1	Combining next-generation sequencing and mtDNA data to uncover cryptic lineages of
2	Mexican highland frogs
3	
4	Eugenia Zarza ¹ , Elizabeth M. Connors ¹ , James M. Maley ¹ , Whitney L.E. Tsai ¹ , Peter Heimes ² ,
5	Moises Kaplan ³ & John E. McCormack ^{1,*}
6	
7	¹ Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041
8	² Playa Miramar 441, Colonia Marte 08830, Mexico City, Mexico
9	³ 1508 Brooklyn Ave, Ann Arbor, Michigan 48104
10	
11	EZ email: eugenia.zarza@gmail.com
12	EMC email: beth.connors.94@gmail.com
13	JMM email: jmaley@oxy.edu
14	WLET email: wtsai@oxy.edu
15	PH email: heimesp@hotmail.com
16	MK email: moises.kaplan@gmail.com
17	
18	*Corresponding author: mccormack@oxy.edu
19	

20 Abstract

21 Recently, molecular studies have uncovered significant cryptic diversity in the Mexican 22 Highlands, leading to the description of many new endemic species. DNA approaches to this 23 kind of species discovery have included both mitochondrial DNA (mtDNA) sequencing and 24 multilocus genomic methods. While these marker types have often been pitted against one 25 another, there are benefits to deploying them together, as linked mtDNA data can provide the 26 bridge between uncovering lineages through rigorous multilocus genomic analysis and 27 identifying lineages through comparison to existing mtDNA databases. Here, we apply one 28 class of multilocus genomic marker, ultraconserved elements (UCEs), and linked mtDNA data 29 to a species complex of frogs (*Sarcohyla bistincta*) found in the Mexican Highlands. We generated 30 data from 1,891 UCEs, which contained 1,742 informative SNPs for S. bistincta and closely 31 related species and captured mitochondrial genomes for most samples. Genetic analyses based 32 on both whole loci and SNPs agree there are numerous distinct and divergent lineages within S. 33 bistincta. The SNP-based species tree provides the most conservative estimate of 8 well-34 supported lineages in three major clades. Having linked mtDNA data allowed us to tap into the 35 large number of mtDNA sequences available on GenBank and identify one of these lineages as 36 an already-described species, S. pentheter. One identified clade (containing 2 of the 8 lineages) 37 was 10% divergent in mtDNA and paraphyletic with other S. bistincta, making this clade a clear 38 candidate for species status. Phylogenies from UCEs and mtDNA mostly agreed in their 39 topologies, but differed in that mtDNA suggested a more complex evolutionary history perhaps 40 influenced by gene flow between some neighboring lineages. Our study demonstrates that the 41 Mexican Highlands still hold substantial undescribed diversity. Combining multilocus genomic data with linked mtDNA data is a useful approach for identifying potential new species and 42 43 associating them with already described taxa, which is especially important in groups with 44 undescribed subadult phenotypes, where geographic ranges are unclear, or where phenotypes 45 are conserved.

- 47 Keywords: ultraconserved elements, genomics, population genetics, phylogeography,
- 48 phylogenetics, systematics, species limits, Hylinae

49 Introduction

50 The Mexican Highlands are a global biodiversity hotspot (Myers et al. 2000). Recent molecular 51 studies have uncovered significant cryptic diversity in the Mexican Highlands, leading to the 52 description of new endemic species or the elevation of former subspecies to species rank 53 (Bryson et al. 2010; Bryson et al. 2012; Bryson et al. 2011; McCormack et al. 2008; Rovito et al. 54 2015). At the same time, habitat loss threatens many of these species before they have even been described (Ponce-Reyes et al. 2012). Amphibians are particularly sensitive to habitat alterations, 55 and many are threatened by habitat loss and invasive diseases (Stuart et al. 2008). Because most 56 57 amphibians have reduced dispersal, they also show patterns of microendemism (Parra-Olea et 58 al. 2014), meaning that important pockets of diversity and new species are still being uncovered in the Mexican Highlands (Campbell et al. 2009; Meik et al. 2006). 59

60 We investigate potential cryptic diversity within the *Sarcohyla bistincta* species complex 61 in the Mexican Highlands. The genus Sarcohyla, which is considered distinct from Plectrohyla by 62 some authors to reflect those species west of the Isthmus of Tehuantepec (Duellman et al. 2016), 63 contains 24 species of stream-dwelling frogs, many of them critically endangered and many that 64 have never been seen after their original discovery (references compiled in Stuart et al. 2008). 65 Some species are thought to be in serious decline or extinct (Lips et al. 2004). The actual number 66 of species, their relationships, and geographic ranges are not well known (Duellman 2001; Duellman et al. 2016; Faivovich et al. 2009). S. bistincta is the most broadly distributed member 67 of the genus. It occurs in several mountain ranges separated by lowland barriers and might 68 69 therefore be comprised of multiple species.

We sought to assess potential cryptic diversity in *S. bistincta* using multilocus genomic markers collected via next-generation sequencing (NGS) as well as mitochondrial DNA (mtDNA) data. Often, mtDNA and multilocus nuclear markers have been pitted against one another in biodiversity discovery (Edwards & Bensch 2009; Moritz & Cicero 2004; Zink & Barrowclough 2008). Mitochondrial DNA offers many benefits, including economy, efficiency, and wide comparative potential across species and studies. Consequently, there is now a vast

trove of mtDNA sequences on GenBank. A drawback of using only mtDNA is that a single 76 77 marker will often fail to accurately depict the speciation process (Edwards & Bensch 2009). In 78 response, multilocus methods have multiplied (Edwards 2009; Fujita et al. 2012). While multiple 79 loci help model a more realistic speciation process, multilocus studies suffer from the lack of a 80 standardized marker set, which limits the ability to link uncovered lineages with species 81 already identified and described in prior studies and in public databases. This is especially 82 important in groups with multiple subadult phenotypes (e.g., insects and frogs) and where 83 adult phenotypes are conserved across species. While many studies have used both types of 84 markers, few have explicitly explored the benefits of linked mtDNA and NGS data at the level 85 of the individual for lineage discovery and identification.

For our multilocus genomic markers, we use ultraconserved elements (UCEs). UCEs are 86 87 an appealing multilocus marker set because the same loci are found across major branches of 88 the tree of life, where they act as anchors for variable DNA in flanking regions (Faircloth et al. 89 2012). For instance, it is possible to capture the same set of 1000 or more UCEs across all 90 mammals (McCormack et al. 2012), all reptiles (Crawford et al. 2012), or hundreds of UCEs 91 across arachnid lineages separated by hundreds of millions of years (Starrett et al. 2016). While 92 the power of UCEs for deep-level systematics is clear, their utility at shallower scales around the 93 species level is still coming into focus (McCormack et al. 2016; Smith et al. 2014; Zarza et al. 94 2016). An added benefit of the UCE enrichment process (and all so-called "sequence capture" 95 methods) is that whole mtDNA genomes are often captured as off-target "bycatch" (do Amaral 96 et al. 2015), meaning each individual has associated nuclear and mtDNA data (e.g., Zarza et al. 97 2016). Our specific goals were to determine if UCEs are useful for addressing potential cryptic diversity within a species complex of frogs. Then, we assess whether linked mtDNA data, by 98 99 providing a bridge to Genbank data, allows for more refined conclusions about the 100 identification of any discovered lineages.

- 101
- 102 Methods

103 Sampling and Ingroup Determination

MK and PH collected tadpoles from January to June 2004 across most of the range where *Sarcohyla bistincta* are known to exist (Duellman 2001) in the Transvolcanic Belt of Michoacán, Morelos, and the state of México, the Sierra Madre del Sur of Guerrero, and the highlands of Oaxaca stretching into Puebla and Veracruz (Fig. 1; Table 1). Unsampled parts of the *S. bistincta* range include the far west Transvolcanic Belt in Michoacán and Jalisco, the far northwest in the Sierra Madre Occidental (Nayarit, Durango, and Sinaloa), and the far northeast in Hidalgo (see Fig. S1 for sampled and unsampled locations and known ranges of all *Sarcohyla* species).

111 Tadpoles were targeted to improve sampling efficiency, which allowed for a larger 112 sampling range and sample density. After collection from a sampling location with a dip net, 113 tadpoles were, to the extent possible, separated by species based on morphology and reared to 114 subadults in the laboratory prior to vouchering. Species identification was based on the most 115 recent diagnosis of S. bistincta and other closely related species (Duellman 2001). One tadpole 116 was chosen for the tissue voucher, while the other individuals became physical vouchers with 117 museum catalog numbers. Thus, we provide both field numbers and catalog numbers in Table 1 118 to provide a link to both the exact genetic material (field number) and the associated phenotype 119 voucher representing that genotype (museum catalog number). Before limiting our taxonomic 120 sampling to 38 individuals in a clade thought to represent S. bistincta (as we discuss later, some 121 turned out to be already-described species nested within S. bistincta), we ran preliminary 122 phylogenetic analyses including broader sampling of 45 Sarcohyla individuals and an outgroup 123 genus *Exerodonta* to ensure we had correctly identified the ingroup (Table S1; Fig. S2).

125

126 Figure 1. (A) Map of central Mexico showing sampling sites for *S. bistincta* and close outgroups, with numbers matching localities listed in Table 1 and colors matching Structure 127 results below. Unsampled parts of the distribution of S. bistincta are shown in Fig. S1; (B) S. 128 129 *bistincta* individual from near site 1; (C) Composite results of repeated Structure runs at *K* = 2 showing the finest detectable structure in the genetic data. Each vertical line represents an 130 individual labeled with its UMMZ catalog number above and, in descending order below, 131 132 the site number and the lineage number based on the SNAPP analysis. One tissue voucher MK 730 (2) could not be linked to a specimen voucher and thus its geographic locality is 133 134 unknown.

136

137 Sequence capture and next-generation sequencing

138 We extracted genomic DNA from tissue using a Qiagen (Valencia, CA) DNAeasy Blood and 139 Tissue extraction kit. We visualized extractions on an agarose gel to ensure fragments were 140 larger than 200 base pairs (bp) and quantified the resulting double-stranded DNA using a Qubit 141 2.0 Fluorometer (Carlsbad, CA). For each sample, we sheared 100 μ l of 20 ng/ μ l concentration 142 DNA to a size distribution with its peak between 400 and 600 bp using a Bioruptor 143 ultrasonicator (Diagenode). We prepared libraries for each sheared sample with a KAPA 144 (Boston, MA) LTP library preparation kit for the Illumina platform, attaching custom indexing 145 tags (Faircloth & Glenn 2012) to each sample to allow sample pooling.

146 We enriched pools of eight samples using a set of synthetic RNA probes that target 5,060 147 tetrapod UCEs (MYbaits_Tetrapods-UCE-5K kit, Mycroarray) following the standard UCE 148 enrichment protocol (Faircloth et al. 2012) with one modification. Amphibians have large and 149 variable genome sizes with a high percentage of repetitive DNA (Olmo 1991). While we do not 150 have information about the genome size and composition of *Sarcohyla* specifically, we wanted to 151 decrease the potential risk of the probes hybridizing to repetitive elements (McCartney-Melstad 152 et al. 2016). We thus increased by 6X the amount of the Cot-1 blocker, a synthetic DNA derived 153 from chicken that binds to repetitive regions. After enrichment and recovery PCR, we verified 154 the library size range with an Agilent 2100 Bioanalyzer (Palo Alto, CA). We quantified the 155 enriched pools using qPCR and combined them in equimolar ratios before sequencing on an 156 Illumina HiSeq 2000 lane (100-bp paired-end cycle) at the University of California Santa Cruz 157 Genome Technology Center.

158

159 Bioinformatics of next-generation sequencing data

We demultiplexed the Illumina raw reads and converted them to FASTQ format with the program bcl2fastq v.1.8.4 (Illumina, Inc.). To eliminate adapter contamination and low quality bases, we trimmed the FASTQC output with illumiprocessor (Faircloth 2013). We trimmed and assembled these reads into contigs with Trinity (Haas et al. 2013) and ABySS (Simpson et al.
2009), both of which are built into the PHYLUCE pipeline (Faircloth 2015). PHYLUCE uses
LASTZ (Harris 2007) to align all assembled contigs to UCE probes in order to isolate only UCE
contigs and to identify and eliminate paralogs.

- 167
- 168 *Phylogenetic trees from concatenated UCE data*

We extracted UCE contigs into a single FASTA file and aligned the output for each locus using MAFFT (Katoh et al. 2005). We required that 75% of the taxa needed to have data for a given locus to be included in the final concatenated matrix, which led to dropping loci that did not meet this threshold. We then constructed a maximum-likelihood (ML) tree in RAxML v8.0.19 (Stamatakis 2014) under the GTRGAMMA model of evolution with 100 bootstrap searches, followed by a search for the tree with the highest likelihood.

175

176 Mitochondrial DNA assembly and analysis

177 We identified and assembled mtDNA genomes from off-target, trimmed Illumina reads using the reference genome of a closely related species, Hyla annectans (Genebank accession number 178 179 KM271781; Ye et al. 2016). We used MITObim 1.7 (Hahn et al. 2013), a Perl wrapper for MIRA 180 4.0.2 (Chevreux et al. 1999), that takes an iterative mapping approach for assembly. We 181 conducted de novo annotation of the assembled mtDNA regions with the MITOchondrial 182 genome annotation Server, MITOS (Bernt et al. 2013). We selected for analysis only those 183 individual genomes with MIRA quality score greater than 30. We aligned each protein-coding 184 region separately in Geneious vR8 (Kearse et al. 2012) using MUSCLE (Edgar 2004) and 185 corrected the alignments manually when necessary and constructed a concatenated mtDNA 186 matrix, which we also ran in RAxML v8.0.19.

187 We melded this mtDNA data with existing *Sarcohyla* and *Plectrohyla* mtDNA data on188 Genbank to determine whether any of the lineages we uncovered in *S. bistincta* relate to already-

described species. We determined that *cytochrome b* is the best-represented mtDNA gene on 189 190 Genbank for this group. We downloaded all existing *cytochrome b* sequences from *Sarcohyla* and 191 Plectrohyla taxa. We combined these sequences with those from a subset of our S. bistincta 192 samples, choosing the individual with the most raw reads from each major genetic lineage in the UCE tree. We aligned the trimmed, filtered reads for each individual to a Sarcohyla 193 194 *cytochrome b* reference sequence and formed a consensus sequence for each individual from the 195 mapped reads. We then created an alignment and generated a phylogeny using BEAST v2.4.2 196 (Bouckaert et al. 2014). We repeated this process with 16S data because we suspected *S. pentheter* 197 was closely related to our ingroup, but *S. pentheter* had no *cyt b* sequence on Genbank.

198

199 *Calling SNPs from UCE loci*

200 We called SNPs from UCE loci so that we could run genetic clustering tests and infer a species 201 tree using SNAPP (Bryant et al. 2012), which uses SNPs as input data. Calling SNPs requires a 202 reference sequence, and we chose the sample with the most UCE contigs recovered within the 203 ingroup (UMMZ 239727). We then used BWA (Li & Durbin 2009) to map the reads of each 204 sample to this reference. We used SAMtools (Li et al. 2009) to sort the reads, and Picard 205 (http://broadinstitute.github.io/picard) to identify and remove PCR duplicates. We realigned 206 the mapped reads to minimize mismatched bases due to indels, and we removed indels using 207 the Genome Analysis Toolkit 3.2 (GATK; McKenna et al. 2010) and a custom script 208 (indelrealigner.sh), as suggested by the Best Practices workflow (DePristo et al. 2011; van der 209 Auwera et al. 2013).

There is no SNP database available for treefrogs, so we followed best practices for base recalibration for non-model organisms suggested by GATK (McKenna et al. 2010). This consists of (1) doing an initial round of calling SNPs on the original, uncalibrated data, (2) selecting the SNPs with the highest confidence (a minimum emission and call quality of 40 or more), and (3) using these SNPs as the reference database of known SNPs. We executed four rounds of base recalibration on the original data to filter out systematic error using a custom script. We called

216 genotypes on the last recalibrated BAM file. We used vcf-tools (Danecek et al. 2011) to select one

SNP per UCE and produce two data sets, one allowing 25% missing data for STRUCTURE v

218 2.3.4 (Pritchard et al. 2000), and one with no missing data – a requirement for SNAPP as

219 implemented in BEAST v2.2.1 (Bouckaert et al. 2014).

220

221 *STRUCTURE analyses*

222 We used STRUCTURE v2.3.4 (Pritchard et al. 2000) as an unbiased way to assess the limits of 223 fine-scale genetic structure in our data. Our intent with using STRUCTURE was not to determine the single most likely number of genetic clusters; thus, we did not use a method for 224 identifying the "true K" (Evanno et al. 2005), which can underestimate fine-scale population 225 226 structure (Janes et al. 2017). Rather, our goal was to determine the maximum possible number of 227 genetic clusters in our data (e.g., Brown et al. 2007; Gowen et al. 2014). We began by analyzing 228 all individuals of S. bistincta plus two outgroup species S. chryses and S. hazelae under K = 4, 229 reasoning that this would likely split out the two outgroups as well as reveal at most one 230 division within S. bistincta. After this, each identified genetic cluster within S. bistincta was 231 further analyzed at K = 2 until no coherent geographically-based structure was evident in the 232 plots. All runs were completed twice and each used an admixture model and 10M generations 233 with 1M generations as burn-in, which led to convergence for all analyses.

234

235 SNAPP tree and species delimitation

We generated a species tree from the SNP matrix using SNAPP 1.1.10 (Bryant et al. 2012). This analysis included putative *S. bistincta* samples (again, later shown to include other species nested within) and one outgroup, *S. chryses.* For this run, we made no *a priori* assumptions about how individuals grouped into species and allowed each individual to be considered its own "species" (i.e., terminal tip). We ran two instances of SNAPP for seven million generations using default priors. We combined tree and parameter files from both runs with LogCombiner 242 2.1.3 and displayed the full set of likely species trees with Densitree v2.2.1 (Bouckaert et al.243 2014).

244

- 245 Results
- 246 NGS summary statistics

Detailed summary statistics for each of the 38 ingroup samples and two outgroups are described in Table 1. ABySS produced longer contigs than Trinity, and a higher number of UCE loci, so we used ABYSS contigs in all downstream analyses. Reads per sample ranged from 17,052 to 3,423,330 with an average of 1,185,165 reads. The number of identified UCEs ranged from 381 to 2,444 with an average of 1,976 UCEs. The mean length of individual UCE loci per individual ranged from 222 to 717 bp with an average of 522 bp. On average, 18% of the assembled contigs corresponded to unique UCE loci.

For SNP calling, across 40 samples of *S. bistincta* and outgroups, 9% of the trimmed reads mapped to our designated reference individual. SNP read depth ranged from 2.4 to 35.0 with an average depth of 21.2. The recalibration and quality control steps resulted in an initial matrix of 16,578 SNPs. After removing non-biallelic loci, selecting one SNP for every UCE, and allowing 25% missing data, there were 1,742 SNPs left in the STRUCTURE data set, while the 100% complete data matrix for SNAPP contained 399 SNPs.

260

261 UCE phylogeny from concatenated data

Our more taxonomically inclusive data set with all available *Sarcohyla* and outgroup *Exerodonta xera* (Table S1) contained 1,866 UCE loci and 1,030,450 bp for a concatenated analysis. The resulting ML tree (Fig. S2) showed strong support for monophyly of *Sarcohyla*, and identified *S. arborescandens* and *S. cyclada* as sister species that together form a clade sister to the rest of the *Sarcohyla* included in the study. We limited further analyses to a smaller data set of 40 samples with *S. hazelae* as the outgroup (Table 1). This focal data set contained 1,891 UCE loci and 1,038,600 bp.

The ML tree of these 40 samples found strong support for many clades within the species currently described as *S. bistincta*, conforming to distinct geographic areas (Fig. 2a).

271

Figure 2. (A) UCE tree; (B) mtDNA tree. Colors match Structure groups identified in Fig. 1.
Tips are labeled with their UMMZ catalog number.

275

272

In brief, there were three clades on relatively long branches: (1) a clade distributed across the Transvolcanic Belt (shaded blue in figures); (2) a clade inhabiting two disjunct areas along the coastal slopes of the Sierra Madre del Sur in Guerrero and Oaxaca (shaded gray); and (3) a clade broadly distributed in the Sierra Madre del Sur (shaded red and pink), the Oaxaca Highlands

(shaded yellow and orange), and one individual in the southern portion of the Transvolcanic 280 281 Belt (shaded purple). One individual that nested within S. bistincta was labeled as a different 282 species, S. mykter, from Guerrero. We suspect that this sample was mislabeled and is actually a 283 duplicate of an *S. bistincta* sample already included in the study because their field numbers are 284 similar (last two digits transposed) and the two samples grouped together in all analyses. We 285 have left this sample in all analyses, but have labeled it as a duplicate of S. bistincta UMMZ 286 239749. Another tissue voucher, MK 730 (2), could not be linked definitively to a physical voucher, and thus its geographic location is unknown. Its tip label has been left as the field 287 288 number. Connecting UCE with mtDNA data, discussed later, revealed that one specimen in the 289 gray clade (UMMZ 239772) is an already-described species, *S. pentheter*.

290

291 *mtDNA tree*

292 Our final concatenated mtDNA matrix (individual *cyt b* and 16S tree are discussed later) was 293 11,269 base pairs including gaps, as coverage of the mtDNA genome varied from sample to 294 sample in accordance with the non-targeted nature of the DNA collection (Table 1). 295 Relationships in the ML tree (Fig. 2b) among the 29 individuals with high quality scores were 296 similar to the concatenated UCE tree with two key differences, both within the broadly 297 distributed clade in Guerrero and Oaxaca: (1) in the mtDNA tree, individuals from eastern and 298 western Guerrero (shaded pink and red in figures) formed a clade, whereas they were more 299 distantly related in the UCE tree; (2) in the mtDNA tree, individual UMMZ 239731 (shaded 300 purple) was nested within the Guerrero clade instead of being sister to a much more inclusive 301 clade, as in the UCE tree.

302

303 *Structure analysis*

As expected, the first run of STRUCTURE at K = 4 split the two outgroup species into distinct clusters and split the remaining individuals into two clusters. Further analysis of each cluster at K = 2 revealed ten genetic clusters in all (Fig. 1c), which are largely concordant with clades

307 observed in the UCE and mtDNA phylogeny. Most individuals did not share assignment308 among clusters, although a few individuals showed mixed assignment among clusters.

309

310 *SNAPP species tree*

The SNAPP tree and its cloudogram of posterior species trees (Fig. 3) revealed eight wellsupported lineages consistent with many of the genetic clusters in the Structure analysis and with relationships in the UCE and mtDNA whole-genome phylogenies. With respect to the discrepancies between UCE and mtDNA trees detailed above, the SNAPP tree agreed with the mtDNA tree that eastern and western Guerrero individuals form a clade, but agreed with the UCE tree in the placement of individual UMMZ 239731.

317

Figure 3. Cloudogram of the posterior distribution of SNAPP trees from 399 high-quality

320 SNPs mined from UCE loci. Tip labels are UMMZ catalog numbers. Lineages and clades are

321

discussed in text. Colors match genetic clusters from Figure 1.

322

323 *mtDNA phylogeny combining new data with Genbank sequences*

Using 16S sequences, we determined that one lineage from Fig. 3 matched an S. pentheter 324 325 sequence on Genbank. This individual (UMMZ 239772) had one of the lowest read counts of 326 any samples and very few mtDNA reads. However, five Illumina reads mapped to 16S covering 421 bp of the 681 bp reference sequence (Genbank S. pentheter accession number DQ055825). 327 Over this stretch, UMMZ 239772 was identical to the S. pentheter reference. As a point of 328 329 comparison, UMMZ 239679 (a member of the blue S. bistincta Lineage 1 in the Transvolcanic 330 Belt) had 70 differences across the 681 bp (10.3% divergence). This DNA identification of 331 UMMZ 239772 as *S. pentheter* was later confirmed by re-examining the subadult specimen.

After confirming UMMZ 239679 as *S. pentheter*, we generated a Bayesian tree of *cytochrome b* combining the samples from this study with Genbank sequences (Fig. 4). This tree revealed not only that *S. pentheter* was nested within the current *S. bistincta*, but so was another species not included in our sampling, *S. calthula*. The tree also helped clarify relationships outside of *S. bistincta* by supporting *S. chryses* + *S. mykter* to be sister to the *S. bistincta* + *S. pentheter* + *S. calthula* clade.

Figure 4. Phylogeny of mtDNA for a subset of the individuals from this study (labeled with
red UMMZ catalog numbers) combined with existing sequences from Genbank (labeled
with accession numbers). Colored boxes relate to genetic lineages in prior figures. The tree
was rooted with *Exerodonta xera*. Photo credit: Peter Heimes.

344

339

345 Discussion

346 Bridging multilocus and mtDNA data for cryptic lineage discovery

347 Multilocus NGS data identified numerous divergent lineages within the Sarcohyla bistincta complex, supporting similar patterns observed in a recent study of this complex based on 348 349 mtDNA and a few nuclear genes (Caviedes-Solis & Nieto-Montes 2017). We discuss these 350 uncovered lineages in detail below, but note here that linking NGS with mtDNA data allowed 351 us to query our lineages – first uncovered with multilocus genomic data – against GenBank to see if any of them corresponded to already-described species. Doing so revealed that S. bistincta 352 353 is paraphyletic, with two already-described species nested within its current taxonomic limits (Fig. 4). The approach of discovering lineages with multilocus data and identifying them with 354 355 the help of linked mtDNA data should be especially useful in understudied groups where basic natural history information is lacking. 356

357

358 UCEs as a universal genomic marker set for species discovery?

359 Although it requires further study, UCEs could answer the call for an multilocus DNA marker 360 set that satisfies criteria for both ease-of-use, universality, and genomic coverage (Coissac et al. 361 2016). UCE probe sets are now available for many taxonomic groups (Faircloth et al. 2015; Faircloth et al. 2013; Starrett et al. 2016). They capture a discrete and replicable portion of the 362 363 genome, in this case a set of around 2,000 loci in frogs (from a larger set of ~5,000 vertebrate 364 loci) that query approximately 1,000,000 base pairs, or 0.02% of the frog genome. The replicable nature of UCEs sets them apart from other types of genomic markers, like RAD loci, which can 365 366 vary from experiment to experiment (DaCosta & Sorenson 2014) and find fewer orthologs with 367 increasing phylogenetic distance (Cruaud et al. 2014). Other alternatives to UCEs exist, like 368 exons, but in mammals exons had fewer loci conserved over broad taxonomic scales than UCEs, 369 making them less able to be universally applied (McCormack et al. 2012). A recent study 370 successfully applied UCEs in conjunction with species delimitation methods to two frog genera, 371 Melanophryniscus and Brachycephalus (Pie et al. 2017). As more studies are conducted, one future 372 research avenue would be determine how much locus-sharing occurs among studies, and 373 whether objective benchmarks for species-level divergence can be identified.

374

375 *Implications for species limits within* Sarcohyla bistincta

376 The monophyletic group containing *Sarcohyla bistincta* is comprised of many distinct lineages as 377 well as two already-described species (S. pentheter and S. calthula). These lineages are grouped 378 into three fairly divergent clades, which agree with clades uncovered in a recent study based on fewer markers (Caviedes-Solis & Nieto-Montes 2017). In discussing these clades and lineages 379 380 below, we use the most conservative estimate of 8 lineages, supported by the species tree, as a 381 framework. Within that framework, we discuss the potential for further genetic structuring, as 382 suggested by genetic clustering results and individual UCE and mtDNA phylogenies. We do not attempt to estimate the "true" number of species through species delimitation or other 383

methods, because we feel species delimitation is best carried out through integrative taxonomy(Will et al. 2005), including at minimum analysis of the phenotype.

386

Clade 1 – Transvolcanic Belt of central Mexico. This clade is sister to the rest of *S. bistincta* plus
 two other species, *S. pentheter* and *S. calthula*, and is 10% divergent in mtDNA from
 other *S. bistincta*, making it an obvious candidate for species status. This clade might
 itself contain multiple species in the form of the lineages below. Unsampled
 populations of *S. bistincta* in the Sierra Madre Occidental (Fig. S1) are very likely
 related to Lineage 1 of this clade, but should be included in future studies, as they
 might be distinctive.

- Lineage 1 (light blue in Fig. 1) Michoacán to western Mexico state. The Structure results
 show fine-scale genetic structure across this range, and the presence of a geographic
 and genetic intermediate hints at continuity of gene flow along the distribution
 from sites 1 to 4 in Figure 1. In addition to unsampled populations mentioned
 above, some populations in far western Michoacán (Fig. S1) are also unsampled and
 could reveal further genetic structure.
- 400 <u>Lineage 2</u> (dark blue in Fig. 1) Morelos. Denser sampling between sites 4 and 5 could
 401 help determine whether the genetic distinctness of this individual in the mtDNA
 402 and UCE trees is a true discontinuity or the result of a sampling gap.
- 403 Clade 2 Guerrero to Puebla and Veracruz and south through Oaxaca. This clade was also
 404 found to be distinct in a recent study (Caviedes-Solis & Nieto-Montes 2017) and
 405 forms the core *S. bistincta (sensu stricto)*.
- 406 Lineage 3 (red in Fig. 1) Central and eastern Guerrero. Members of this lineage are
 407 distinct from Lineage 4 and are monophyletic in the UCE-based trees (though not in
 408 the mtDNA tree). Further sampling in between site 6 and site 7 would clarify
 409 whether the genetic discontinuity between Lineages 3 and 4 results from a sampling
 410 gap.

<u>Lineage 4</u> (pink in Fig. 1) – Western Guerrero. This lineage is monophyletic in all trees,
 although only a few individuals were sampled from a single locality.

- Lineage 5 (orange and yellow in Fig. 1) Puebla, Veracruz, and Oaxaca. This lineage contains the type locality for *S. bistincta*. Central and southern Oaxaca individuals (orange) are genetically distinct from individuals to the north (yellow). One genetic intermediate in central Oaxaca suggests genetic continuity across this range. An unsampled northern population in Hidalgo is most likely related to this lineage, and should be included in future studies.
- <u>Lineage 6</u> (purple in Fig. 1) far northern Guerrero. This lineage is distinct but
 represented by only a single individual. However, in the mtDNA tree, this
 individual is nested within Lineages 4 and 5 above. Sampling more individuals is
 needed to determine how distinct this lineage might be.
- Clade 3 Pacific slope of Guerrero and Oaxaca. This clade contains two species: one already described (*S. pentheter*) and one currently being described (*sp. nov.;* Kaplan et al. in prep). The relationship of *S. calthula* to this clade is unclear in our results, as bootstrap support was low in the combined mtDNA tree (Fig. 4). Caviedes-Solis et al. (2017) placed *S. calthula* sister to *S. pentheter* based on five genes. Thus *S. calthula* is likely also a member of Clade 3.
- Lineage 7 (dark gray in Fig. 1) Pacific slope of Guerrero. This lineage was being
 described as a new species (we call it *sp. nov.*) on the basis of phenotypic differences
 before this genetic study was begun (Kaplan et al. in prep). Thus, our study lends
 support to species status for this lineage.
- 433 <u>Lineage 8</u> (light gray in Fig. 1) *S. pentheter*. Pacific slope of Oaxaca.
- 434

The three clades and nearly all of the lineages were distinct in the mtDNA tree as well as the UCE tree (Fig. 2). The mtDNA tree, however, supports a more complicated history for Lineages 3, 4, and 6 in Guerrero. It is unclear why UCE and mtDNA results differed in this regard, but

some reticulate processes might have influenced the mtDNA genomes of these lineages,
perhaps, given their close geographic proximity, mtDNA capture of one lineage by another
through gene flow (e.g., Bryson Jr et al. 2010).

441 Additional insights into broader *Sarcohyla* relationships offered by the mtDNA tree include support for a previously hypothesized close relationship between S. hazelae and S. 442 443 thorectes (Caviedes-Solis & Nieto-Montes 2017; Faivovich et al. 2009), and a sister relationship between S. mykter and S. chryses (also found by Caviedes-Solis et al. (2017)). As Sarcohyla is very 444 445 poorly represented by voucher specimens and DNA sequences (Fig. S1), a complete 446 understanding of the history of this genus must await more complete taxonomic and genomic 447 sampling. Unfortunately, there appear to be some microendemic Sarcohyla that might have already gone extinct (Lips et al. 2004), especially in the Oaxacan highlands, although recent 448 449 resurveys provide hope for rediscoveries (Delia et al. 2013).

450 This and other recent studies show there is still substantial diversity remaining to be 451 described in the Mexican Highlands. Genetic studies to uncover this diversity might use 452 different approaches and marker types, but these efforts need not be in opposition. As our study shows, NGS and mtDNA data work well together, when lineages uncovered via 453 454 multilocus methods (but with linked mtDNA data) can be checked against and combined with 455 existing mtDNA databases like Genbank. Identification of vouchered material might not be a 456 problem with some well-studied groups, like birds, but it is invaluable for groups with 457 undescribed larval stages, unclear range boundaries, and difficult or highly conserved 458 phenotypes. As the destruction of native habitats continues apace, it is important that we 459 identify distinctive lineages and geographic centers of diversity before they are lost.

460

461 List of abbreviations

462 UCEs: ultraconserved elements SNPs: single nucleotide polymorphisms mtDNA:
463 mitochondrial DNA bp: base pairs ML: maximum-likelihood UMMZ: University of Michigan
464 Museum of Zoology RAD loci: restriction digest-associated loci

465	
466	Declarations
467	
468	Ethics approval and consent to participate
469	This study complied with standard ethical guidelines for the rearing and collection of tadpoles.
470	
471	Consent for publication
472	Not applicable.
473	
474	Availability of data and materials
475	The datasets generated and analyzed in the current study will be made available on Genbank
476	(BioProject ID PRJNA393258) and Dryad upon publication.
477	
478	Competing Interests
479	The authors declare that they have no competing interests.
480	
481	Funding
482	The project was partially funded by National Science Foundation grant DEB-1258205 to JM.
483	
484	Authors' contributions
485	MK and PH collected samples in the field; MK and JEM designed the study; EZ and WLET
486	produced the genomic data; EZ, EMC, and JMM analyzed the data; JEM and EZ wrote the
487	manuscript; JEM created the figures; All authors read and approved the final manuscript.
488	
489	Acknowledgments
490	We thank Greg Schneider and Ron Nussbaum at UMMZ for providing access to tissue samples
491	and vouchers, and Oscar Flores for help with permits.

492

493 Literature Cited

- Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, and
 Stadler PF. 2013. MITOS: Improved de novo metazoan mitochondrial genome
 annotation. *Molecular Phylogenetics and Evolution* 69:313-319.
- Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, and
 Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. *PLoS Computational Biology* 10:e1003537.
- Brown DM, Brenneman RA, Koepfli K-P, Pollinger JP, Milá B, Georgiadis NJ, Louis EE, Grether
 GF, Jacobs DK, and Wayne RK. 2007. Extensive population genetic structure in the
 giraffe. *BMC biology* 5:57.
- Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, and RoyChoudhury A. 2012. Inferring
 species trees directly from biallelic genetic markers: bypassing gene trees in a full
 coalescent analysis. *Molecular Biology and Evolution* 29:1917-1932.
- Bryson Jr RW, De Oca ANM, Jaeger JR, and Riddle BR. 2010. Elucidation of cryptic diversity in
 a widespread Nearctic treefrog reveals episodes of mitochondrial gene capture as frogs
 diversified across a dynamic landscape. *Evolution* 64:2315-2330.
- Bryson RW, De Oca ANM, Jaeger JR, and Riddle BR. 2010. Elucidation of cryptic diversity in a
 widespread Nearctic treefrog reveals episodes of mitochondrial gene capture as frogs
 diversified across a dynamic landscape. *Evolution* 64:2315-2330.
- 512 Bryson RW, García-Vázquez UO, and Riddle BR. 2012. Diversification in the Mexican horned
 513 lizard *Phrynosoma orbiculare* across a dynamic landscape. *Molecular Phylogenetics and*514 *Evolution* 62:87-96.
- 515 Bryson RW, Murphy RW, Lathrop A, and Lazcano-Villareal D. 2011. Evolutionary drivers of 516 phylogeographical diversity in the highlands of Mexico: a case study of the *Crotalus*
- 517 *triseriatus* species group of montane rattlesnakes. *Journal of Biogeography* 38:697-710.
- Campbell JA, Blancas-Hernández JC, and Smith EN. 2009. A new species of stream-breeding
 treefrog of the genus Charadrahyla (Hylidae) from the Sierra Madre del Sur of Guerrero,
 Mexico. *Copeia* 2009:287-295.
- 521 Caviedes-Solis I, and Nieto-Montes dOA. 2017. A multilocus phylogeny of the genus *Sarcohyla* 522 (Anura: Hylidae), and an investigation of species boundaries using statistical species
 523 delimitation. *Molecular Phylogenetics and Evolution* 118:184-193.

- 524 Chevreux B, Wetter T, and Suhai S. 1999. Genome sequence assembly using trace signals and
 525 additional sequence information. *Computer Science and Biology: Proceedings of the German*526 *Conference on Bioinformatics* 99:45-56.
- 527 Coissac E, Hollingsworth PM, Lavergne S, and Taberlet P. 2016. From barcodes to genomes:
 528 extending the concept of DNA barcoding. *Molecular ecology* 25:1423-1428.
- 529 Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, and Glenn TC. 2012.
 530 More than 1000 ultraconserved elements provide evidence that turtles are the sister
 531 group of archosaurs. *Biology Letters* 8:783-786. 10.1098/rsbl.2012.0331
- 532 Cruaud A, Gautier M, Galan M, Foucaud J, Sauné L, Genson G, Dubois E, Nidelet S, Deuve T,
 533 and Rasplus J-Y. 2014. Empirical assessment of RAD sequencing for interspecific
 534 phylogeny. *Molecular Biology and Evolution* 31:1272-1274.
- DaCosta JM, and Sorenson MD. 2014. Amplification biases and consistent recovery of loci in a
 double-digest RAD-seq protocol. *PloS one* 9:e106713.
- Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G,
 Marth GT, and Sherry ST. 2011. The variant call format and VCFtools. *Bioinformatics*27:2156-2158.
- 540 Delia JR, Whitney JL, and Burkhardt T. 2013. Rediscovery of 'lost' treefrogs from the Oaxacan
 541 highlands of Mexico. *Biodiversity and conservation* 22:1405-1414.
- 542 DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel
 543 G, Rivas MA, and Hanna M. 2011. A framework for variation discovery and genotyping
 544 using next-generation DNA sequencing data. *Nature genetics* 43:491-498.
- do Amaral FR, Neves LG, Resende Jr MF, Mobili F, Miyaki CY, Pellegrino KC, and Biondo C.
 2015. Ultraconserved elements sequencing as a low-cost source of complete
 mitochondrial genomes and microsatellite markers in non-model amniotes. *PloS one*10:e0138446.
- 549 Duellman WE. 2001. *Hylid frogs of Middle America*. Ithaca, New York: Society for the Study of550 Amphibians and Reptiles.
- 551 Duellman WE, Marion AB, and Hedges SB. 2016. Phylogenetics, classification, and
 552 biogeography of the treefrogs (Amphibia: Anura: Arboranae). *Zootaxa* 4104:1-109.
- Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
 throughput. *Nucleic acids research* 32:1792-1797.
- Edwards S, and Bensch S. 2009. Looking forwards or looking backwards in avian
 phylogeography? A comment on. *Molecular ecology* 18:2930-2933.
- Edwards SV. 2009. Is a new and general theory of molecular systematics emerging? *Evolution*63:1-19.

- Evanno G, Regnaut S, and Goudet J. 2005. Detecting the number of clusters of individuals using
 the software STRUCTURE: a simulation study. *Molecular ecology* 14:2611-2620.
- Faircloth BC. 2013. illumiprocessor: a trimmomatic wrapper for parallel adapter and quality
 trimming.https://github.com/faircloth-lab/illumiprocessor/.
- Faircloth BC. 2015. PHYLUCE is a software package for the analysis of conserved genomic loci.
 Bioinformatics 32:786-788.
- Faircloth BC, Branstetter MG, White ND, and Brady SG. 2015. Target enrichment of
 ultraconserved elements from arthropods provides a genomic perspective on
 relationships among Hymenoptera. *Molecular Ecology Resources* 15:489-501.
- Faircloth BC, and Glenn TC. 2012. Not all sequence tags are created equal: designing and
 validating sequence identification tags robust to indels. *PloS one* 7:e42543.
- Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, and Glenn TC. 2012.
 Ultraconserved elements anchor thousands of genetic markers spanning multiple
 evolutionary timescales. *Systematic Biology* 61:717-726. 10.1093/sysbio/sys004
- Faircloth BC, Sorenson L, Santini F, and Alfaro ME. 2013. A phylogenomic perspective on the
 radiation of ray-finned fishes based upon targeted sequencing of ultraconserved
 elements (UCEs). *PloS one* 8:e65923.
- Faivovich J, Haddad CF, Garcia PC, Frost DR, Campbell JA, and Wheeler WC. 2009. Systematic
 review of the frog family Hylidae, with special reference to Hylinae: phylogenetic
 analysis and taxonomic revision. *Bulletin of the American Museum of Natural History* 294:1240.
- Fujita MK, Leaché AD, Burbrink FT, McGuire JA, and Moritz C. 2012. Coalescent-based species
 delimitation in an integrative taxonomy. *Trends in Ecology & Evolution* 27:480-488.
- Gowen FC, Maley JM, Cicero C, Peterson AT, Faircloth BC, Warr TC, and McCormack JE. 2014.
 Speciation in Western Scrub-Jays, Haldane's rule, and genetic clines in secondary
 contact. *BMC evolutionary biology* 14:135.
- Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D,
 Li B, and Lieber M. 2013. De novo transcript sequence reconstruction from RNA-seq
 using the Trinity platform for reference generation and analysis. *Nature protocols* 8:14941512.
- Hahn C, Bachmann L, and Chevreux B. 2013. Reconstructing mitochondrial genomes directly
 from genomic next-generation sequencing reads—a baiting and iterative mapping
 approach. *Nucleic acids research* 41:e129.
- Harris RS. 2007. *Improved pairwise alignment of genomic DNA*. PhD Thesis: Pennsylvania State
 University.

- Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, and Andrew RL.
 2017. The K= 2 conundrum. *Molecular ecology* 14:3594–3602.
- Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A,
 Markowitz S, and Duran C. 2012. Geneious Basic: an integrated and extendable desktop
 software platform for the organization and analysis of sequence data. *Bioinformatics*28:1647-1649.
- Li H, and Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler
 transform. *Bioinformatics* 25:1754-1760.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, and Durbin
 R. 2009. The sequence alignment/map format and SAMtools. *Bioinformatics* 25:2078-2079.
- Lips KR, Mendelson Iii JR, Munoz-Alonso A, Canseco-Márquez L, and Mulcahy DG. 2004.
 Amphibian population declines in montane southern Mexico: resurveys of historical
 localities. *Biological Conservation* 119:555-564.
- McCartney-Melstad E, Mount GG, and Shaffer HB. 2016. Exon capture optimization in
 amphibians with large genomes. *Molecular Ecology Resources* 16:1084-1094.
- McCormack J, Tsai WLE, and Faircloth BC. 2016. Sequence capture of ultraconserved elements
 from bird museum specimens. *Molecular Ecology Resources* 16:1189-1203.
- McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, and Glenn TC. 2012.
 Ultraconserved elements are novel phylogenomic markers that resolve placental
 mammal phylogeny when combined with species-tree analysis. *Genome Research* 22:746754. 10.1101/gr.125864.111
- McCormack JE, Peterson A, Bonaccorso E, and Smith TB. 2008. Speciation in the highlands of
 Mexico: genetic and phenotypic divergence in the Mexican jay (*Aphelocoma ultramarina*).
 Molecular ecology 17:2505-2521.
- McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,
 Altshuler D, Gabriel S, and Daly M. 2010. The Genome Analysis Toolkit: a MapReduce
 framework for analyzing next-generation DNA sequencing data. *Genome Research*20:1297-1303.
- Meik JM, Smith EN, Canseco-Márquez L, and Campbell JA. 2006. New species of the
 Plectrohyla bistincta group (Hylidae: Hylinae: Hylini) from Oaxaca, Mexico. *Journal of Herpetology* 40:304-309.
- Moritz C, and Cicero C. 2004. DNA barcoding: promise and pitfalls. *PLoS Biology* 2:e354.
- Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, and Kent J. 2000. Biodiversity
 hotspots for conservation priorities. *Nature* 403:853-858.
- Olmo E. 1991. Genome variations in the transition from amphibians to reptiles. *J Mol Evol* 33:6875.

- Parra-Olea G, Flores-Villela O, and Mendoza-Almeralla C. 2014. Biodiversidad de anfibios en
 México. *Revista mexicana de biodiversidad* 85:460-466.
- Pie MR, Bornschein MR, Ribiero LF, Faircloth BC, and McCormack JE. 2017. Phylogenomic
 species delimitation in microendemic frogs Of the Brazilian Atlantic forest. *bioRxiv*:doi:
 https://doi.org/10.1101/143735.
- Ponce-Reyes R, Reynoso-Rosales V-H, Watson JE, VanDerWal J, Fuller RA, Pressey RL, and
 Possingham HP. 2012. Vulnerability of cloud forest reserves in Mexico to climate
 change. *Nature Climate Change* 2:448.
- Pritchard JK, Stephens M, and Donnelly P. 2000. Inference of population structure using
 multilocus genotype data. *Genetics* 155:945-959.
- Rovito SM, Parra-Olea G, Recuero E, and Wake DB. 2015. Diversification and biogeographical
 history of Neotropical plethodontid salamanders. *Zoological Journal of the Linnean Society*175:167-188.
- 643 Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, and Birol I. 2009. ABySS: a parallel
 644 assembler for short read sequence data. *Genome Research* 19:1117-1123.
- Smith BT, Harvey MG, Faircloth BC, Glenn TC, and Brumfield RT. 2014. Target capture and
 massively parallel sequencing of ultraconserved elements for comparative studies at
 shallow evolutionary time scales. *Systematic Biology* 63:83-95.
- 648 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
 649 phylogenies. *Bioinformatics* 30:1312-1313.
- Starrett J, Derkarabetian S, Hedin M, Bryson RW, McCormack JE, and Faircloth BC. 2016. High
 phylogenetic utility of an ultraconserved element probe set designed for Arachnida.
 Molecular Ecology Resources 17:812-823.
- Stuart SN, Hoffmann M, Chanson J, Cox N, Berridge R, Ramani P, and Young B. 2008. *Threatened amphibians of the world*. Barcelona, Spain: Lynx Edicions.
- van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan
- T, Shakir K, Roazen D, and Thibault J. 2013. From FastQ data to high-confidence variant
 calls: the genome analysis toolkit best practices pipeline. *Current protocols in bioinformatics* 11: 11.10:11.10. 33.
- Will KW, Mishler BD, and Wheeler QD. 2005. The perils of DNA barcoding and the need forintegrative taxonomy. *Systematic Biology* 54:844-851.
- Ye L, Zhu C, Yu D, Zhang Y, and Zhang J. 2016. The complete mitochondrial genome of *Hyla annectans* (Anura: Hylidae). *Mitochondrial DNA Part A* 27:1593-1594.

- Zarza E, Faircloth BC, Tsai WL, Bryson RW, Klicka J, and McCormack JE. 2016. Hidden histories
 of gene flow in highland birds revealed with genomic markers. *Molecular ecology*25:5144-5157.
- Zink RM, and Barrowclough GF. 2008. Mitochondrial DNA under siege in avian
 phylogeography. *Molecular ecology* 17:2107-2121.
- 668

Tables

Table 1. Specimen information and summary statistics for Sarcohyla bistincta and closely related

- species.

Map Number ¹	Field Number ²	Catalog Number ³	Current Taxonomy	State	Latitude	Longitude	Trimmed Paired Reads	UCEs	Average UCE Length	SNP Read Depth	mtDNA Reads	mtDNA Average Coverage	mtDNA Average Quality
1	MK 618	UMMZ 239796	S. bistincta	MICHOACAN	19.7911	-100.6605	1,889,670	2,323	529.7	31.8	3,381	20.8	86
2	MK 627-31	UMMZ 239683	S. bistincta	MICHOACAN	19.4266	-102.0736	1,933,019	2,254	370.9	21.6	3,415	20.8	85
3	MK 666	UMMZ 239745	S. bistincta	MICHOACAN	19.3452	-100.3128	2,186,871	2,350	621.3	33.9	3,900	23.4	83
4	MK 600	UMMZ 239679	S. bistincta	MEXICO	19.1501	-100.1469	932,448	2,174	500.8	24.4	2,377	15.7	83
4	MK 600 (1)	UMMZ 239678	S. bistincta	MEXICO	19.1501	-100.1469	1,217,987	2,267	532.8	21.9	2,570	16.4	84
5	MK 645	UMMZ 239749	S. bistincta	MORELOS	18.9224	-99.2442	2,217,054	2,406	532.5	34.2	3,494	21.8	86
5	MK 645 dup	• UMMZ 239749	S. bistincta	MORELOS	18.9224	-99.2442	548,545	1,964	513.0	17.7	841	7.4	60
6	MK 759	UMMZ 239701	S. bistincta	GUERRERO	18.0013	-101.1716	1,224,835	2,199	557.6	25.0	2,522	16.2	84
6	MK 760	UMMZ 239705	S. bistincta	GUERRERO	18.0013	-101.1716	1,074,315	2,203	559.4	24.3	743	6.9	58
6	MK 760 (2)	UMMZ 239704	S. bistincta	GUERRERO	18.0013	-101.1716	927,774	2,246	579.2	26.3	906	9.4	6
7	MK 691 (5)	UMMZ 239744	S. bistincta	GUERRERO	17.5324	-99.8994	2,084,203	2,353	672.5	27.2	1,678	11.9	80
8	MK 650 (1)	UMMZ 239725	S. bistincta	GUERRERO	17.6843	-99.8034	941,101	2,124	556.6	22.6	1,278	9.7	74
8	MK 650 (2)	UMMZ 239726	S. bistincta	GUERRERO	17.6843	-99.8034	2,224,898	2,394	506.4	28.4	1,737	12.2	79
8	MK 652	UMMZ 239727	S. bistincta	GUERRERO	17.6843	-99.8034	3,423,330	2,444	526.0	29.8	1,396	10.4	74
9	MK 671 (4)	UMMZ 239733	S. bistincta	GUERRERO	17.6407	-99.6797	1,012,300	2,107	557.0	22.5	842	7.4	62
9	MK 672	UMMZ 239738	S. bistincta	GUERRERO	17.6407	-99.6797	297,782	1,667	439.8	11.9	400	5.1	41
10	MK 656 (1)	UMMZ 239729	S. bistincta	GUERRERO	17.5526	-99.6626	580,194	1,950	497.6	18.4	547	5.9	42
11	MK 674 (1)	UMMZ 239690	S. bistincta	GUERRERO	17.5087	-99.1258	659,418	1,941	565.4	18.8	1,086	8.7	68
11	MK 675 (2)	UMMZ 239879	S. bistincta	GUERRERO	17.5087	-99.1258	336,474	1,565	519.1	10.4	227	4.2	24
12	MK 662	UMMZ 239731	S. bistincta	GUERRERO	18.6359	-99.6491	1,137,742	2,130	548.7	23.5	796	7.2	56
13	MK 697 (3)	UMMZ 239789		VERACRUZ	18.6585	-97.1574	1,524,182	2,214	625.6	24.3	2,479	16.0	82
13	MK 699 (1)	UMMZ 239791		VERACRUZ	18.6477	-97.1574	1,342,010	2,206	610.9	24.4	1,769	12.3	79
14	MK 700 (2)	UMMZ 239750		PUEBLA	18.3220	-97.0285	2,203,360	2,298	697.8	27.6	4,155	24.8	86
15	MK 705 (1)	UMMZ 239862	S. bistincta	OAXACA	18.1576	-96.8684	2,529,703	2,417	644.6	30.3	3,164	19.6	85
16	MK 715	UMMZ 239755	S. bistincta	OAXACA	17.2390	-97.0032	347,152	1,712	437.7	12.1	254	4.3	31
17	MK 716 (1)	UMMZ 239758	S. bistincta	OAXACA	17.3036	-96.7930	52,461	594	267.4	2.7	8	3.0	1
18	MK 718 (2)	UMMZ 239765	S. bistincta	OAXACA	17.4211	-96.6876	606,978	2,014	568.6	19.7	366	4.9	37
19	MK 755 (1)	UMMZ 239786	S. bistincta	OAXACA	17.4153	-96.5671	871,034	2,062	563.2	22.0	1,022	8.4	69
20	MK 751	UMMZ 239785		OAXACA	17.3160	-96.4435	1,577,190	2,342	621.5	28.5	2,376	15.4	84
22	MK 748 (2)	UMMZ 239780	S. bistincta	OAXACA	16.9791	-96.1364	91,912	1,009	302.5	4.2	23	3.1	3
22	MK 748 (4)	UMMZ 239782	S. bistincta	OAXACA	16.9791	-96.1364	1,058,426	2,170	553.8	23.7	499	5.7	42
22	MK 767	UMMZ 239788	S. bistincta	OAXACA	16.9859	-96.1358	1,083,058	2,206	524.7	24.3	617	6.3	52
23	MK 721	UMMZ 239767	S. bistincta	OAXACA	16.7377	-97.0384	146,471	1,215	376.0	6.1	62	3.3	10
24	MK 766	UMMZ 239794		OAXACA	16.2522	-97.1536	994,521	2,166	577.4	23.3	467	5.5	43
	MK 730 (2)	?	P. bistincta	?	?	?	2,967,630	2,404	716.9	31.1	3,581	21.7	84
25	MK 685 (2)	UMMZ 239739		GUERRERO	17.3812	-100.2009	269,729	1,645	450.6	10.8	184	4.0	20
26	MK 689 (2)	UMMZ 239740		GUERRERO	17.3000	-100.2792	67,313	502	221.6	2.6	32	3.1	6
27		UMMZ 239772		OAXACA	16.1916	-97.0958	17,052	381	247.1	2.4	10	3.0	2
28	MK 691 (3)	UMMZ 239651		GUERRERO	17.5324	-99.8994	2,267,946	2,347	663.6	35.0	4,919	33.4	83
29	MK 770	UMMZ 239802		OAXACA	17.2216	-96.5839	538,500	2,066	526.2	19.8	557	5.9	44

¹ Map number in Figure 1 ² The first three-digit number corresponds to a sampling location. If there is a second number in parentheses, this corresponds to different aquaria where tadpoles were sorted by species before ³ All specimens are from the University of Michigan Museum of Zoology. One specimen could not be linked to a catalog number.

Table S1. Information and summary statistics on all 45 samples used to determine the ingroup

684 for this study.

Field Number	UMMZ Number	Current Taxonomy	State	Locality	Latitude	Longitude	Trimmed Paired Reads	UCEs	Average UCE length	mtDNA reads	mtDNA average coverage	mtDNA average quality	Fig. 1 Map Number	Accession number
MK 618	UMMZ 239796	Sarcohyla bistincta	MICHOACAN	LOS AZUFRES / SAN PEDRO ROAD		-100.660542	1,889,670	2323	529.7	3381	20.8	86	1	
MK 627-31	UMMZ 239683	Sarcohyla bistincta	MICHOACAN	PARQUE BARRANCA DEL CUPATITZIO URUAPAN	19.426646	-102.073574	1,933,019	2254	370.9	3415	20.8	85	2	
MK 666	UMMZ 239745	Sarcohyla bistincta	MICHOACAN	13 KMS ROAD ZITACUARO MACHERO (LITTLE TOWN WERE THERE IS A MONARCH BUTTERFLY SANCTUARY)	19.3452	-100.3128	2,186,871	2350	621.3	3900	23.4	83	3	
MK 600	UMMZ 239679	Sarcohyla bistincta	MEXICO	CARRETERA VALLE DE BRAVO-SAN PEDRO TENEYAC ARROYO 1 (6860 FEET) (POR ALBARRADA) BOSQUE BIEN CONSERVADO Y HUMEDO	19.150083	-100.1469	932,448	2174	500.8	2377	15.7	83	4	
MK 600 (1)	UMMZ 239678	Sarcohyla bistincta	MEXICO	CARRETERA VALLE DE BRAVO-SAN PEDRO TENEYAC ARROYO 1 (6860 FEET) (POR ALBARRADA) BOSQUE BIEN CONSERVADO Y HUMEDO	19.150083	-100.1469	1,217,987	2267	532.8	2570	16.4	84	4	
MK 645	UMMZ 239749	Sarcohyla bistincta	MORELOS	2 KMS OUT OF CUERNAVACA ON THE CUERNAVACA CHALMA RD. (PASSING CONJUNTO CERRADO) OF LA BARRANCA WHERE THE SALTO SAN ANTONIO IS	18.922402	-99.244151	2,217,054	2406	532.5	3494	21.8	86	5	
MK 645 dupe	UMMZ 239749	Sarcohyla bistincta	MORELOS	2 KMS OUT OF CUERNAVACA ON THE CUERNAVACA CHALMA RD. (PASSING CONJUNTO CERRADO) OF LA BARRANCA WHERE THE SALTO SAN ANTONIO IS	18.922402	-99.244151	548,585	1964	513.0	841	7.4	60	5	
MK 759	UMMZ 239701	Sarcohyla bistincta	GUERRERO	CA 100 DEG KMS FROM CIUDAD ALTAMIRANO VIA IXTAPA ZIHUATANEJO	18.0013	-101.1716	1,224,835	2199	557.6	2522	16.2	84	6	
MK 760	UMMZ 239705	Sarcohyla bistincta	GUERRERO	CA 100 DEG KMS FROM CIUDAD ALTAMIRANO VIA IXTAPA ZIHUATANEJO	18.0013	-101.1716	1,074,315	2203	559.4	743	6.9	58	6	
MK 760 (2)	UMMZ 239704	Sarcohyla bistincta	GUERRERO	CA 100 DEG KMS FROM CIUDAD ALTAMIRANO VIA IXTAPA ZIHUATANEJO	18.0013	-101.1716	927,774	2246	579.2	906	9.4	6	6	
MK 691 (5)	UMMZ 239744	Sarcohyla bistincta	GUERRERO	2-3 KMS IN THE ROAD TO JALEACA FROM POINT WHERE ROAD TRIFURCATE TO PTO. DEL GALLO / YEXTLA / ANDJALEACA.COMMING FROM CARRIZAL DE BRAVO / IN RIVER UNDER THE BRIDGE	17.5324	-99.8994	2,084,203	2353	672.5	1678	11.9	80	7	
MK 650 (1)	UMMZ 239725	Sarcohyla bistincta	GUERRERO	MOUNTAINS W. OF CHILPANCINGO / TOWN LOS MORROS	17.6843	-99.80339	941,101	2124	556.6	1278	9.7	74	8	
MK 650 (2)	UMMZ 239726	Sarcohyla bistincta	GUERRERO	MOUNTAINS W. OF CHILPANCINGO / TOWN LOS MORROS	17.6843	-99.80339	2,224,898	2394	506.4	1737	12.2	79	8	
MK 652	UMMZ 239727	Sarcohyla bistincta	GUERRERO	MOUNTAINS W. OF CHILPANCINGO / TOWN LOS MORROS	17.6843	-99.80339	3,423,330	2444	526.0	1396	10.4	74	8	
MK 671 (4)	UMMZ 239733	Sarcohyla bistincta	GUERRERO	BEHIND CHICHIHUALCO / ON ROAD TO CARRIZAL DE BRAVO / 2 KMS FROM ENTRONQUE	17.6407	-99.6797	1,012,300	2107	557.0	842	7.4	62	9	
MK 672	UMMZ 239738	Sarcohyla bistincta	GUERRERO	BEHIND CHICHIHUALCO / ON ROAD TO CARRIZAL DE BRAVO / 2 KMS FROM ENTRONQUE	17.6407	-99.6797	297,782	1667	439.8	400	5.1	41	9	
MK 656 (1)	UMMZ 239729	Sarcohyla bistincta	GUERRERO	3 KMS FROM THE TOWN OF OMILTEMI IN THE ROAD OMILTEMI CHILPANCINGO	17.552603	-99.662569	580,194	1950	497.6	547	5.9	42	10	
MK 674 (1)	UMMZ 239690	Sarcohyla bistincta	GUERRERO	ON ATZACUALOYA HUEYCATENANGO RD.	17.5087	-99.1258	659,418	1941	565.4	1086	8.7	68	11	
MK 675 (2)	UMMZ 239879	Sarcohyla bistincta	GUERRERO	ON ATZACUALOYA HUEYCATENANGO RD.	17.5087	-99.1258	336,474	1565	519.1	227	4.2	24	11	
MK 662	UMMZ 239731	Sarcohyla bistincta	GUERRERO	1.6 KMS FROM THE TOWN OF TETIPAC ON THE TETIPAC TAXCO ROAD (MAYBE ARROYO LAS DAMAS)	18.635895	-99.6491	1,137,742	2130	548.7	796	7.2	56	12	
MK 697 (3)	UMMZ 239789	Sarcohyla bistincta	VERACRUZ	ON ATZOMPA XOXOCOTLA RD. 1.5 KMS FROM XOXOCOTLA	18.6585	-97.1574	1,524,182	2214	625.6	2479	16.0	82	13	
MK 699 (1)	UMMZ 239791	Sarcohyla bistincta	VERACRUZ	ON STREAM CROSSING THE TOWN OF XOXOCOTLA	18.6477	-97.1574	1,342,010	2206	610.9	1769	12.3	79	13	
MK 700 (2)	UMMZ 239750	Sarcohyla bistincta	PUEBLA	IN THE STREAM LOCATED AFTER THE TOWN OF ZOQUITLAN TURNING DOWN AT THE CENTRO DE SALUD	18.322	-97.0285	2,203,360	2298	697.8	4155	24.8	86	14	
MK 705 (1)	UMMZ 239862	Sarcohyla bistincta	OAXACA	56 KMS FROM TEOTITLAN VIA HUAUTLA	18.1576	-96.8684	2,529,703	2417	644.6	3164	19.6	85	15	
MK 715	UMMZ 239755	Sarcohyla bistincta	OAXACA	NEAR "EL TEJOCOTE" (FRENTE AL KINDER)	17.239	-97.0032	347,152	1712	437.7	254	4.3	31	16	
MK 716 (1)	UMMZ 239758	Sarcohyla bistincta	OAXACA	ON ROAD BETWEEN THE TOWNS OF SAN JUAN DEL ESTADO AND SAN MIGUEL ALOAPAN	17.3036	-96.793	52,461	594	267.4	8	3.0	1	17	
MK 718 (2)	UMMZ 239765	Sarcohyla bistincta	OAXACA	PASSING SAN MIGUEL ALOAPAN	17.4211	-96.6876	606,978	2014	568.6	366	4.9	37	18	
MK 755 (1)	UMMZ 239786	Sarcohyla bistincta	OAXACA	ON ROAD SAN JUAN ATEPEC SAN MIGUEL ABEJONES	17.4153	-96.5671	871,034	2062	563.2	1022	8.4	69	19	
MK 751	UMMZ 239785	Sarcohyla bistincta	OAXACA	3.8 KMS PASSING "RANCHO TEXAS" ON THE ROAD FROM THE TOWN OF IXTLAN DE JUAREZ	17.316	-96.4435	1,577,190	2342	621.5	2376	15.4	84	20	
MK 748 (2)	UMMZ 239780	Sarcohyla bistincta	OAXACA	CA 37 KMS FROM MITLA ON THE ROAD MITLA AYUTLA	16.9791	-96.1364	91,912	1009	302.5	23	3.1	3	22	
MK 748 (4)	UMMZ 239782	Sarcohyla bistincta	OAXACA	CA 37 KMS FROM MITLA ON THE ROAD MITLA AYUTLA	16.9791	-96.1364	1,058,426	2170	553.8	499	5.7	42	22	
MK 767	UMMZ 239788	Sarcohyla bistincta	OAXACA	9.2 KMS E STA MARIA ALBARRADAS / SIERRA MIXE	16.985888	-96.135816	1,083,058	2206	524.7	617	6.3	52	22	
MK 721	UMMZ 239767	Sarcohyla bistincta	OAXACA	2 KMS N. THE TOWN OF STA. MARIA LAXICHIO VIA THE TOWN OF SAN SEBASTIAN RIO DULCE	16.7377	-97.0384	146,471	1215	376.0	62	3.3	10	23	
MK 766	UMMZ 239794	Sarcohyla bistincta	OAXACA	CERRO DE VIDRIO VIA A PUERTO ESCONDIDO	16.25216	-97.15359	994,521	2166	577.4	467	5.5	43	24	
MK 730 (2)	?	Sarcohyla bistincta	?	?			2,967,630	2404	716.9	3581	21.7	84		
MK 685 (2)	UMMZ 239739	Sarcohyla sp. nov.	GUERRERO	ON ATOYAC PTO DE GALLO RD / BETWEEN 10 - 20 KMS NORTH OF THE TOWN "EL PARAISO"	17.3812	-100.2009	269,729	1645	450.6	184	4.0	20	25	
MK 689 (2)	UMMZ 239740	Sarcohyla sp. nov.	GUERRERO	ON ATOYAC PTO DEL GALLO RD. / 500 M. NORTH OF THE TOWN OF SAN VICENTE	17.3	-100.2792	67,313	502	221.6	32	3.1	6	26	
MK 727 (2)	UMMZ 239772	Sarcohyla pentheter	OAXACA	RIO "EL SALADO" / 8 KMS N SAN JUAN LACHAO ON HWY 135	16.1916	-97.0958	17.052	381	247.1	10	3.0	2	27	
MK 691 (3)	UMMZ 239651	Plectrohyla chryses	GUERRERO	2-3 KMS IN THE ROAD TO JALEACA FROM POINT WHERE ROAD TRIFURCATE TO PTO. DEL GALLO /	17.5324	-99.8994	2.267.946	2347	663.6	4919	33.4	83	28	
MK 770	UMMZ 239802	Plectrohyla hazelae	OAXACA	YEXTLA / ANDJALEACA.COMMING FROM CARRIZAL DE BRAVO / IN RIVER UNDER THE BRIDGE EL PUNTO SIERRA JUAREZ	17.22156	-96.58386	538.500	2066	526.2	557	5.9	44	29	
MK 667	UMMZ 239802	Sarcohvla arborescandens	VERACRUZ	PUERTO DEL AIRE (ARRIBA DE ALCUTZINGO)	18.6787	-97.3485	923.330	2000	511.8	1154	9.0	69		
MK 700 (1)	UMM7 239952	Sarcohyla cyclada	PLIFRIA	IN THE STREAM LOCATED AFTER THE TOWN OF ZOQUITLAN TURNING DOWN AT THE CENTRO DE	18.0787	-97.3485	2 490 616	2385	661.4	2961	18.4	82		
MK 700 (1)	UMMZ 239813	Sarcohyla cyclada	OAXACA	SALUD 24 KMS FROM THE TOWN OF TEOTITLAN DE FLORES MAGON VIA HUAUTLA DE JIMENEZ	18.1781	-97.0285	1.166.574	2385	565.5	1061	87	69		
MK 701 MK 742 (1)	UMMZ 239814	Sarconyla cyciada Sarcohyla arborescandens	VERACRUZ	24 KMS FROM THE TOWN OF TEOTTLAN DE FLORES MAGON VIA HUAUTLA DE JIMENEZ	18.1781	-97.0054	1,166,574	2129	553.8	1061	8.7	69 79		
MK 742 (1)	UMMZ 239954	Exerodonta xera	PUEBLA	5 KM SW ZAPOTITLAN DE SALINAS	19.6758	-97.51266	1,074,225	2240	581.5	3506	21.4	84		
IVIK /68	JININIZ 239833	exercuonta xera	PUEBLA	5 KM SW ZAPUTITLAN DE SALINAS	18.311958	-97.51266	1,257,938	2288	581.5	3506	21.4	84		

687 Additional Files

- 688 Fig. S1. Sampled and unsampled parts of *S. bistincta* range in relation to known distributions (or
- 689 localities, where distributional information is lacking) of other *Sarcohyla* species.

698 Fig. S2. UCE tree of 45 samples of *Sarcohyla* and outgroup *Exerodonta xera* used to determine the

699 ingroup.

700

