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Abstract Cost-effective next-generation sequencing has made unbiased gene expression15

analysis possible. Single-neuron gene expression studies may be especially important for16

understanding nervous system structure and function because of the neuron-specific17

functionality and plasticity that defines functional neural circuits. Cellular dissociation is a18

prerequisite technical manipulation for single-cell and single cell-population studies, but19

the extent to which the cellular dissociation process cells affects neural gene expression has20

not been determined, nor has it been determined how gene expression is altered by the21

stress that accompanies many of the behavioral manipulations that are required to study22

learning and memory and other cognitive functions. Here, we determined to which extent23

cellular dissociation-induced changes in hippocampal gene expression might confound24

studies on the behavioral and physiological functions of the hippocampus. We processed25

tissue punch samples from the dentate gyrus (DG), CA3, and CA1 hippocampus subfields26

using either a tissue homogenization protocol or a cellular dissociation protocol in27

preparation for RNA sequencing analysis to evaluate the impact of the tissue preparation.28

Then, we evaluated the effect of stressful experience and cognitive training on hippocampus29

subfield specific gene expression and determined to which extent these response overlap30

with the cellular dissociation response. Finally, we assessed the extent to which the31

subfield-specific gene expression patterns are consistent with those identified in a recently32

published hippocampus subfield-specific gene expression database. We report substantial33

differences in baseline subfield-specific gene expression, that 1% of the hippocampal34

transcriptome is altered by the process of cellular dissociation, that an even weaker35

alteration is detected 24 h after stressful experience, and that while these alterations are36

largely distinct from the subfield specific response of the hippocampus transcriptome to37

cognitive training, there is nonetheless some important confounding overlap. These findings38

of the concordant and discordant effects of technical and behavioral manipulations should39

inform the design of future neural transcriptome studies and thus facilitate a more40
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comprehensive understanding of hippocampal function.41

42

Introduction43

Nervous systems are comprised of diverse cell types that include neurons, glia, and vascular44

cells, each serving distinct functions and thus expressing different genes. Consider the hip-45

pocampus, a structure central for spatial navigation and the processing of event memory in46

the mammalian brain. To date, distinct aspects of navigation and memory processing have47

been firmly correlated to activity of particular cellular subfields within the hippocampal for-48

mation. This subfield-specific understanding of hippocampal function, has led to the notion49

that cells within a given subfield are homogeneous in their molecular blueprint and perform50

the same function. However, even within the anatomically-defined subfield of CA1, there are51

identifiable subclasses of pyramidal cells that belong to distinct functional circuits (Mizuseki52

et al., 2011; Danielson et al., 2016). This diversity is even greater when we consider that spe-53

cific cells within a functional class can be selectively altered by neural activity in the recent or54

distant past. For example, only a third of the pyramidal cells of the superficial CA1 sub-layer55

are expected to be meaningfully active during experience of a particular environment and56

only a subset of thosemight have been sufficiently engaged to alter the strength of a synapse57

which then triggers further gene expression changes within the functional class(Guzowski58

et al., 1999, 2006). All this diversity implies distinctive gene expression, very likely at the level59

of single neurons, and such considerationsmay strongly curtail interpretations of gene expres-60

sion studies that use mixtures of cells or microdissected tissue samples.61

Fortunately, recent advances in tissue harvesting and processing, as well as in sequencing62

technologies have allowed detailed analyses of genome-scale gene expression profiles at the63

level of single cell populations, in the context of brain and behavior studies (Chalancon et al.,64

2012; Harris andHofmann, 2014;Moet al., 2015). These approaches have led to systems-level65

insights into the molecular substrates of neural function, along with the discovery or valida-66

tion of candidate pathways regulating physiology and behavior (Cembrowski et al., 2016a).67

While the complexity of some tissues complicates the interpretation of transcriptome data68

collected from samples containing hundreds to tens of thousands of cells representing nu-69

merous cellular subclasses at different levels of diversity, difficulties with interpretation can be70

minimized by careful experimental design governing both data collection and data analysis.71

To complement this effort, and optimize experimental designs, it is necessary to understand72

the extent to which the treatment of tissue samples prior to transcriptome analysis might73

confound interpretation of the results.74

Weexamined the effect of cellular dissociation on the transcriptomes of specific hippocam-75

pal subfields (CA1, CA3, and DG) by comparing tissue homogenization (as a control) and cel-76

lular dissociation protocols. We then examined and compared the effect of prior stressful77

experience that accompanies many protocols to assess learning, memory and innate behav-78

iors, and cognitive training on hippocampal subfield gene expression. Finally, we compared79

these results to a public data set of cell type-specific hippocampus gene expression to further80

validate the patterns of gene expression that we identified. Knowing how technical pertur-81

bations influence the ability to detect the molecular signature of differences in neural and82

behavioral variables is an important step in calibrating the ability to mechanistically under-83

stand hippocampal function. In addition to understanding the impact of cell dissociation84

and stressful experience on hippocampus gene expression, the present findings allow evalu-85

ating the extent to which gene expression profiles of heterogeneous tissue samples compare86

with single neuron population gene expression profiles.87
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Methods andMaterials88

Animals89

All animal care and use complies with the Public Health Service Policy on Humane Care and90

Use of Laboratory Animals and were approved by the New York University Animal Welfare91

Committee and the Marine Biological Laboratory Institutional Animal Care and Use Commit-92

tee. C57BL/6J mice were used, a generous gift from the Jackson Laboratory (Bar Harbor, ME).93

All mice were housed on a 12:12 (light:dark) cycle with continuous access to food and water.94

Tissue preparation95

Each mouse was taken from its cage, anesthetized with 2% (vol/vol) isoflurane for 2 minutes96

and decapitated. Transverse 300 �m brain slices were cut using a vibratome (model VT100097

S, Leica Biosystems, Buffalo Grove, IL) and incubated at 36∘C for 30 min and then at room98

temperature for 90 min in oxygenated artificial cerebrospinal fluid (aCSF in mM: 125 NaCl, 2.599

KCl, 1 MgSO4, 2 CaCl2, 25 NaHCO3, 1.25 NaH2PO4 and 25Glucose) (Pavlowsky andAlarcon, 2012;100

Pavlowsky et al., 2017). Tissue samples were collected from CA1, CA3, and DG, respectively101

in the dorsal hippocampus by punch (0.25 mm, P/N: 57391; Electron Microscopy Sciences,102

Hatfield, PA). All punches for RNA sequencing came from the slice corresponding to image103

74 of the Allen Brain Reference Atlas (RRID:SCR_013286).104

Animal and tissue preparation for assessing impact of cellular dissociation105

A 1-year-old female C57BL/6J mouse was used for the cellular dissociation experiment. One106

tissue punch was designated for the control homogenized processing and the other for the107

cellular dissociation treatment (Fig 1A). Two adjacent tissue samples were collected from each108

subfield for each mouse. The ‘control sample’ was processed using the manufacture instruc-109

tors for the Maxwell 16 LEV RNA Isolation Kit (Promega, Madison, WI). The ‘cellular dissocation110

sample’ was incubated for 75 minutes in aCSF containing 1 mg/ml pronase at room tempera-111

ture, then vortexed and centrifuged. The incubation was terminated by replacing aCSF con-112

taining pronase with aCSF. The sample was then vortexed, centrifuged, and gently triturated113

by 200-�l pipette tip twenty times in aCSF containing 1% FBS. The samplewas centrifuged and114

used as input RNA isolation using the Maxwell 16 LEV RNA Isolation Kit (Promega, Madison,115

WI).116

Animals and tissue preparation for assessing impact of stressful experience and cog-117

nitive training118

Male C57BL/6J mice that were 3-4–months old were used. They were obtained from the Jack-119

son Laboratory (Bar Harbor, ME) and housed at the Marine Biological Laboratory. Gene ex-120

pression in tissue from mice taken from the home cage was compared to mice that received121

mild foot shock, to evaluate how gene expression is affected by stressful experience, which122

is a common confound of behavioral manipulations such as water maze learning, fear con-123

ditioning, inhibitory avoidance, active place avoidance and other learning and memory test124

paradigms. Themice were placed on an elevated circular 40-cm diameter arena that rotated125

at 1 rpm. The arena wall was transparent and so contained themice to the arena and allowed126

it to observe the environment.127

Mice in the stressful experience group received a short series of unavoidable mild foot128

shocks while walking on the arena. Each shock was a constant current 0.2 mA 500 ms 60129

Hz shock. The time series of shocks matched the shock time series from training in an active130

place avoidance task. Each session was 10 minutes and the mice had three sessions a day for131

3 days with an inter-trial interval of 2 hours, during which it was returned to the home cage.132

The shock protocol is initially stressful, assessed by elevated plasma corticosterone, but by the133

second day, corticosterone levels return to baseline levels (Lesburguères et al. 2016). Themice134

received an average of 8 shocks per day with a maximum of 29 and a minimum of 1 shock.135
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Comparisons were made to home cage control mice that were not exposed to the arena.136

Mice in the cognitive training and yoked control groups were placed on the rotating arena137

and trained in the active place avoidance task. The task conditions the mice to avoid foot138

shock that can be localized using extramaze visual cues. Acquiring and remembering the139

avoidance requires intact hippocampus function and long-term synaptic potentiation (Cimadev-140

illa et al., 2001; Hsieh et al., 2017; Pavlowsky et al., 2017). Yoked control mice were exposed to141

the arena the same amount of time as the cognitive training and they received the identical142

time series of foot shocks as an animal in the cognitive training group. Thus the yoked mice143

experienced the same environment as the trainedmice but for the yoked controls, shock was144

unavoidable. While the trained and yoked animals received the same number of shocks, only145

the trained animals exhibited an avoidance response and only they yoked animals exhibited146

a detectable stress response (Lesburgueres et al., 2016).147

Twenty-four hours after the behavioral manipulations the mice were sacrificed and tissue148

punches were collected was described above.149

RNA sequencing150

RNA fromCA1, CA3, and DGwas isolated using theMaxwell 16 LEV RNA Isolation Kit (Promega,151

Madison, WI). RNA libraries were prepared by the Genomic Sequencing and Analysis Facility152

at the University of Texas at Austin using the Illumina HiSeq platform.153

Raw reads were processed and analyzed on the Stampede Cluster at the Texas Advanced154

Computing Facility (TACC). Quality of the data was checked using the program FASTQC. Low155

quality reads and adapter sequences were removed using the program Cutadapt (Martin,156

2011). We used Kallisto for read pseudoalignment to the Gencode MV11 mouse transcriptome157

and for transcript counting (Mudge andHarrow, 2015; Bray et al., 2016). Transcript counts were158

converted into gene counts using the reshape2 R package (Wickham, 2016).159

We downloaded the gene counts from the Cembrowski et al. (2016b) dataset archived160

(NCBI GEO:GSE74985) (Cembrowski et al., 2016b). Briefly, this data set contains hippocam-161

pal gene expression data for pools of 112 ± 6 cells for each of 5 cell types (CA1, CA2, and CA3162

pyramidal neurons and DGmossy and granule cells) from behaviorally naive, transgenic mice163

that express a fluorescent protein label in the specific cell types. The DG, CA1, and CA3 cells164

were manually sorted from both dorsal and ventral slices and fluorescently-labeled neurons165

were manually collected, DG granule cells from Rbp4-Cre KL100, CA3 pyramidal cells from166

Mpp3-Cre KG118, and CA1 pyramidal cells from Vipr2-Cre KE2 mice.167

Statistical analyses168

Gene-level counts were were imported into R for reproducible data management, manipu-169

lation and analysis using the dplyr, plyr, and knitr packages (Xie, 2015, 2014, 2017; Wickham170

and Francois, 2016).171

WeusedDESeq2 for gene expressionnormalization andquantification of gene level counts172

(Love et al., 2014). We used a threshold of a false discovery corrected (FDR) p value < 0.1. Statis-173

tics on the principal component analyses (PCA) were conducted in R (Wickham, 2009, 2011).174

We used the VennDiagram R package (Schwenk et al., 1984) for preliminary visualization of175

differential gene expression, but the final Venn diagrams were drawn with Adobe Illustrator.176

The hierarchical clustering analysis was conducted and visualized using the R package177

pheatmap (Kolde, 2015) with theRColorBrewer Rpackages for colormodifications (Neuwirth,178

2014). The bootstrap probability values for the dendrogramwere calculated using the R pack-179

age pvclust (Suzuki and Shimodaira, 2006).180

PCA was conducted in R using the DESeq2 and genefilter R packages (Love et al., 2014;181

Gentleman et al., 2017). The PCA analysis was visualized using the ggplot2, cowplot, and182

RColorBrewer R packages (Wickham, 2009; Wilke, 2016).183

WeusedGO_MWU for analysis of GO ontology (Wright et al., 2015). Figure 2was generated184

4 of 13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2017. ; https://doi.org/10.1101/153585doi: bioRxiv preprint 

https://doi.org/10.1101/153585
http://creativecommons.org/licenses/by/4.0/


NOT PEER REVIEWED - Manuscript submitted to Hippocampus.

using –log(p-value) as a continuous measure of significance to identify GO categories that185

are significantly enriched with either up- or down-regulated genes. No significance cutoff is186

required for the analysis, but an arbitrary p-valuewas set to visualize the top 10most significant187

GO terms. Figure 5 was generated in two steps. First, a p-value = 0.1 was set for determining188

significantly expressed genes in each analysis, and these data were converted into a binary (0189

or 1) for a typical GO enrichment analysis using Fisher’s exact test to determine if GO categories190

are overrepresented among the significantly expressed genes.191

Archival of data, code, and figures192

The raw sequence data and intermediate data files are archived in NCBI’s Gene Expression193

Omnibus Database (accession numbers GSE99765 and GSE100225). The data and code are194

available on GitHub https://github.com/raynamharris/DissociationTest, with an archived version at195

the time of publication available at Zenodo (Harris et al., 2017a). The schematic images and196

figure modifications were made using Adobe Illustrator and archived in FigShare under a CC-197

BY license (Harris et al., 2017b).198

Results199

Weobtained an average of 5million reads for each hippocampal tissue sample and quantified200

the expression representing 22,485 genes in the mouse reference transcriptome MV11.201

The effects of cellular dissociation on hippocampal transcriptomes202

We identified 162 genes that were differentially expressed between the control and dissoci-203

ated samples, 331 genes that were differentially expressed genes (DEGs) between any of the204

three hippocampus subfields, and 30 genes were shared between both sets of differentially205

expressed genes at p-value < 0.05 (Fig. 1A,B).206

Figure 1. The effect of cellular dissociation on hippocampal transcriptomes. A) From a single female
mouse, we collected 2 CA1, CA3, and DG hippocampal tissue samples. One sample was subjected to a
cellular dissociation treatment (dissociated) whereas the control samples (control) were standardly
homogenized. B) We identified 162 dissociation-induced changes in gene expression, 331 genes with
region-specific expression patterns, and 30 genes differentially expressed by both region and treatment
(FDR p-value < 0.05). C) Hierarchical clustering separates the hippocampal subfields of the
homogenized samples (light gray) but not the dissociated samples (dark gray). D) PC1 accounts for 40%
of all gene expression variation and by inspection, separates the DG samples from the CA1 and CA3
samples. PC2 accounts for 22% of the variation in gene expression and varies significantly with
treatment. Ellipses are hand-drawn.
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A hierarchical clustering analysis of all differentially expressed genes does not give rise207

to distinct clusters that are separated by subfield or method; however, when examining the208

control, homogenized samples alone (identified with light grey boxes), the three subfields209

form distinct clusters, while the dissociated samples do not cluster by subfield (Fig. 1C).210

Next, we conducted a principal component analysis of all identified genes. PC1 accounts211

for 40% of the variation and visually separates the DG samples from the CA1 and CA3 sam-212

ples (Fig. 1D). To confirm statistical significance of this visual pattern, we conducted a two-213

way treatment x region ANOVA and confirmed a significant effect of region (F2,11= 17.69; p214

= 0.0004). Post hoc Tukey tests confirmed CA1 = CA3 < DG. The effect of treatment and the215

treatment x region interaction were not significant. PC2 accounts for 22% of the variation in216

gene expression and varies significantly with treatment (F1,12=6.125; p = 0.03) but not by re-217

gion or the treatment x region interaction. None of the other PCs showed significant variation218

according to either region or treatment.219

The effects of stressful experience on hippocampal transcriptomes220

We examined the effect of stressful experience, which is a common confound of behavioral221

manipulations because animals in different experimental groups often experience different222

levels of stress, especially if the experimental procedure is not intentionally stressful. We iden-223

tified 0 genes that were significantly expressed between samples from the home cage and224

shocked mouse samples; 1669 genes were significantly differentially expressed between any225

of the three brain regions at p-value < 0.05 (Fig. 2A, B).226

Figure 2. The effects of a stressful experience on hippocampal transcriptomes. A) We compared CA1,
CA3, and DG tissue samples from control mice taken directly from their home cage to mice that were
subjected to a mild foot shock. B) We identified 0 genes that responded to treatment, and 1669 genes
that were differentially regulated across regions of the hippocampus (FDR p-value < 0.05). C)
Hierarchical clusters groups samples by brain region but distinct treatments clusters are not present. D)
PC1 accounts for 31% of the variation and visually separates the DG samples from the CA1 and CA3
samples. PC2 accounts for 1% of the variation and distinguish the three subfields. Ellipses were
hand-drawn.

Hierarchical clustering of the differentially expressed genes gives rise to three distinct clus-227

ters corresponding to the three subfields, withCA1 (purple) andCA3 (green) beingmore similar228

to one another than to DG (orange), whereas the effects of the stress manipulation were not229

distinctive (Fig. 2C).230

Next, we conducted a principal component analysis of all the genes that were measured.231

PC1 accounts for 31% of the variation and by inspection, separates the DG samples from the232
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CA1 and CA3 samples (effect of region: F2,15= 42.89; p < 0.001; Fig. 2D). Post hoc Tukey tests233

confirmed CA1 = CA3 ≠ DG. The effects of stress and the stress x region interaction were not234

significant. PC2 accounts for 18% of the variation and varies significantly between CA1 and235

CA3 and CA1 and DG (effect of region: F2,15= 11.41; p < 0.001; Tukey tests: CA1 ≠ DG = CA3). The236

effects of stress and the stress x region interaction were not significant. PC3 accounts for 15%237

of the variation and also explains somebrain region specific differences (effect of region: F2,15=238

6.315; p < 0.01; Tukey tests: CA1 = DG ≠ CA3), whereas effects of stress and the stress x region239

interaction were not significant. PC4 is also influences by region (F2,15= 6.315; p = 0.0102; Tukey240

tests: CA1 ≠ CA3. PC5 did not account for any significant differences according to region or241

treatment. PC6 significantly accounted for variance associated with the effect of a stressful242

experience (F1,16> 4.774; p’s < 0.04).243

The effects of cognitive training on hippocampal transcriptomes244

We identified that 423 genes were differentially expressed between the yoked control and245

cognitively trained animals, 3485 genes thatwere differentially expressed across subfields, and246

324 showed an interaction at FDR p < 0.05 (Fig. 3A, B). We see a large effect of brain region247

on gene expression, with 20% of detectable genes being differentially expressed between248

one or more brain-region comparisons (3485 differentially expressed genes /17320 measured249

genes). This is an order of magnitude greater than the 2% of the transcriptome that changed250

in response to learning (423 DEGs /17320 genes measured).251

Figure 3. Effects of a learned avoidance behavior on hippocampal transcriptomes. A) Mice used in
this study were either subjected to random but mild foot shocks (control) or subjected to mild foot
shocks conditioned with spatial cues (trained). Tissue samples were collected from CA1, CA3, and DG. B)
We identified only 285 genes that were significantly expressed according to the behavioral
manipulation and identified 3622 genes that were were differentially expressed between any of the
three brain regions. C) Hierarchical clustering of the differentially expressed genes gives rise to three
distinct clusters corresponding to the three brain regions, with CA1 and CA3 being more similar to one
another than to DG. D) A principle component analysis of all genes in analysis (regardless of level of
significance) shows that PC1 accounts for 50% of the variation and distinguishes the DG samples and
the CA1 and CA3 samples (Region: F2,19= 199.3; p = 1.78e-13). PC2 accounts for 18% of the variation and
distinguishes all three subfields (F2,19= 220.4; p = 7.15e-14). Ellipses were hand-drawn.

Hierarchical clustering of the differentially expressed genes separates samples by both252

subfield and treatment (Fig. 3C). A principal component analysis of all gene expression data253

revealed that brain region explains 75% of the variance in the data (Fig. 3D). PC1 accounts for254

56% of the variance and distinguishes DG from the Ammon’s horn samples (effect of region:255

F2,19= 226.1; p < 0.001; Tukey tests: CA1 = CA3 ≠ DG), but the effects of training and the training x256
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region interactionwere not significant. PC2 accounts for 19%of the variance anddistinguishes257

the three subfields (effect of region: F2,19= 255.3; p < 0.001; Tukey tests: CA1 ≠ CA3 ≠ DG). PC3258

and PC4 indicate a significant influence of cognitive training (PC3: F1,20=7.451; p = 0.01,) and259

(PC4: F1,20=10.11; p = 0.005), but no significant effects of region and the region x treatment260

interaction.261

Identifying unique and general patterns of hippocampal genomic plasticity262

Next, we examined the overlap in genomic response to the technical and biological pertur-263

bations. We identified three specific genes that responded to both cellular dissociation and264

to cognitive training: Grin2a, Epha6, and Ltbp3 (Fig. 4A). There was no overlap in differentially265

expressed genes compared to the cellular dissociation treatment (Fig. 4A).266

Figure 4. Unique and shared responses to technical treatments and biological perturbations. A) The
number of genes that responded to chemical dissociation (163 genes), a stressful experience (0 genes),
and cognitive training (423 genes). The three genes that respond to both technical and biological
perturbation are Epha6, Grin2a, and Itbp3. B, C) The molecular function of gene ontology (GO)
categories that are significantly enriches with either up- or down-regulated genes in response to cellular
dissociation (B) or cognitive training (C). The top 10 most significant GO terms are visualized, each with a
p-value < 0.001. The fraction next to GO category name indicates the fraction of genes in that category
that survived a 10% FDR threshold for significance. Zero terms survived a 10% FDR threshold in response
to a stressful experience.

We next analyzed gene ontology at 5% FDR significant in each of the data sets to identify267

the molecular function of genes that changed in response to cellular dissociation (Fig. 4B)268

or cognitive training (Fig. 4C). The process of cellular dissociation results in a significant up-269

regulation ofmolecular processes related to ribosomal activity, rRNA binding, oxidoreductase270

activity, and proton transport, while it caused a down regulation of ligase and helicase activ-271

ity (Fig. 4B). The GO analysis detected no Molecular Function GO terms in the significantly272

overrepresented genes in response to the stressful experience. Cognitive training resulted in273

a significant upregulation of molecular processes related to glutamate receptors, signal trans-274

duction, calcium binding, andmembrane transport, and it resulted in a significant downregu-275

lation of ribosomal activity, oxidoreductase activity, mRNA binding, and proton transport (Fig.276

4B). The gene ontology analysis identified 91 significant GO terms in response to cognitive277
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training. Among the top 10 are glutamate signaling and membrane transport systems and a278

downregulation of oxidoreductase and ribosomal activity (Fig. 4C). Notably, learning induces279

a downregulation of a structural constituent of ribosomes and oxidoreductase, which were280

both up-regulated in response to cellular dissociation (Fig. 4B,C).281

Recovering robust subfield-specific gene expression patterns282

Using the public Cembrowski et al. (2016b) dataset, we identified 10,751 genes that were283

differentially expressed between hippocampal sub-regions (Fig. 5A). Using meta analyses of284

the public Cembrowski data with the primary data described herein, we identified 146 genes285

that showed robust subfield-specific gene expression patterns (Fig. 5A). Those 146 genes are286

enriched in cellular compartments related to synapses and molecular functions related to287

calcium signaling, GTP exchange, and proteoglycan binding (Fig. 5B).288

Figure 5. Meta analysis of primary and public data. A) This Venn diagram shows the overlap in
brain-region specific gene expression across all four experiments (cellular dissociation, stressor
habitation, cognitive training, and a public dataset examining subfield comparisons). Grey numbers
indicate total number of differentially expressed genes between and two-way subfield comparison.
Using this approach, we identified 146 genes that were differentially expressed between any two
subfields of the hippocampus in all four experiments. B) Those 146 provide robust brain-region specific
markers of gene expression belong to molecular function and cellular compartment GO. The top 10
most significant GO terms are visualized, each with a p-value < 0.05. The fraction next to GO category
name indicates the fraction of genes in that category that survived a 10% FDR threshold for significance.

Discussion289

The main purposes of this study were 1) to test whether analysis of gene expression in hip-290

pocampus subfields is changed by tissue preparation procedures (cellular dissociation versus291

homogenization) and 2) to evaluate the effects of a stressful experience relative to cognitive292

training on analysis of gene expression. The work was designed to evaluate the extent to293

which technical (i.e. cellular dissociation) and biological confounds (i.e. stressful experience)294

can impact efforts to assess the transcriptomic response to cognitive processes. This is po-295

tentially important because it is increasingly necessary to dissociate cells in tissue samples for296

single cell or single population studies.297

Hippocampal subfield differences are well known (Lein et al., 2004;Hawrylycz et al., 2012;298

Cembrowski et al., 2016a,b). Across the three experiments with different treatments, the299

identity of the hippocampal subfield, explained between 40 and 75% of all the variation in300

gene expression across samples(Fig. 1D, Fig. 2D, Fig. 3D). The samples that were subjected to301

cellular dissociation show the least amount of region-specific variation, suggesting that this302

process might alter the genes that normally distinguish the hippocampal subfields from one303

another. On the other hand, the Cembrowski et al. (2016b) study identified a larger number304
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of genes with subfield specificity; this is likely due to the cell sorting process that generates305

a relatively homogenous rather than a heterogeneous population of neurons. These results306

indicate that cell-type specific differencesmay be recovered by sorting cells into homogenous307

populations.308

Across the data set, many genes consistently or robustly demonstrate hippocampal sub-309

field specificity in their expression (Fig. 5B). The meta-analysis of the primary data and the310

public data (Cembrowski et al., 2016b) identified 146 genes that could potentially serve as ro-311

bust subfield specific markers. The molecular functions of these potential marker genes are312

diverse, related to calcium channel regulation, proteoglycan binding, and guanyl-nucleotide313

(GTP) exchange, as well as cellular compartment categories related to the synapse and the314

postsynaptic density. This suggests that the phenotypic and functional differences amongst315

DG, CA3, and CA1 neurons may be driven or influenced by subfield differences in gene expres-316

sion.317

With respect to the effects of cellular dissociation of hippocampal gene expression, we318

found that 0.9% (162/16,709) of the genes measured changed in response to cellular dissoci-319

ation (Fig. 1B). This is smaller than the 2.4% (423 /17,320) change we detected in response to320

cognitive training (Fig. 3B). The stressful experience produces a negligible response (i.e. no321

significant genes or GO terms were detected), indicating that the mild stress that likely ac-322

companies most behavioral tasks does not have a lasting influence on hippocampal gene323

expression (Fig. 1B).324

The extent to which cellular dissociation and unintended stress impacts the expression of325

particular genes and signaling pathways, limits the feasibility of investigating how genes con-326

tribute to behavior and other responses to organismal manipulations. We found that Grin2a327

responded to both cellular dissociation and cognitive training (Fig. 4A). Grin2a encodes sub-328

units of N-methyl-D-aspartate (NMDA) type ionotropic glutamate receptors that are crucial for329

numerous cellular functions throughout the brain, including hippocampus-dependent synap-330

tic plasticity and learning (Collingridge et al., 1983; Morris, 2013).Accordingly, care should be331

taken when studying the role of glutamate and MAPK signaling in combination with cellular332

dissociation techniques. Epha6 and Ltbp3 also responded to both cellular dissociation and333

cognitive training (Fig. 4A). Epha6 is involved with the MAPK-Erk signaling pathway. Ltbp3334

is involved in binding calcium ions and shows altered gene expression in a mouse model of335

Alzheimer’s Disease (Neuner et al., 2017).336

We can look beyond the specific genes and examine which pathway responses are con-337

cordant or discordant to multiple treatments. In this case, we saw upregulation of ribosomal338

activity and rRNAbiding in response to cellular dissociation, butwe sawanopposingdownreg-339

ulation in ribosomal activity and mRNA binding in response to cognitive training (Fig. 5B,C).340

This suggests that cellular dissociation activates a general transcriptional response whereas341

cognitive training reduces the transcription of specific protein coding genes. This demon-342

strates the possibility that such an interaction, in this case a downregulation in response to343

cognitive training could be overshadowed by technical artifacts if hippocampus tissue is first344

subjected to the cellular dissociation required for single-cell or single cell population investi-345

gations.346

We foundnodetectable transcriptional response in theCA1, CA3, or DG following the stress-347

ful experience (Fig. 2B). The shock experience we used causes a large increase in plasma348

corticosterone levels, comparable to exposure to predator threat, that is observed after the349

initial shock exposure session but is absent 24-h later after the second training session (Les-350

burguères et al., 2016b). Our findings support the use of either home cage or shock-yoked351

animals as controls for active place avoidance training experiments. In the case of the home352

cage controls that do not experience shock, their stress response is indistinguishable from the353

trained mice but their sensory experience is very different. In contrast, the shock-yoked mice354

have identical sensory experience as the experimental mice, but they experience stress that355
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the experimental animals do not (Lesburguères et al., 2016). It may be that untrained control356

mice are optimal, because they would have the identical experience of the environment as357

experimental mice, except at the brief 500 ms moments of shock that account for roughly358

3% of the task assuming 20 shocks in 600 s. Depending on the question one control may be359

preferable over the others, but as demonstrated here, when assessed 24 h after the training360

experience, they appear to be equivalent in terms of their gene expression profiles (Fig. 2).361

Conclusions362

Many factors contribute to variation in gene expression. We set out to identify the extent to363

which the process of cellular dissociation – which allows for single cell analysis of neurons364

– has an appreciable effect on our ability to detect biologically meaningful variation in hip-365

pocampal gene expression. We conclude that there are specific dissociation-induced and366

cognitive training-induced changes in gene expression that are largely non-overlapping. It367

is encouraging that the overlap between cellular dissociation and cognitive training is small,368

indicating that these technical and biological processes affect different transcriptional pro-369

cesses. It is also encouraging to know that the stressful experience had no substantial effect370

on hippocampal gene expression, which if generalizable to other tasks will allow for using371

behavioral control groups and behavioral manipulations that also induce modest, potentially372

confounding stress. These findings provide insight into how cellular and biological manipu-373

lations influence gene expression. Through meta analysis and comparison to the published374

literature, we have identified a subset of robust sub-region specific markers of gene expres-375

sion profiling. Further research is clearly needed to uncover the influence of other variables376

on variation in hippocampal gene expression.377
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