simulation analyses for important physiological input parameters. These analyses allow
144	us to illustrate the underlying physiological significance of these parameters to the ecology
145	and evolution of the C ₄ photosynthesis pathway.
146	

146

147 2. MATERIALS and METHODS

148 **2.1 C₄ Mechanism**

149 The CO₂ concentrating mechanism of C₄ pathway increases CO₂ in the bundle sheath cells 150 to eliminate photorespiration. Like the C₃ pathway, the diffusion of CO₂ starts from the 151 ambient atmosphere through stomata into intercellular spaces, and then into the mesophyll 152 cells. In the mesophyll cells, the first step is the hydration of CO_2 into HCO_3^- by carbonic 153 anhydrase. PEPC, then, catalyze HCO_3^- and PEP into C_4 acids and the C_4 acids are 154 transported to the bundle sheath cells. In the bundle sheath cell, C₄ acids are decarboxylated 155 to create a high CO₂ environment for the C₃ photosynthetic cycle, and PEP is regenerated. 156 All the modeling equations and mechanistic processes used for our estimation method are 157 from von Caemmerer (2000), Hatch and Burnell (1990), Boyd et al. (2015) and Ubierna et

al. (2017) (Supplementary Methods).

159

- 160 Given the two limitation states of C_4 cycle (PEP carboxylation (V_{pc}) and PEP Regeneration
- 161 (V_{pr})), and two limitation states of C₃ cycle (RuBP carboxylation (A_c) and RuBP
- 162 Regeneration (A_i) in the C₄ photosynthesis model, there are four combinations of limitation
- states (as Yin et al., 2011b, Fig. 1): RuBP carboxylation and PEP carboxylation limited
- assimilation (AEE), RuBP carboxylation and PEP regeneration limited assimilation (ATE),
- 165 RuBP regeneration and PEP carboxylation limited assimilation (AET) and RuBP
- 166 regeneration and PEP regeneration limited assimilation (ATT). Since the C₄ cycle operates
- before the C_3 cycle and provides substrates for the C_3 cycle, the determination process of A_n is as follows:

169 If
$$(V_{pc} < V_{pr}), A_c = AEE, A_j = AET$$
, otherwise $A_c = ATE, A_j = ATT$ (1)

$$A_n = \min(A_c, A_j), \tag{2}$$

171 which we used for our estimation method.

172

173 2.2 Plant Material

174 We performed intensive A/C_i curves on nine different C₄ species to develop and examine the

- 175 efficacy of our estimation tools: Zea mays L., Eragrostis trichodes (Nutt.) Alph. Wood,
- 176 Andropogon virginicus L., Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.,
- 177 Panicum amarum Elliott, Setaria faberi Herrm., Sorghastrum nutans (L.) Nash
- 178 and *Tripsacum dactyloides* (L.) L. The intensive A/C_i curves contain more sample points
- under more CO_2 concentrations than the default curve used for C_3 species. Here we set the
- 180 CO₂ concentrations as 400, 200, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325,

181	350, 400, 500, 600, 700, 800, 1000, 1200, 1400 ppm under light intensity of 1500 μmolm ⁻² s ⁻
182	¹ (light intensity encountered by the plants in greenhouse). At each point, data was recorded
183	when the intercellular CO_2 concentration equilibrated within 2-5 minutes. The datasets were
184	obtained using a standard 2 x 3 cm ² leaf chamber with a red/blue LED light source of LI-
185	6400 (LI-COR Inc., Lincoln, NE, USA). If the stomatal conductance of a species does not
186	decrease quickly at high CO_2 , then the sample points at the high CO_2 level can be increased.
187	Fluorescence was measured along with A/C_i curves for seven C ₄ species (CO ₂ concentration
188	is similar with above). After each change of CO_2 concentration and A reached steady state,
189	the quantum yield was measured by multiphase flash using a 2 cm ² fluorescence chamber
190	head (Bellasio et al., 2014). All the measurements are conducted at 25°C and VPD is
191	controlled at 1-1.7kPa. The cuvette was covered by Fun-Tak to avoid and correct for the
192	leakiness (Chi et al., 2013).
193	
194	2.3 Estimation Protocol
195	We implemented the estimation methods using the non-linear curve-fitting routine in MS
196	Excel (Supplementary Material I, II, III) and independently in R ("C4Estimation") to get
197	solutions that minimize the squared difference between observed and predicted assimilation
198	rates (A). Five (or six when considering carbonic anhydrase) parameters will be estimated by
199	fitting the A/C_i curve: V_{cmax} , J , R_d , V_{pmax} , g_m , and k_{CA} . Other input parameters for C ₄ are in
200	Table S1.
201	
202	Input data sets and preliminary calculations. The input data sets are the leaf temperature
• • •	

203 during measurements, atmosphere pressure, two CO₂ bounds (*CaL* and *CaH* discussed in the

following section), and the assimilation rates (A) and the C_{is} (in ppm) in the A/C_{i} curve.

205 Also, reasonable initial values of output parameters need to be given in the output section to

206 initiate the non-linear curve fitting (Supplementary Material IV). C_i will be adjusted from

the unit of ppm to the unit of Pa inside the program as suggested by Sharkey et al. (2007).

208

209 **Estimating limitation states.** We set upper and lower limits to the value of C_i between 210 which the assimilation rates are freely determined by limitation states. Also, we can avoid 211 over-parameterization by pre-assigning limitation states at the lower and upper ends of the C_i range. We assumed that under very low C_i (*CaL*), CO₂ is the limiting substrate; thus, V_n is 212 213 limited by V_{pc} and A is given by A_c (AEE); under very high C_i (CaH) electron transport is 214 limiting, thus, V_p is limited by V_{pr} and A is given by A_i (ATT) (Fig. 1). The points between CaL to CaH are freely determined by AEE, ATE, AET or ATT from eq. (16) and (17) to 215 216 minimize the cost function. We suggest setting *CaL* as 10 Pa initially, then adjusting based 217 on the preliminary results. The points of constant A at high C_i end can initially be set as 218 being limited by ATT primarily (based on the three points, we can *CaH*) or use 65 Pa as the 219 first trial. The range of freely determined points can be adjusted by users by setting 220 appropriate *CaL* and *CaH*. In the column of "Estimate Limitation", whether the data points 221 are limited by AEE (represented by "1"), ATT (represented by "4") or freely vary 222 (represented by "0"), all the assignments of "1", "4" and "0" are determined automatically 223 by the given values of CaL and CaH. One can input "-1" to disregard a data pair. Users can 224 adjust limitation states according to how many points and the range of C_i they have in their 225 $A/C_{\rm i}$ curves.

227	We assume different processes in the C_4 photosynthesis are coordinated with each other and
228	co-limit the assimilation rate (Sharkey et al., 2007; Yin et al., 2011b; Ubierna et al., 2013;
229	Bellasio et al., 2015). Thus, the estimation parameters allow the limitation states to be
230	compactly clustered with each other (Fig. 1). However, if there were only a few points under
231	CaL, the estimation results will depend heavily on the given initial values and unbalanced
232	results would be more likely. Fig. S1 shows an example of unbalanced estimation results by
233	deleting some points under 10 Pa or setting a very low <i>CaL</i> : in the estimation results, A_n is
234	limited by AEE at very low C_i and is mostly limited by A_j (shown by AET and ATT) in the
235	C ₃ cycle. In this case, A_c (shown by AEE and ATE) has a clear redundancy at higher C_i .
236	Unbalanced results happened when there are not enough constraints points under CaL or
237	above CaH. Such results explain why intensive A/C_i curves are preferred, especially more
238	measuring points under the lower end and higher end of C_i . However, existing A/C_i data
239	with 14 points might be used in the current estimation method if there are at least four points
240	below CaL and three points above CaH.

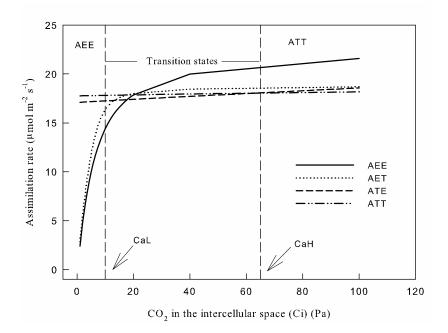


Fig. 1 An introduction of how our estimation methods assign transition points between limitation

- 243 states. AEE represents RuBP carboxylation, and PEP carboxylation limited assimilation rate, ATT
- 244 represents RuBP regeneration and PEP regeneration limited assimilation rate. Transition states
- 245 indicate assimilation could be limited by AEE, ATT, ATE (RuBP carboxylation and PEP
- regeneration) and AET (RuBP regeneration and PEP carboxylation). Our algorithm allows the
- transition states to be freely limited by the above four conditions from a lower bound (*CaL*, 10 Pa for
- instance) and a higher bound (*CaH*, 65 Pa for example), indicated by the dashed vertical lines in the
- figure.
- 250

Estimation algorithm and fitting procedures. The objective of our estimation methods is to minimize the following joint cost function (eq. 3 and 4) by varying the above five or six output parameters (V_{cmax} , *J*, *R*_d, V_{pmax} , *g*_m, and *k*_{CA}):

$$f = \sum_{i=1}^{n} (A_i - A_{mi})^2.$$
(3)

255 $A_i = [If(C_i \le CaL), AEE; If(C_i \ge CaH), ATT; IF(CaL \le C_i \le CaH), \min(A_{ci}, A_{ii})] (4)$

256 *n* is the total number of observations, A_{ci} is determined by AEE and ATE and A_{ii} is

determined by AET and ATT from eq. (1), A_{mi} is the observed net assimilation rate.

- 258 In this calculation, we take Michaelis-Menten constant of Rubisco activity for $CO_2(K_c)$,
- 259 Michaelis-Menten constant of Rubisco activity for $O_2(K_0)$, the specificity of Rubisco (γ^*),
- 260 Michaelis-Menten constants of PEP carboxylation for CO_2 or $HCO3^-(K_p)$, the fraction of O_2
- evolution occurring in the bundle sheath (α) and bundle sheath conductance (g_{bs}) as given
- 262 (input parameters), similar to Sharkey et al. (2007). We conduct further sensitivity analyses
- in the following section to determine the effects of variability of these inputs parameters on
- the estimation results.

265

266	We used two fitting procedures in the current study: one was from Sharkey et al. (2007),
267	which is an implicit minimization of error (Supplementary Material I, III), and the other one
268	was based on the explicit calculations given by Yin et al. (2011b) (Supplementary Material
269	II). For the method of Sharkey et al. (2007), "estimated" A_n was calculated using the above
270	equations and observed A_n values. We call them "estimated", because when we calculate A_n ,
271	observed A_n is used to calculate intermediate parameters, for example, the CO ₂
272	concentration in mesophyll cells ($C_{\rm m}$), the CO ₂ concentration in bundle sheath ($C_{\rm bs}$), which
273	we then use to calculate A_c and A_j . The objective function is to minimize the sum of square
274	errors between "estimated" A_n and observed A_n (Simulation Error in Supplementary Material
275	I, III). For the model without carbonic anhydrase, Yin et al. (2011b) gave explicit solutions
276	for AEE, ATE, AEE, and ATT). "Explicit" here means the assimilation rates are totally
277	calculated by the estimated parameters without calculating the intermediates with observed
278	A _n . These calculations give us the real estimation error of our fitting procedure for models
279	without carbonic anhydrase and thus provide a validation for the goodness of fit ("True
280	Error" in Supplementary Material I-III).
281	

Checking inadmissible fits. We made it possible to check the inadmissible fits for
limitation states in our estimation method. After the estimation process finishes, the
limitation states based on the estimated parameters will be calculated in the last column. If
the calculated limitation states are inconsistent with the assigned ones in the estimation
method, one needs to readjust the assignment of the "Estimate Limitation" (adjust *CaL* or *CaH*) and rerun the estimation method, until they are consistent with each other.

288


289 **3. RESULTS**

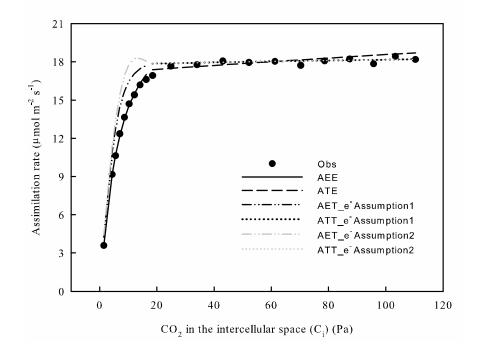
3.1 Estimation results and assumptions

- 291 Estimation methods based on assumptions with and without carbonic anhydrase yield
- similar results (Supplementary material V). In Supplementary material III, carbonic
- 293 anhydrase indeed shows limitation to V_{pc} , which confirms its potential role as a limiting step
- in the C₄ cycle. However, V_{pc} calculated from CO₂ are only a little higher than V_{pc} calculated
- from HCO_3^{-} , which resulted in the similar estimation results. In addition, the estimation
- errors and true errors from Yin's equations are quite small (average<1), and also similar

between models with and without carbonic anhydrase.

298

300 transport between RuBP regeneration and PEP regeneration yield consistent parameter


301 estimates and assimilation- CO₂ response curves (Fig. 2), but there were minor differences.

302 The second assumption that ATP, resulting from electron transport, is freely allocated

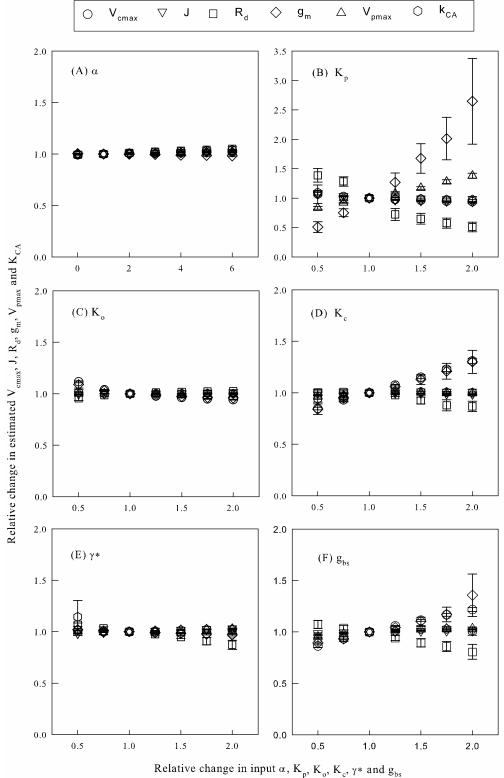
303 between PEP carboxylation-regeneration and RuBP regeneration leads to a bump at low

304 CO₂ when estimating ATE. The two assumptions produce different ATE under low CO₂; but

- 305 this is largely inconsequential because, under low CO₂, assimilation is usually limited by
- 306 AEE.

308 **Fig. 2** Assimilation-CO₂ response curves (A/C_i) generated using C₄ photosynthesis of two different 309 assumptions about electron transport. Photosynthetic parameters (V_{cmax} , J, R_d , V_{pmax} , and g_m) are the 310 same for both assumptions. AET_e⁻Assumption1 and ATT_e⁻Assumption1 represent results of the 311 assumption that no matter how much electron transport is used for PEP carboxylation/regeneration, a 312 certain amount (xJ) is confined for this use. AET_e⁻Assumption2 and ATT_e⁻Assumption2 represent 313 results of the assumption that electron transport can be freely distributed between PEP 314 carboxylation/regeneration and RuBP regeneration. Parameters are estimated from A/C_i curve of T. *dactyloides* under the light intensity of 1500 μ mol m⁻² s⁻¹. AEE and ATE are the same for both 315 316 assumptions.

317


318 **3.2 Sensitivity analysis**

319 The parameters K_c , K_o , γ^* , K_p , α , and g_{bs} can vary among species in nature (Cousins et al.,

320 2010) and it is therefore important to know how sensitive our results are to variation in these

321 parameters. We conducted a sensitivity analysis for variation in these parameters on the

322	estimated V_{cmax} , J , R_{d} , V_{pmax} , g_{m} and k_{CA} (Fig. 3). This analysis shows all the estimated
323	parameters are robust under the variation of α (Fig. 3A) and showed little variation
324	responding to the change of γ^* (Fig. 3E) and K_0 (Fig. 3C); however, the estimated
325	parameters are dependent on the other input parameters to different extents (Fig. 3B, D, F).
326	We calculate the average percentage change of estimated parameters along with the 50 $\%$
327	decrease and 100 % increase of the input parameters. V_{cmax} showed some medium extent of
328	sensitivity for K_c , K_p , and g_{bs} with the average percentage change of 23.11, 7.54 and 17.69 %
329	respectively. J is robust in the variations of K_c , and g_{bs} (the average change is less than 2%)
330	and with a medium 6.96 % change for $K_{\rm p}$. $k_{\rm CA}$ is robust in the variations of $K_{\rm c}$, $K_{\rm p}$, and $g_{\rm bs}$
331	(average change less than 5%). V_{pmax} is sensitive for K_{p} with the average change of 27.34%,
332	moderately sensitive to the change of g_{bs} with 4.01 % and 13.38% change and is robust for
333	$K_{\rm c}$. $R_{\rm d}$ is sensitive to $K_{\rm c}$, $K_{\rm p}$, and $g_{\rm bs}$ with the change of 6.73, 43.88 and 13.38%. $g_{\rm m}$ is
334	strongly sensitive to K_c , K_p , and g_{bs} with the average percentage changes of 22.95, 107.04
335	and 23.19 %. This results suggest that V_{cmax} , J, V_{pmax} , and k_{CA} estimated using our method
336	are relatively robust.

Relative enables in input α , \mathbf{x}_{p} , \mathbf{x}_{o} , \mathbf{x}_{c} , γ^{*} and \mathbf{g}_{bs}

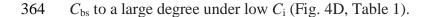
Fig. 3 Sensitivity analysis of six estimation parameters to the variation in six input parameters using the model with carbonic anhydrase. Relative changes in the estimated V_{cmax} , J, R_d , V_{pmax} , g_m and k_{CA}

in response to the relative change of six input parameters [(A) α , (B) K_p , (C) K_o , (D) K_c , (E) γ^* and (F) g_{bs}] from the initial values in Table S1. The relative change of estimated parameters refers to the ratio of estimated values at a changed input parameter to the estimated value at the initial value of that input parameter. The symbols represent the average change of the nine C₄ species and error bars represent standard error.

345

346 **3.3** Physiological significance for assimilation rate of the input parameters

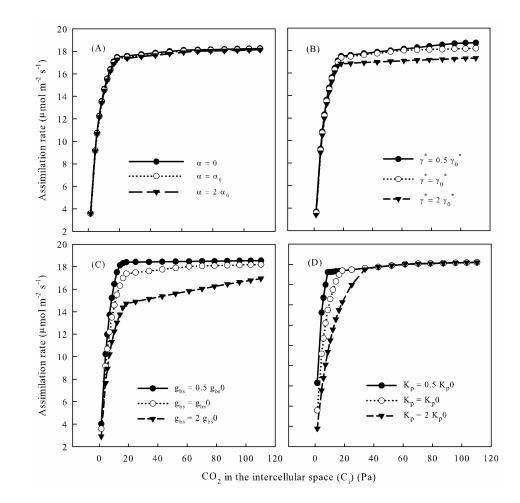
347 In addition to the sensitivity analysis, we performed a simulation analysis to illustrate the 348 physiological importance of input parameters further, and to indicate further the importance 349 of physiological properties in maintaining the efficiency of C₄ photosynthesis pathway. We 350 chose the estimation parameter set of T. dactyloides as an example, held photosynthetic parameters constant V_{cmax} (28 µmol m⁻² s⁻¹), J (134 µmol m⁻² s⁻¹), R_d (0.78 µmol m⁻² s⁻¹), g_m 351 (30.00 μ mol m⁻² s⁻¹ Pa⁻¹) and V_{pmax} (41.91 μ mol m⁻² s⁻¹), while changing the values of α , γ^* , 352 $g_{\rm bs}$, and $K_{\rm p}$ (as half or twice of the original parameters) to see their effects on the 353 354 assimilation rate, C_{bs} and the O₂ concentration in bundle sheath (O_{bs}) (Fig. 4, Table 1). 355 Using photosynthetic parameter sets of other species to perform the simulation analysis 356 yielded similar results (data not shown). The change of α did not lead to changes in 357 assimilation rate (Fig. 4A) and led to small changes in O_{bs} (Table 1). The decrease of γ^* to 358 half of the current value led to a small change of C_{bs} and assimilation rate (less than 0.5)


 μ mol m⁻² s⁻¹) while doubling γ^* led to a larger, but still not significant, change (less than 1

 $360 \quad \mu mol m^{-2} s^{-1}$ (Fig. 4B, Table 1). Importantly, the changes of assimilation rates were less

than 0.3 μ mol m⁻² s⁻¹ when C_i was less than 20 Pa, which is the regular range of C_i under

362 current ambient CO_2 . However, the change of g_{bs} significantly changed the assimilation rate


and $C_{\rm bs}$ (Fig. 4C, Table 1). The change of $K_{\rm p}$ significantly affected the assimilation rate and

- 365
- **Table 1** The average change of percentage of CO_2 concentration (C_{bs}) and O_2 concentration at
- bundle sheath (O_{bs}) compared to the reference value of $\alpha 0$, $\gamma^* 0$, $g_{bs} 0$ and K_p . Simulation results are
- 368 obtained by using the original parameter set of *T. dactyloides* with $V_{\text{cmax}} = 28 \,\mu\text{mol m}^{-2} \,\text{s}^{-1}$, J = 134
- 369 μ mol m⁻² s⁻¹, $R_d = 0.78 \mu$ mol m⁻² s⁻¹, $g_m = 30.00 \mu$ mol m⁻² s⁻¹ Pa⁻¹ and $V_{pmax} = 41.91 \mu$ mol m⁻² s⁻¹. The
- 370 values represent average change of percentage of 21 values from 0-120 Pa of intercellular $CO_2(C_i)$
- 371 (data show mean (standard error)).

Parameters	$\alpha = 0$	$\alpha = 2 \alpha 0$	$\gamma^* = 0.5 \ \gamma^* 0$	$\gamma^* = 2 \gamma^* 0$
Chang of $C_{\rm bs}$ (%)	-0.91(0.06)	0.97(0.06)	-2.96(0.28)	5.05(0.49)
Chang of $O_{\rm bs}$ (%)	-6.07(0.30)	6.01(0.30)	0.07(0.01)	-0.21(0.02)
Parameters	$g_{\rm bs}=0.5~g_{\rm bs}0$	$g_{\rm bs} = 2 g_{\rm bs} 0$	$K_{\rm p} = 0.5 \ K_{\rm p} 0$	$K_{\rm p} = 2 K_{\rm p} 0$
Chang of $C_{\rm bs}$ (%)	56.99(3.03)	-29.48(0.41)	43.12(10.75)	-36.57(4.07)
Chang of $O_{\rm bs}$ (%)	6.77(0.29)	-3.41(0.16)	0.91(0.18)	-1.18(0.14)

bioRxiv preprint doi: https://doi.org/10.1101/153072; this version posted October 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

373

Fig. 4 Simulation results of assimilation rate along with different intercellular CO₂ concentration (C_i) with the known photosynthetic parameters, but with the change of (A) α , (B) γ^* , (C) g_{bs} and (D) K_{p} . The original data set are $V_{cmax} = 28 \ \mu mol m^{-2} s^{-1}$, $J = 134 \ \mu mol m^{-2} s^{-1}$, $R_d = 0.78 \ \mu mol m^{-2} s^{-1}$, $g_m =$

30.00 μ mol m⁻² s⁻¹ Pa⁻¹ and $V_{pmax} = 41.91 \mu$ mol m⁻² s⁻¹. The reference value of changing parameters at

378
$$25^{\circ}$$
C: $\alpha 0(25) = 0.15$, $\gamma^* 0(25) = 0.000244$, $g_{bs}0(25) = 0.0295$ and $K_p(25) = 8.55$ Pa.

379

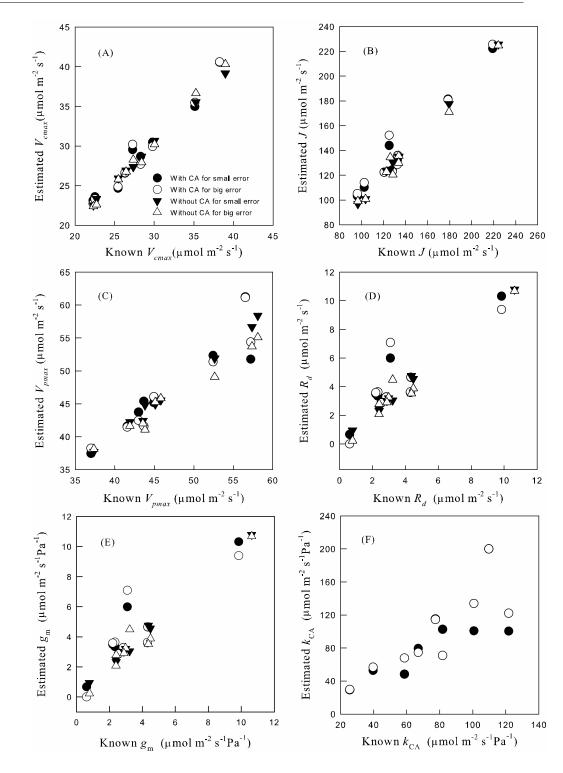
380 3.4 Validating the estimation methods

381 In order to test our estimation methods, we first conducted a simulation test with

382 manipulated error terms. We use the estimated results of the nine species as known

383 parameters (the known values in Fig. 5) to generate new datasets using the C_4

384	photosynthesis equations based the first assumption of electron transport and adding error
385	terms to the assimilation rates. The error terms were randomly drawn from a normal
386	distribution of mean zero and standard deviation of 0.1 or 0.2 in an effort to simulate the
387	inevitable random errors in the real measurements. Estimating simulated data sets gave us an
388	idea about how likely we can capture the real parameters of the species given unavoidable
389	errors in measurements. The results show that robust estimation results for V_{cmax} , J , V_{pmax} ,
390	and R_d can be obtained (Fig. 5A, B, C, D). However, some estimation results of g_m and k_{CA}
391	show some deviation from the real values (Fig. 5E, F).
392	
393	To test whether our estimation method could give accurate predictions across typical
394	prediction scenarios, (CO ₂ ranging from 20 Pa to 60 Pa), we performed out of sample tests
395	for our nine target species. To perform these tests, we removed five points of CO ₂
396	concentrations between 20 and 60 Pa range out of the A/C_i curves and used the rest of the
397	A/C_i curves to estimate parameters. And then we used these parameters to predict the
398	assimilation rate under the CO_2 concentrations we took out before and calculated the
399	estimation errors. In general, the estimation errors for all our species were small (Table 2).
400	
401	Table 2 Out of sample test results. Five measured points from 20 Pa-60 Pa were taken out when we
402	conducted the estimation process. Then the calculated assimilation rates under these five CO_2


403 concentrations were compared with the measured ones. The data shows estimated error between the

404 calculated and measured assimilation rates (data show mean (standard error)).

Species	A. virginicus	Z. mays	E. trichodes	P. virgatum	P. amarum
Model without CA	0.069(0.036)	0.150(0.056)	0.035 (0.017)	0.193(0.063)	0.055(0.034)
Model with CA	0.066(0.043)	0.154(0.057)	0.111 (0.058)	0.195 (0.061)	0.054(0.033)

bioRxiv preprint doi: https://doi.org/10.1101/153072; this version posted October 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

Species	S. scoparium	S. faberi	S. nutans	T. dactyloi405
Model without CA	0.023(0.010)	0.114(0.055)	0.258(0.080)	0.199(0.090)406
Model with CA	0.105(0.034)	0.068(0.040)	0.263(0.133)	0.200(0.090) 407

409 **Fig. 5** Simulation tests for the estimated parameters ((A) V_{cmax} , (B) *J*, (C) V_{pmax} , (D) R_d , (E) g_m and 410 (F) k_{CA}) using estimation methods with and without carbonic anhydrase reaction (With CA and 411 Without CA). Datasets are generated by adding random errors for the modeling results using the 412 known photosynthesis parameters of nine species. These known photosynthesis parameters are the 413 true values in the x-axis and are used to compare with the newly estimation parameters. The small 414 error refers to error term randomly chosen with mean 0 and standard deviation of 0.1 and the bigger 415 error refers to error term with randomly chosen mean 0 and standard deviation of 0.2.

416

417 We tried to compare our estimation methods with in vitro measurements or other estimation 418 methods using isotopic analysis, especially for Zea. Our estimation results for Zea obtained 419 similar V_{cmax} with the in vitro estimated Rubisco activity of Pinto et al. (2014); however, the 420 estimated value for V_{pmax} is a little lower than the in vitro PEPC activity measurement with a difference of around 10 μ mol m⁻² s⁻¹. For species of the Panicum family with NAD-ME 421 422 subtype, P. virgatum and P. amarum in the current study and P. coloratum in Pinto et al. 423 (2014), the estimated V_{cmax} and V_{pmax} are quite consistent with the in vitro measurements. 424 Ubierna et al. (2017) reported the g_m for Zea ranged from 1.69 ± 0.17 to $8.19 \pm 0.80 \mu mol$ $m^{-2} s^{-1} Pa^{-1}$ using ¹⁸O and in vitro V_{pmax}. Our estimation method fitted a g_m for Zea of 7.34 425 μ mol m⁻² s⁻¹ Pa⁻¹, which falls into the range of their measurements. Barbour et al. (2016) 426 reported a little lower mesophyll conductance for Zea using ¹⁸O measurements. 427

428

429 **3.5 Validating transition point range**

430 We used chlorophyll fluorescence measurements from seven C₄ species to test whether the 431 upper and lower boundary CO₂ concentrations, *CaL* and *CaH*, are reasonable (Table 3). The 432 apparent quantum efficiency of PSII electron transport was calculated with $\Delta F/Fm' = (Fm' -$

433	$F_{\rm S}$) $F_{\rm m'}$ (Genty, Briantais & Baker 1989). Fluorescence analysis (Baker et al. 2007) is a
434	powerful tool for identifying the limitation states of C_3 species (Sharkey et al. 2007). If
435	Chlorophyll fluorescence is increasing with increasing CO_2 , A_n is limited by Rubisco
436	carboxylation limited; when Chlorophyll fluorescence stays constant with increasing CO ₂ ,
437	A_n is limited by RuBP regeneration. For C ₄ species, however, the situation is more
438	complicated. Since V_p could be limited by V_{pr} and V_{pc} (eq. (9)). Part of the RuBP
439	carboxylation limited condition and RuBP regeneration limited condition for the C_3 cycle
440	will mix together, leading to a linear increase of fluorescence with increasing of CO ₂ , but of
441	a small slope (Fig. S2). Thus, we can only obtain two boundaries of CO ₂ concentrations.
442	Below the lower boundary, A and fluorescence increases with increasing C_i with a steep
443	slope and A is RuBP carboxylation and PEP carboxylation limited (AEE); above the higher
444	boundary, A and fluorescence is relatively constant along with the increase of C_i and A is
445	RuBP regeneration and PEP regeneration limited (ATT). We measured fluorescence to test
446	whether the upper and lower boundary CO_2 concentrations, <i>CaL</i> and <i>CaH</i> , are reasonable. It
447	seems all the CaL are above 14 Pa and all the CaH are below 65 Pa (Table 3). These results
448	suggest that 10Pa-65Pa is a reasonable range for the transitional point.
449	

Table 3 CO₂ concentration boundaries result for assimilation-limited conditions from fluorescence
measurements for seven species. Low: CO₂ concentration under which assimilation rate increases
greatly with increasing CO₂ (potentially assimilation is limited by PEP carboxylation and RuBP
carboxylation). High: CO₂ concentration above which assimilation rate no longer increases with
increasing CO₂ (potentially assimilation is limited by PEP regeneration and RuBP regeneration).
Data show the mean (standard error).

Species	P. virgatum	P. amarum	S. scoparium	S. nutans

Low(Pa)	14.1(1.12)	18.0(1.09)	17.8(1.09)	17.6(0.28)
High(Pa)	34.1(1.78)	55.5(1.40)	53.1(1.10)	63.1(2.07)
Species	T. dactyloides	T. flavus	B. mutica	
Low(Pa)	13.8(0.35)	14.9(2.35)	15.8(1.13)	
High(Pa)	46.1(0.20)	41.4(1.73)	42.3(1.24)	

456

457 **4. DISCUSSION**

458 The photosynthetic parameters from the estimation method are good indicators for the

459 biochemical and biophysical mechanisms underlying the photosynthesis processes of plants.

460 Together with photosynthesis models, they can provide powerful information for

461 evolutionary and ecological questions in both physiological and ecosystem response to

462 natural environmental variation and climate change, to illustrate evolutionary trajectory of

463 C₄ pathway, as well as in efforts to improve crop productivity (Osborne & Beerling, 2006;

464 Osborne & Sack, 2012; Heckmann et al., 2013). Photosynthetic parameters represent

465 different physiological traits, and comparison of these parameters within a phylogenetic

466 background could help us to understand the further divergence of lineages and species

467 through evolutionary time. Additionally, the response of productivity and carbon cycle of

468 vegetation towards the future climate change depends heavily on photosynthesis parameter

469 estimation as input parameters.

470

Each of the two different fitting procedures has advantages and disadvantages. Yin's method
(Supplementary material II) uses the explicit calculation of assimilation rate and
consequently gives lower estimation error. However, it needs a more accurate assignment of
limitation states, especially at the lower end. Thus, Yin's method will be preferable if one

475	has additional support (e.g. fluorescence measurement) to define the limitation states;
476	otherwise, the Yin's method may give unbalanced results (Fig. 3). However, Sharkey's
477	method (Supplementary material I) usually can avoid unbalanced results even without
478	ancillary measurements. Thus, it is better to use both procedures to support each other to
479	find more accurate results. For example, one can first use Sharkey's method to get
480	estimation results and limitation states, and then use them as initial values for Yin's method.
481	
482	Our estimation methods yielded similar results when using models with and without
483	carbonic anhydrase reaction processes. Although carbonic anhydrase activity may well be a
484	limiting step for C ₄ cycle (von Caemmerer et al., 2004; Studer et al., 2014; Boyd et al.,
485	2015; Ubierna et al., 2017), its limitation did not greatly affect assimilation rates in this
486	study. Including the carbonic anhydrase reaction makes the model more complex and
487	difficult to get an explicit solution; therefore, the model without carbonic anhydrase could
488	be used as a simplified form yielding flawed but 'nearly correct' predicted values as a part
489	of larger models. However, carbonic anhydrase limitation of C_4 photosynthesis needs the
490	further assessment from physiological or biochemical perspectives, and our estimation
491	method provides another way to derive carbonic anhydrase parameters, which were
492	comparable with in vitro measurements (Boyd et al., 2015). In addition, our results for
493	models with and without carbonic anhydrase activity support the proposition of Cousins et al.
494	(2007) that carbonic anhydrase activity may not be a limiting factor for A/C_i curves of C_4
495	plants.
496	

497 Our results show that despite a clear difference between the assumptions of how the

498	products of electron transport are distributed, the results were similar and comparable with
499	studies using different models under measurements of high light intensity. The bump in the
500	second model happens in AET. In AET, assimilation is limited by RuBP regeneration and
501	PEP carboxylation; therefore, PEP regeneration is not reaching V_{pr} , and the extra electron
502	transport in PEP regeneration could be freely assigned to RuBP regeneration. This effect
503	will weaken as PEP carboxylation increases. However, under lower photosynthetic photon
504	flux density, assimilation rate will be limited more by electron transport, and the separate
505	assumptions concerning electron transport may start to show divergent results.
506	
507	The photosynthetic parameters from the estimation method used together with
508	photosynthesis models can provide information and inspiration about the evolutionary and
509	physiological importance of different aspects of the C4 syndrome (Osborne & Sack, 2012;
510	Heckmann et al., 2013), which can be investigated by empirical measurements. Several
511	examples emanate from our simulation analysis: (1) α represents the fraction of O ₂
512	evolution from photosynthesis occurring in the bundle sheath cells (eq. (4)) and any $\alpha > 0$
513	means that O_2 will accumulate in the bundle sheath cells, due to low g_{bs} Both the sensitivity
514	analysis and the simulation analysis showed the change of α did not affect the estimated
515	parameters and assimilation rates, because the high C_{bs} created by C ₄ carbon concentrating
516	mechanism overcame any increase of $O_{\rm bs}$ and did not lead to high photorespiration. Thus,
517	the compartmentation of O ₂ evolution may not have played an important role in the
518	evolution of C ₄ photosynthesis. (2) A lower Rubisco specificity factor (γ^* ;eq. (11)) means
519	lower specificity for O_2 , higher specificity for CO_2 , and lower photorespiration. In C_3
520	species, selection for Rubisco with lower specificity to O_2 and high specificity of CO_2 can

521	increase the carbon gain. However, there is a trade-off between the specificity of Rubisco
522	for CO ₂ and its catalytic rate (Savir et al., 2010; Studer et al., 2014). Based on this trade-off,
523	we can hypothesize that since C_4 elevates CO_2 around Rubisco relative to the O_2
524	concentration, maintaining low specificity might be optimal, in order to get high catalytic
525	rate of the enzyme to reach higher assimilation rate as shown by the empirical measurements
526	of Sage (2002) and Savir et al. (2010). Our simulation analysis showed the increase of
527	specificity for CO ₂ (decrease of γ^*) did not increase the assimilation rate much, which
528	indicates the selection upon Rubisco specificity in C ₄ plants should be relaxed. (3) g_{bs}
529	represents CO ₂ leakage from bundle sheath to the mesophyll cell, and changes in g_{bs}
530	significantly change the assimilation rate and C_{bs} . Therefore, avoiding CO ₂ leakage was of
531	great importance for the evolution and efficiency of C_4 photosynthesis pathway (Brown and
532	Byrd, 1993; Ubierna et al., 2013; Kromdijk et al., 2014).
533	
534	Although we have shown that parameter estimation can be achieved solely with A/C_i curves,

535 it is easy to combine our methods with ancillary measurements to yield more accurate

536 estimation results by defining the parameters as estimated or known or add additional

537 constraints (Supplementary Material IV). Yin et al. (2011b) proposed a method to obtain R_d

from the fluorescence-light curve, since the method used for C_3 species, the Laisk method, is

539 inappropriate (Yin et al., 2011a). Additional measurement of dark respiration could be an

540 approximation for R_d or could help to provide a constraint for estimating R_d in our

541 estimating method. Ubierna et al. (2017) discussed the estimation method of g_m using

542 instantaneous carbon isotope discrimination. With external measurement results, one can

543 change estimated parameters (such as R_d , g_m and J) as input parameters, instead of output

544	parameters, in this curve fitting method (Supplementary material IV). Additional methods,
545	such as in vitro measurements (Boyd et al., 2015; Pedomo et al., 2015) and membrane inlet
546	mass spectrometry (Cousins et al., 2010) of V_{cmax} , V_{pmax} , and carbonic anhydrase activity can
547	also provide potential parameter values. Furthermore, if some output parameters are
548	determined in the external measurements, one can also relax the input parameters (such as
549	$g_{\rm bs}$) and make them estimated parameters (Supplementary material IV).
550	

551 **5. Conclusion**

552 We have developed new, accessible estimation tools for extracting C_4 photosynthesis 553 parameters from intensive A/C_i curves. Our estimation method is based on an established 554 estimation protocol for C₃ plants and makes several improvements upon C₄ photosynthesis 555 models. External measurements for specific parameters will increase the reliability of 556 estimation methods and are summarized independently. We developed estimation methods 557 with and without carbonic anhydrase activity. The comparison of these two methods allows 558 for an estimation of carbonic anhydrase activity, and further shows that the method that did 559 not consider carbonic anhydrase activity was a sufficient simplification for C4 560 photosynthesis. We tested two assumptions related to whether the electron transport is freely 561 distributed between RuBP regeneration and PEP regeneration or certain proportions are 562 confined to the two mechanisms. They show similar results under high light, but they may 563 diverge under low light intensities. Simulation test, out of sample test, fluorescence analysis, 564 and sensitivity analysis confirmed that our methods gave robust estimation especially for

565 V_{cmax} , J, and V_{pmax} .

566

567 Author contributions

- 568 HZ, EA and BH conceived the ideas, designed methodology, analyzed the data and led the
- 569 writing of the manuscript; HZ collected the data; HZ and BH coordinate the study. All the
- 570 authors contributed to the critical review of the manuscript and approved its final version.
- 571

572 ACKNOWLEDGMENT

573 We thank Dr. Jesse Nippert, Kansas State University, for providing the fluorometer chamber.

REFERENCES

- **Baker NR, Harbinson J, Kramer DM.** 2007. Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant, Cell and Environment **30**, 1107–1125.
- **Barbour MM, Evans JR, Simonin KA, Von Caemmerer S 2016.** Online CO_2 and H_2O oxygen isotope fractionation allows estimation of mesophyll conductance in C_4 plants, and reveals that mesophyll conductance decreases as leaves age in both C_4 and C_3 plants. New Phytologist **210**, 875-889.
- **Bellasio C, Beerling DJ, Griffiths H.** 2015. Deriving C_4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice. Plant, Cell and Environment doi: 10.1111/pce.12626.
- Bellasio C, Burgess SJ, Griffiths H, Hibberd JM. 2014. A high throughput gas exchange screen for determining rates of photorespiration or regulation of C_4 activity. Journal of experimental botany **65**, 3769-3779.
- **Boyd RA, Gandin A, Cousins AB.** 2015. Temperature responses of C₄ photosynthesis: biochemical analysis of Rubisco, phosphoenolpyruvate carboxylase, and carbonic anhydrase in Setaria viridis. Plant Physiology **169**, 1850–1861.
- **Brown RH, Byrd GT.** 1993. Estimation of bundle sheath cell conductance in C₄ species and O₂ insensitivity of photosynthesis. Plant Physiology **103**, 1183-1188.
- von Caemmerer S. 2000. Biochemical models of photosynthesis. In Techniques in Plant Sciences p. 196. CSIRO Publishing, Colingwood, Australia.
- **Von Caemmerer S, Quinn V, Hancock NC, Price GD, Furbank RT, Ludwig M.** 2004. Carbonic anhydrase and C₄ photosynthesis: a transgenic analysis. Plant, Cell & Environment **27**, 697-703.
- Chi Y, Xu M, Shen R, Yang Q, Huang B, Wan S. 2013. Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in northern China. PLoS One, 8(2):e56482.
- **Cousins AB, Baroli I, Badger MR, Ivakov A, Lea PJ, Leegood RC, Von Caemmerer S. 2007.** The Role of Phosphoenolpyruvate Carboxylase during C₄ Photosynthetic Isotope Exchange and Stomatal Conductance. Plant Physiology **145**, 1006-1017.
- **Cousins AB, Ghannoum O, von Caemmerer S, Badger MR.** 2010. Simultaneous determination of Rubisco carboxylase and oxygenase kinetic parameters in *Triticum aestivum* and *Zea mays* using membrane inlet mass spectrometry. Plant, Cell and Environment **33**, 444–452.

- **Dubois JB, Fiscus EL, Booker FL, Flowers MD, Reid CD.** 2007. Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. New Phytologist **176**, 402–414.
- Ethier GJ, Livingston NJ, Harrison DL, Black TA, Moran JA. 2006 Low stomatal and internal conductance to CO₂ versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves. Plant, Cell and Environment 29, 2168-2184.
- Farquhar GD, von Caemmerer S, Berry JA. 1980 A biochemical model of photosynthetic carbon dioxide assimilation in leaves of 3-carbon pathway species. Planta 149, 78-90.
- Genty B, Briantais J, Baker N. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta **990**, 87–92.
- **Gu L, Pallardy SG, Tu K, Law BE, Wullschleger SD.** 2010. Reliable estimation of biochemical parameters from C₃ leaf photosynthesis-intercellular carbon dioxide response curves. Plant, Cell and Environment **33**, 1852-1874.
- Hatch MD. 1987. C₄ photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure.
 Biochimica et Biophysica Acta 895, 81-106.
- Hatch MD, Burnell JN. 1990. Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiology **93**, 825–828.
- Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P, Weber AP, Lercher MJ. 2013. Predicting C₄ photosynthesis evolution: Modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell **153**, 1579-1588.
- Jenkins CLD, Furbank RT, Hatch MD. 1989. Mechanism of C₄ photosynthesis. A model describing the inorganic carbon pool in bundle-sheath cells. Plant Physiology **91**, 1372–1381.
- **Kromdijk J, Ubierna N, Cousins AB, Griffiths H.** 2014. Bundle-sheath leakiness in C₄ photosynthesis: a careful balancing act between CO₂ concentration and assimilation. Journal of experimental botany **65**, 3443-3457.
- Miao ZW, Xu M, Lathrop RG, Wang YF. 2009. Comparison of the A-C_c curve fitting methods in determining maximum ribulose 1.5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration. Plant, Cell and Environment **32**, 1191-1204.
- **Osborne CP, Beerling DJ.** 2006. Nature's green revolution: the remarkable evolutionary rise of C-4 plants. Philosophical Transactions of The Royal Society B **361**, 173-194.

- **Osborne CP, Sack L.** 2012. Evolution of C_4 plants: a new hypothesis for an interaction of CO_2 and water relations mediated by plant hydraulics. Philosophical Transactions of The Royal Society B **367**, 583-600.
- Pedomo JA, Cavanagh AP, Kubien DS, Galmes J. 2015. Temperature dependence of *in vitro* Rubisco kinetics in species of *Flaveria* with different photosynthetic mechanisms. Photosynthesis Research 124, 67–75.
- **Pinto H, Sharwood RE, Tissue DT, Ghannoum O.** 2014. Photosynthesis of C₃, C₃–C₄, and C₄ grasses at glacial CO2. Journal of Experimental Botany **65**, 3669-3681.
- **Sage RF.** 2002. Variation in the k_{cat} of Rubisco in C₃ and C₄ plants and some implications for photosynthetic performance at high and low temperature. Journal of Experimental Botany **53**, 609-620.
- Savir Y, Noor E, Milo R, Tlusty T. 2010. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proceedings of the National Academy of Sciences 107, 3475-3480.
- Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. 2007. Fitting photosynthetic carbon dioxide response curves for C₃ leaves. Plant, Cell and Environment **30**, 1035–1040.
- Studer RA, Christin PA, Williams MA, Orengo CA. 2014. Stability-activity tradeoffs constrain the adaptive evolution of Rubisco. Proceedings of the National Academy of Science of the United States of America 111, 2223–2228.
- **Ubierna N, Gandin A, Boyd RA, Cousins AB. 2017.** Temperature response of mesophyll conductance in three C₄ species calculated with two methods: ¹⁸O discrimination and in vitro V_{pmax}. New Phytologist 214, 66-80.
- Ubierna N, Sun W, Kramer DM, Cousins AB. 2013. The efficiency of C_4 photosynthesis under low light conditions in Zea mays, Miscanthus X giganteus and Flaveria bidentis. Plant, Cell and Environment **36**, 365-381.
- Xu LK, Baldocchi DD. 2003 Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (*Quercus douglasii*) under prolonged summer drought and high temperature. Tree Physiology 23, 865-877.
- Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van Der Putten PEL, Vos JAN. 2009. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C₃ photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (*Triticum aestivum*) canopy. Plant, Cell and Environment **32**, 448-464.

- Yin X, Sun Z, Struik PC, Gu J. 2011a. Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. Journal of Experimental Botany 62, 3489-3499.
- Yin XY, Sun ZP, Struik PC, Van der Putten PEL, Van Ieperen W, Harbinson J. 2011b. Using a biochemical C₄ photosynthesis model and combined gas exchange and chlorophyll fluorescence measurements to estimate bundle-sheath conductance of maize leaves differing in age and nitrogen content. Plant, Cell and Environment 34, 2183-2199.