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Abstract 

Goal-directed behavior requires integrating action selection processes with 

learning systems that adapt control using environmental feedback. These 

functions intersect in the basal ganglia (BG), which has at least two targets of 

plasticity: a dopaminergic modulation of striatal pathways and cortical 

modulation of the subthalamic nucleus (STN). Dual learning mechanisms 

suggests that feedback signals have a multifaceted impact on BG-dependent 

decisions. Using a hybrid of accumulation-to-bound decision models and 

reinforcement learning, we modeled the performance of humans in a stop-signal 

task where participants (N=75) learned the prior distribution of the timing of a 

stop signal through trial-and-error feedback. Changes in the drift-rate of the action 

execution process were driven by errors in action timing, whereas adaptation in 

the boundary height served to increase caution following failed stops. These 

findings highlight two interactive learning mechanisms for adapting the control of 

goal-directed actions based on dissociable dimensions of feedback error.  
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Introduction 
Environmental uncertainty demands that goal-directed actions be executed with a 

certain degree of caution, requiring agents to strike the appropriate balance 

between speed and control based on internal goals and contextual constraints. 

Because of the pervasive and dynamic nature of uncertainty in the real world, the 

precise amount of behavioral control is rarely a known quantity, and must 

therefore be learned through trial-and-error. Despite the underlying intuition that 

intelligent behavior requires both the ability to control actions as well as to learn 

from consequent feedback, it is not well understood how these learning and 

control systems interact. One reason for this is that computational models of 

learning (Frank & Badre, 2012; Sutton & Barto, 1998) and control (Brown & 

Heathcote, 2008; Schall, Palmeri, & Logan, 2017; Verbruggen & Logan, 2009) 

have historically emerged from disparate lines of empirical research (see Bogacz 

& Larsen (2011) and Pedersen, Frank, & Biele (2016) for exceptions), adding 

difficulty to the already challenging task of inferring cognitive phenomena from 

gross behavioral measures. Recently, however, insights from cognitive and 

computational neuroscience have begun to shed light on the interaction of 

cognitive processes in neural circuits, providing additional empirical anchors for 

grounding theoretical assumptions (Frank et al., 2015; Heitz & Schall, 2013; 

Purcell & Palmeri, 2016; Turner, van Maanen, & Forstmann, 2015).  

The basal ganglia (BG), a subcortical network that shares dense, reciprocal 

connections with much of cortex, as well as many subcortical neuromodulators,  

is known to play a critical role in both learning and control processes - acting as a 

central integration hub where cortically-distributed control commands (Dunovan, 

Lynch, Molesworth, & Verstynen, 2015; Majid, Cai, Corey-Bloom, & Aron, 

2013; Mallet et al., 2016), sensory evidence (Ding & Gold, 2010, 2012), and 

decision variables (Forstmann et al., 2008; Herz, Zavala, Bogacz, & Brown, 2016; 

Keuken et al., 2015) can be weighed and synthesized with feedback-dependent 

learning signals to facilitate goal-directed behavior (Bogacz & Gurney, 2007; 

Bogacz & Larsen, 2011; Gurney, Humphries, & Redgrave, 2015). Cortical 
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information enters the BG through three primary pathways: the first two of these 

pathways, entering via the striatum, are the direct (i.e., facilitating; Figure 1A, 

green) and indirect pathways (i.e., suppressing; Fig 1A, blue). The third, 

hyperdirect (i.e., braking; Fig. 1A, red) pathway, enters via the subthalamic 

nucleus (STN). Given the various sites of structural overlap between the direct 

and indirect pathways, including their convergence in the output of the BG 

(Smith, Bevan, Shink, & Bolam, 1998), we recently proposed that, rather than 

acting as independent “go” and “no-go” levers, these pathways engage in dynamic 

competition for control over BG-output (Dunovan & Verstynen, 2016). From this 

perspective, the direct and indirect pathway competition over action execution can 

be thought of as debate between a “believer” and a “skeptic” (Fig. 1B): activation 

of the direct pathway increases with evidence supporting action execution and 

gradually suppresses skepticism of the indirect pathway until a threshold is 

reached and the action can be gated (Fig. 1B). In contrast, increasing activation of 

the indirect pathway can proactively suppress or delay action execution in the 

context of high uncertainty, simultaneously affording more time to reactively 

cancel action cancellation in response to external stop cues that are mediated by 

signals from the hyperdirect pathway (Dunovan et al., 2015; Wei & Wang, 2016).   

A reasonable corollary of the observed convergence of the direct, indirect, 

and hyperdirect pathways in the output of the BG is that proactive speeding of 

execution decisions should also influence the efficacy at which the hyperdirect 

pathway is able to brake the planned execution. Likewise, proactively slowing the 

accumulation of “go” activity should not only slow the timing of the execution, 

but also support easier reactive inhibition by reducing the buildup of “go” activity 

that must be overcome by the hyperdirect pathway in order to brake the action. To 

test this intuition, we proposed a variant of the classic independent race model in 

which reactive braking signals, delivered through the hyperdirect pathway, are 

assumed to be functionally dependent on the current state of the competition 

between the direct and indirect pathways. In this nested process model (Fig. 1C) 

the drift-rate (vE) of the execution process captures the relative activation of 
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“believer” and “skeptic” populations, leading to a “go“ response when the 

execution process crosses the upper threshold (a), reflecting combined strength of 

motor-inhibiting forces on basal-ganglia output (e.g., hyperdirect pathway, basal 

firing rate of BG output nucleus). In the event of a stop-cue, a second braking 

process is instantiated at the current state of the execution process and must reach 

the bottom boundary before the execution threshold is reached in order to cancel 

motor output. This nested dependency of the braking process on the accumulating 

execution process imposes a speed-control tradeoff, such that increasing the 

execution drift-rate has direct negative consequences on control, making it more 

difficult for the braking process to override and cancel action output. While this 

nested process model was able to account for the relationship between proactive 

control and reactive stopping ability, as well as predict BG output during 

proactive control (Dunovan et al., 2015), it fails to account for situations in which 

the control demands are unknown and thus, must be learned from environmental 

feedback. 

Converging lines of evidence from experimental optogenetics (Yttri & 

Dudman, 2016) and advances in computational modeling (Wei & Wang, 2016) 

suggest that both primary input structures of the BG, the striatum and STN, are 

critical for guiding adaptive behavior. For example, similar to classic theories of 

action-value learning in the striatum, Yttri et al. (2016) found that optogenetic 

reinforcement of cortical input to direct and indirect pathways led to incremental 

changes in movement velocity, and that this effect disappeared in the presence of 

dopamine antagonist. Outside the striatum, multiple lines of evidence now point 

to the STN as a major source of behavioral adaptation in the BG (Brittain et al., 

2012; Cavanagh, Sanguinetti, Allen, Sherman, & Frank, 2014; Frank et al., 2015; 

Herz et al., 2016). In line with the notion of parallel learning systems, Wei and 

Wang (2016) showed in a spiking model of the cortico-BG circuitry that plasticity 

in the striatal and subthalamic pathways gives rise to feedback dependent changes 

in inhibitory control. Consistent with the nested process model proposed in 

Dunovan et al., (2015), increasing the connectivity strength of striatal projections 
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in this network model both increased the speed of the execution decision  and 

delayed the stop-signal reaction time. Indeed, this observation lends biological 

support to the assumptions displayed in Figure 1C about the nested nature of 

proactive and reactive control signals within the BG. More importantly, however, 

it suggests distinct functional roles for the two plasticity systems in the BG. First, 

plasticity in the striatum contributes to adaptive inhibitory control by modulating 

the drift-rate of the execution process. The STN, on the other hand, should exert 

control on the height of the execution boundary, delaying action execution in 

contexts of high uncertainty (Herz et al., 2016). Indeed, Cavanaugh et al., (2014) 

found that activity in the STN tracked the degree to which subjects slowed 

responding after committing an error and that this behavioral phenomenon was 

described by a diffusion model in which errors led to an increase in threshold on 

subsequent trials. Taken together, these two BG-dependent learning mechanisms 

predict two means of adapting action control to environmental feedback: a 

mechanism for optimizing the timing, or vigor, of action execution as well as a 

post-error slowing mechanism to impose caution on future action decisions. 

In order to test the predictions of this dual mechanism hypothesis, we 

modeled performance of human participants in an adaptive version of the stop-

signal task. Specifically, we show how a straightforward hybridization of the 

nested process model (Dunovan et al., 2015; Dunovan & Verstynen, 2016) with 

principles of reinforcement learning (Sutton & Barto, 1998), captures feedback-

dependent changes in RT and stop accuracy through adaptive changes in the 

execution drift-rate and boundary height. Drawing on wide ranging evidence from 

previous studies (Brody & Hanks, 2016; Cavanagh et al., 2014; Ding & Gold, 

2010, 2012; Dunovan et al., 2015; Dunovan & Verstynen, 2016; Frank et al., 

2015; Herz et al., 2017, 2016; Wei & Wang, 2016; 2016), we argue that these 

behaviorally derived signatures of learning are consistent with dopaminergic 

tuning of corticostriatal pathways (e.g., drift-rate adaptation) and error-related 

changes in corticosubthalamic pathways (e.g., boundary height adaptation). 
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Results 
Inhibitory control adapts to contextual statistics 

Subjects performed an anticipatory version of the stop-signal task (see Figure 2A) 

similar to that reported previously (Dunovan et al., 2015). On Go trials (n=600), 

subjects were instructed to make a button press as soon as a vertically rising bar 

intersected a line near the top of the screen (always occurring at 520 ms) and 

received a feedback score telling them how early or late their response was (max 

100+ pts). On Stop trials, the bar stopped and turned red before reaching the line, 

signaling the subject to withhold their response. On Context Stop trials (n=200) 

the stop-signal delay (SSD), defined as the time between trial onset and initiation 

of the stop-signal, was sampled from one of three probability distributions (Fig. 

2B) depending on which group the subject was assigned to. In the Uniform 

context group, the SSD was sampled uniformly between 10 and 510 ms. In the 

Early and Late context groups, the SSD was sampled from a normal distribution 

with means at 250 ms and 350 ms, respectively, both with a standard deviation of 

35 ms. To evaluate the effects of Context SSDs on stopping accuracy, Probe Stop 

trials (n=80) were randomly interspersed throughout all trial blocks with SSDs 

fixed at 200, 250, 300, 350, or 450 ms (16 trials each). In this paradigm, the 

Context SSDs establish a prior distribution on the probability of the stop-signal 

timing, which is known to influence the dynamics of inhibitory control (Shenoy & 

Yu, 2011). Shifting the mean of the prior distribution of SSDs later in the trial 

introduces a greater degree of conflict between Go and Stop trial goals. For 

instance, the majority of stop-signals in Late context occur too late in the trial to 

effectively cancel a movement intended to occur at 520 ms, requiring subjects to 

delay their responding on Go trials to achieve the same level of accuracy as 

subjects in the Early context.  

To assess behavioral differences across contexts, we compared accuracy 

on stop-signal trials at each Probe SSD across groups as well as the mean RTs on 

correct (response on Go trial) and error (i.e., response on Stop trial) responses. 

Separate one-way ANOVAs revealed a significant main effect of context across 
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groups on both correct RTs, F(2,72)=10.07, p<.001, and error RT (responses on 

stop-signal trials), F(2,72)=21.72, p<.00001. Consistent with our hypothesis, we 

found a significant interaction between context condition and Probe SSD, 

F(2.23,80.15)=3.60, p=.027 (Fig. 3A). Shifting the mean of the prior distribution 

on the stop signal later into the trial led to delayed responding on Go trials as well 

as greater stopping success across Probe trial SSD’s, exhibited by the rightward 

shift in the stop-curve and RT distributions in the Uniform and Late groups 

relative to the Early group. Thus, as predicted, participants can reliably learn to 

modulate their inhibitory control efficiency based on the probabilistic structure of 

prior stop-signal timing (see also Shenoy & Yu (2011)). 

We next examined whether failed stop trials elicited any systematic 

changes in RT on subsequent trials. Figure 3B shows the immediate slowing and 

subsequent decay in RTs following a stop error, calculated with respect to the 

average RT on the ten trials that preceded the error. A one-way ANOVA revealed 

a significant effect of Context on the degree to which subjects slowed responses 

immediately following stop errors, F(2,72)=4.27, p=.018. Unlike the observed 

effects on RT and accuracy, which scaled with differences in the mean SSD in 

each Context, group differences in post-error slowing appeared to be driven by 

the variance of SSDs, with stop errors eliciting greater slowing in the Uniform 

context than in the Early and Late contexts (Fig. 3C). Collectively, these findings 

suggest that adaptive control is sensitive to multiple task dimensions and that 

these dimensions manifest in dissociable behavioral profiles. 

 

Contextual modulation of decision process 

The effect of recent experience on inhibitory control suggests that participants 

learn a prior on the probability of the SSD through trial-and-error (see also 

(Shenoy & Yu, 2011)), incorporating this prior into future decisions. In order to 

understand what stages of the decision process are targets of this learning, we fit 

the average stop-accuracy on Probe trials and correct and error RT distributions 

when responses are made, with the nested process model (as described in 
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(Dunovan et al., 2015)). Briefly, the nested process model assumes that an 

execution decision is made when an accumulating execution process crosses an 

upper decision boundary. On Stop trials, a nested braking process is initiated at 

the current state of the execution process at the time of the SSD and accumulates 

back towards the lower boundary with negative drift (see Fig. 1C). The model 

successfully cancels an action when the braking process reaches the lower bound 

before execution process terminates at the upper bound.  

We previously found that contextual manipulations of the penalty 

structure and stop cue probability led to behavioral changes that were best 

described by modulations in the execution drift-rate when compared to other 

models with a single free parameter free to vary between conditions (Dunovan et 

al., 2015). To reduce the combinatorial space of possible model configurations, 

we first sought to replicate this finding by comparing alternative models in which 

only one parameter was free to vary across context condition (see Table 2) - either 

execution drift (υE), braking drift (υB), urgency (γ), or boundary height (α). Each 

model was evaluated using two complexity-penalized goodness-of-fit statistics: 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).  A 

difference of 7-10 in the information criteria (IC) values for two models provides 

strong support for the model with the lower value. In line with our previous 

findings (Dunovan et al., 2015), leaving the execution drift-rate free provided a 

better account of Context-dependent changes in behavior compared to alternative 

single-parameter models (Best-Fit AICve=-369.26; Fig. 4A). The next best fit was 

afforded by allowing the urgency to vary across conditions (|AICvE –AICγ| = 

15.83).  

To further test the relationship between execution drift-rate and context, 

we performed another round of fits to test for possible interactions between the 

execution drift-rate and a second free parameter, either boundary height (a), 

braking drift-rate (υB), or urgency gain (γ). The AIC and BIC scores from these 

fits showed that a combination of execution drift and boundary height (υE & a) 

provided the best overall fit to the data (Best Fit AICa,ve = -381.52), reasonably 
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exceeding that of the drift-only model (|AICvE –AICγ| = 12.26) to justify the 

added complexity of the dual parameter model. Figure 4B shows a qualitative 

assessment of the a & υE model’s goodness of fit, revealing a high degree of 

overlap between the simulated and observed stop-accuracy and RT data in both 

Early and Late conditions. These results suggest that there may be two targets of 

learning in the decision process: a strong modulation of the execution drift rate 

and a more subtle modulation of the boundary height.  

 

Dual learning mechanisms 

It is not clear from the preceding analysis whether error-driven changes in the 

drift rate and boundary height are able to capture trial-to-trial adjustments of 

response speed and stop accuracy as statistics of the environment are learned 

experientially. Here we explore how drift-rate and boundary height mechanisms 

adapt on a trial-wise basis to different sources of feedback to drive context-

dependent control and decision-making. 

We implemented two forms of corrective learning - one targeting the 

execution drift-rate (��) and another targeting the height of the decision boundary 

(a). On correct Go trials, the drift-rate parameter was updated according to signed 

RT errors calculated with respect to the Target RT (TG) of 520ms, reducing the 

drift-rate to slow actions following a “fast” response (Fig. 5A left; RTt < 520 ms) 

and increasing the drift-rate to speed future actions following a “slow” response 

(Fig. 5A middle,  RTt > 520 ms). This form of RT-dependent modulation in the 

drift-rate is motivated by recent findings demonstrating adaptation of action 

velocity by dopaminergic prediction error signaling in the striatum (Yttri & 

Dudman, 2016). In the context of the “believer-skeptic” framework (Dunovan & 

Verstynen, 2016), fast RT errors could reinforce the “skeptic” (i.e., indirect 

pathway) and suppress the “believer” (i.e., direct pathway) by decreasing 

dopaminergic tone in the striatum.  

On failed stop trials (terr) the boundary height was increased on the 

following trial (terr+1) according to a delta function (Fig. 5B) and decayed 
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exponentially on each successive trial until reaching its baseline value or another 

failed stop was committed (see Methods for details). This form of adaptation in 

boundary height is motivated by physiological evidence that the STN plays a 

critical role in setting threshold for action execution and that this relationship is 

modulated by error commissions (Cavanagh et al., 2014). In Figure 5C, the 

model-predicted change in Go trial RT and Stop trial accuracy across the 

experiment is overlaid on the corresponding empirical measures, demonstrating a 

robust model fit to the observed data. To confirm that the trial-averaged behavior 

of the model was preserved after fitting the learning rates, the stop-accuracy curve 

and RT statistics were calculated from simulations of the adaptive model and 

overlaid on the average data from the Uniform condition (Figure 5D). The 

model’s predictions are indeed closely aligned with all empirical statistics 

(adaptive χ2=.0082, static χ2 = .01). While this is not necessarily surprising, it is 

promising to confirm that introducing feedback-dependent adaptation in the drift-

rate and boundary height parameters does not compromise the model’s fit to trial 

averaged statistics. 

The fits to the Uniform condition show two possible mechanisms for 

acquiring the prior on the SSD: adaptive modulation of response speed by the 

drift-rate and error-driven changes to boundary height. In order to confirm that 

these mechanisms work together to adaptively learn based only on the statistics of 

previous input signals, we took the average parameter scheme from the Uniform 

condition fits and simulated each subject in the Early and Late groups. If the 

context-dependent changes in the RT distributions and stop-accuracy are indeed a 

reflection of the proposed learning mechanisms, then the model simulations 

should reveal similar RT and accuracy time courses as in the observed behavior.  

Figure 6A shows the simulated stop-curve and RT distributions generated 

by the adaptive model based on feedback in the Early and Late conditions. As in 

the observed data (Fig. 3A), adaptation to Early SSDs led to impaired stopping 

accuracy, but faster RT’s relative to simulated predictions in the Late condition. 

In Figure 6B-C, the middle panels show the same trial-binned RT and stop-
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accuracy means as in Figure 5C (Uniform condition), flanked by corresponding 

time courses from simulations to Early (left) and Late (right) conditions. The 

adaptive model predictions show a high degree of flexibility, conforming to 

idiosyncratic changes in the trial-wise behavioral dynamics within each Context 

SSD condition. For instance, the RTs in the Early condition exhibit a relatively 

minor and gradual decay over the course of the experiment (Figure 6B, left), 

contrasting markedly from the early increase and general volatility of RTs in the 

Late condition (Figure 6B, right). The adaptive model largely captures both 

patterns, underscoring feedback-driven adaptation in the drift-rate as a powerful 

and flexible tool for commanding inhibitory control across a variety of settings. In 

addition to predicting group differences in the time course of RTs, the simulations 

in Figure 6C show a striking degree of precision in the model-estimated changes 

in stop-accuracy, both over time and between groups. 

 Because the static model fits revealed marginal evidence for the drift-only 

model (Fig. 4A), we next asked whether this simpler model was able to account 

for the learning-related behavioral changes (see Fig. 5B) with the same precision 

as the dual learning (i.e., drift and boundary) model. To test this hypothesis, we 

ran simulations in which the boundary learning rate was set to zero, thereby 

leaving only the drift-rate free to vary in response to feedback. Figure 7A shows 

the error between observed and model-predicted estimates for each of the 

behavioral measures in Figure 2 (e.g., RT, stop accuracy, and post-error slowing) 

based on 25 simulations of the drift-only and dual learning models. Compared to 

the drift-only model, the dual learning model showed no significant benefits in 

terms of fit to the trial-wise RT, t(24)=1.09, p=.28, or accuracy t(24)=.23, p=.82, 

but showed a marked improvement in the fit to post-error slowing, t(24)=-6.91, 

p<.00001 (Fig. 7A).  Importantly,  the interaction of drift-rate and boundary 

adaptation in the dual learning model not only reduced the error in the model fit, 

but recovered  the  same qualitative pattern of post-error slowing across Contexts 

observed in the data (Fig. 7B). In contrast, the drift-only model predicted the 

largest post-error slowing effect in the Early condition (Fig. 7B, left). This is 
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particularly revealing since no information about the observed post-error slowing 

was included in the adaptive cost function when fitting the learning-rate 

parameters. Collectively, these results suggest that goal-directed tuning of 

movement timing (RT) and control (stop accuracy) is best described by feedback-

driven changes in the drift-rate and boundary-height parameters of accumulation-

to-bound decisions. 

 

Discussion 
 
The current results demonstrate the existence of two separable, yet interacting, 

learning mechanisms for adapting inhibitory control. Adaptation to errors in the 

timing of action execution was mediated by adjustments in the drift rate that 

progressively improved the precision of RTs with respect to the target response 

time. Inhibition errors, i.e., executed responses on trials requiring a stop, had a 

post-error slowing effect, mediated by an increase in the execution threshold that 

decayed over subsequent trials. These two mechanisms allowed for principled, 

context-specific adjustments in behavioral control to conflicting sources of task 

error, i.e., go timing and stop accuracy. Relative to the Uniform condition, 

subjects in the Early condition exhibited faster RTs at the expense of accuracy on 

probe Stop trials (see Fig. 3B). Subjects in the Early condition benefited from 

predictably short SSDs, making it easier to reactively cancel actions on Stop trials 

without sacrificing the the precision of action timing on Go trials. Over time, 

these subjects experience relatively few stop errors and thus focused on 

minimizing errors between their Go trial RT and the target response times (see 

Fig. 6B, left). In contrast, subjects in the Late condition slowed their RT on Go 

trials to accommodate the higher probability of a stop-cue late in the trial, 

introducing greater long term costs due to more frequent stop errors, and thus, 

delay responding on Go trials to improve inhibition accuracy. This principled 

adaptation of control is only possible due to the presence of dual learning 

mechanisms on the action control algorithm. 
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Dual Learning Mechanisms for Adaptive Control 

In accumulation-to-bound models of decision-making, the drift-rate and boundary 

height parameters are functionally dissociated as representing the strength of 

evidence and response caution, respectively (Brown & Heathcote, 2008; Ratcliff, 

Smith, Brown, & McKoon, 2016) . However, this dissociation is only useful 

insofar as evidence is clearly defined and can be manipulated independently of the 

additional factors bearing on behavior (e.g. caution, expectation, attention). With 

the exception of perceptual decision-making tasks (Roitman & Shadlen, 2002), 

where evidence can be interpreted with respect to the strength of sensory 

information provided by the stimulus, it is often unclear what sources of 

information are actually encoded as evidence in the decision process and what are 

used to set the boundary height. In the following section we discuss evidence that, 

within the context of go/no-go control tasks, drift-rate and boundary height 

mechanisms are driven by corticostriatal and corticosubthalamic systems, 

respectively; and furthermore, that both participate in feedback-dependent 

learning but in the service of distinct behavioral goals.   

 

Drift-Rate: Dopaminergic Modulation of Corticostriatal Pathways 

At the computational level, the drift-rate parameter reflects the log-likelihood 

ratio of evidence for alternative hypotheses. In the context of the current task, the 

execution drift-rate can be interpreted as representing the relative evidence for go 

and no-go decisions encoded by the circuit-level competition between the direct 

and indirect pathways (Bahuguna, Aertsen, & Kumar, 2015). Indeed, studies 

combining behavioral modeling with single-unit recordings (Ding & Gold, 2010), 

optogenetics in animals (Yttri & Dudman, 2016), and neuroimaging in humans 

(van Maanen, Fontanesi, Hawkins, & Forstmann, 2016) have found reliable links 

between behaviorally derived estimates of drift-rate and activity in the striatum 

(Brody & Hanks, 2016). Crucially, the dynamics of competition between direct 

and indirect pathways is sensitive to dopaminergic signals that provide important 

feedback about the environmental consequences of recent actions to drive 
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behavior in the direction of the agent’s current goal (Cox et al., 2015; Kravitz, 

Tye, & Kreitzer, 2012; Shan, Ge, Christie, & Balleine, 2014; Vicente, Galvão-

Ferreira, Tecuapetla, & Costa, 2016).  Feedback-dependent reweighting of 

corticostriatal connections has primarily been studied in the context of action-

value learning; however, new evidence suggests a more nuanced role in tuning 

task-relevant movement parameters (Dudman & Krakauer, 2016; Rueda-Orozco 

& Robbe, 2015; Yttri & Dudman, 2016). Yttri and Duman (2016) demonstrated 

this by stimulating direct or indirect pathway neurons in the mouse striatum based 

on the velocity of a recently executed lever press and measuring the effects on 

future movements. Similar to the opponent effects of dopaminergic error signals 

that mediate action-value associations (Collins & Frank, 2014; Kravitz et al., 

2012), they found that stimulation of the direct pathway following high-velocity 

presses further increased the velocity of future movements whereas stimulation of 

indirect pathway neurons decreased velocity. While the current study was not 

concerned with action velocity, per se, the adaptation of the drift-rate parameter to 

errors in action timing resembles a similar behavioral dynamic to that observed by 

Yttri and Dudman (2016). Indeed, a recent study by Soares et al., (2016) found 

that dopaminergic neurons in the mouse midbrain were not only necessary for 

accurate temporal perception, but that the perception of time could be 

systematically sped up or slowed down through optogenetic suppression and 

stimulation of these neurons. Future studies will be needed to confirm the 

proposed dependency of the drift-rate on striatum in which model-fits to behavior 

are performed in the presence of dopaminergic weighting at direct and indirect 

synapses.  

 Based on previous evidence that proactive control is mediated by the 

striatum, we have argued that the feedback-dependent modulation of execution 

drift-rate from to changes in the stop-cue prior is, at least in part, a reflection of 

the competition between the direct and indirect pathways, and that the observed 

adaptation in this parameter is a reflection of dopaminergic feedback about errors 

in action timing. In addition to the dopamine hypothesis, an alternative possibility 
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is that adaptation the drift-rate stems from top-down changes in the background 

excitability of the striatum, driven by diffuse inputs from premotor regions such 

as supplementary motor area (SMA) and pre-SMA (Forstmann et al., 2008; 

Murakami, Shteingart, Loewenstein, & Mainen, 2017; Murakami, Vicente, Costa, 

& Mainen, 2014; van Maanen et al., 2016). It remains unclear what functional 

differences may exist between premotor and dopaminergic representations of time 

or how they might differentially influence the encoding of action timing within 

the striatum. Integrating the behavioral and modeling techniques defined here 

with electrophysiological and optogenetic manipulations can better distinguish the 

nature of the training signal that modulates striatal activity during action control. 

 

Boundary Height: Post-Error Slowing by the STN 

The striatum has long been the focus of investigations into the neural basis of 

feedback-dependent learning; however, BG pathways have multiple targets of 

plasticity beyond the striatum. Recently, similar links have been identified 

between activity fluctuations in the STN and adaptive changes in behavior 

(Cavanagh et al., 2014; Herz et al., 2016; Justin Rossi et al., 2017; Wessel et al., 

2016), raising new and interesting questions about the extent to which striatal and 

subthalamic learning signals independently influence behavior and how they 

might interact (Tewari, Jog, & Jog, 2016). Numerous studies have implicated the 

STN in setting the height of the decision threshold (Cavanagh et al., 2011; Frank 

et al., 2015; Herz et al., 2017, 2016; Zavala et al., 2016), controlled by diffuse 

excitatory inputs to the output nucleus of the BG and further suppressing motor 

thalamus to delay action execution (see Fig. 1A). Due to the monosynaptic 

connections between cortex and the STN that make up the hyperdirect pathway 

(Nambu, Tokuno, & Takada, 2002), unexpected sensory events (e.g., stop signals) 

can be quickly relayed through the STN to raise the decision threshold for 

ongoing action plans to prevent execution (Wessel & Aron, 2017). In addition to 

this rapid cortically-mediated form of adaptation, evidence suggests that strategic 

adjustments in decision threshold are achieved via activity-dependent plasticity in 
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the connections between STN and GPe (Baufreton & Bevan, 2008; Wei & Wang, 

2016). In the current study, adaptive changes in the boundary height  accounted 

for the observed post-error slowing in responses following failed stop trials, 

motivated by neuroimaging and electrophysiological evidence STN-mediated 

slowing of responses (Cavanagh et al., 2014; Frank et al., 2015; Herz et al., 2016). 

For simplicity, boundary adaption was restricted to being unidirectional - 

increasing after a stop-error and decaying back to, but never below, its original 

value. However, some evidence suggests that STN exerts bidirectional control 

over decision threshold, capable of promoting the adoption of both speed and 

accuracy policies (Herz et al., 2017). Thus, relating the adaptive threshold in the 

nested process model to recordings in the STN will likely require a more nuanced 

approach in order to generalize beyond the current task. Future studies will be 

needed to examine how each of these neural mechanisms are recruited to modify 

behavior, the relevant contexts and task dimensions they are sensitive to and the 

timescales they operate on.   

 

Conclusion 

Computational modeling of RT and accuracy in an adaptive stop-signal task 

revealed two independent learning mechanisms underlying feedback-dependent 

changes in control - one responsible for gradually tuning the execution drift-rate 

to timing errors on Go trials and another for increasing caution after a failed Stop 

trial by raising the execution boundary. The tuning of the drift-rate and boundary 

height parameters supports recent evidence of striatal- and STN-driven changes in 

goal-directed behavior following errors in action timing and inhibitory control 

respectively. While cognitive modeling approaches are unable to capture the 

complexity of neural information processing that underlies adaptive action 

control, they provide a rich description of the component operations and can thus 

be exploited for the purpose of more keenly parsing the functional role of 

different neural substrates. The current study shows how a straightforward 

hybridization of two cognitive modeling frameworks - accumulation-to-bound 
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dynamics with basic principles of reinforcement learning - provides confirmatory 

evidence for a dual-mechanism account of feedback dependent learning in 

inhibitory control.  

 

Materials and Methods 

Participants  

Neurologically healthy adult participants (N=75, Mean age 22 years) were 

recruited from the Psychology Research Experiment System at Carnegie Mellon 

University. All procedures were approved by the local Institutional Review 

Board. All subjects were compensated for their participation through course credit 

toward fulfillment of their semester course requirements. 

 

Adaptive Stop-Signal Task 

All subjects completed a stop-signal task (Ntrials=880) in which a vertically 

moving bar approached a white horizontal target line at the top of the screen (Fig. 

2A). On ‘Go’ trials (NGO=600) the subject was instructed to make a key press as 

soon as the bar crossed the target. The bar always intersected the target line at 

520ms after trial onset. On each trial, the bar continued filling upward until a 

keypress was registered or until reaching the top of the screen, allowing a 680ms 

window for the subject to make a response. If no response was registered the 

subject received a penalty of (-100pts). On Go trials where a response was 

recorded before the 680 ms trial deadline, the subject received a score reflecting 

the precision of their response time relative to the target intersection, resulting in 

maximal points when RT=520ms. On Stop trials, the bar would stop and turn red 

prior intersecting the target line, prompting the subject to withhold their response. 

Successful and unsuccessful Stop trials yielded a reward of +200 points and 

penalty of -100 points, respectively. On the majority of Stop trials, the stop-signal 

delay (SSD) - the delay between trial onset and when the bar stopped – was 

sampled from a specific probability distribution (see Fig. 2B). We refer to these 
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trials as Context Stop trials (NContext=200). Context SSD’s in the Early and Late 

groups were sampled from Gaussian distributions with equal variance (σ=35ms), 

centered at µE=250ms and µL=350ms, respectively. Context SSDs in the Uniform 

group were sampled from a uniform distribution spanning a 10-520ms window. In 

Figure 2B, the sampled SSD times are plotted for a single subject in each Context 

– shown as dashes on a timeline ranging from 0-520ms. Finally, additional probe 

Stop trials (NProbe=80) were included in which the bar stopped at 200, 250, 300, 

350, or 400 ms after trial onset (16 trials per probe SSD), shown at the bottom of 

the Figure 2B timeline as red dashes.   

 
Dependent Process Model 

The nested process model (Fig. 1C; (Dunovan et al., 2015)) assumes that action-

facilitating (i.e., direct) and action-suppressing (i.e., indirect) signals are 

integrated over time as a single execution process (θe), with a drift-rate that 

increases with the ratio of direct-to-indirect pathway activation. The linear drift 

and diffusion (φe) of the execution process is described by the stochastic 

differential equation in equation 1, accumulating with a mean rate of ve (i.e., 

drift rate) and a standard deviation described by the dynamics of a white noise 

process (e.g., dW) with diffusion constant σ. The execution process is fully 

described by equation 2 in which the linear accumulation described by equation 

1 is scaled by an urgency signal, modeled as a hyperbolic cosine function of time 

with gain γ. 

 

dφe = υedt + σdW   (1) 

θe(t) = φe(t) · cosh(γ·t)   (2) 

 

A response is recorded if θe reaches the execution boundary (a) before the end of 

the trial window (680ms) and before the braking process reaches the lower (0) 

boundary (see below). In the event of a stop cue, the braking process (θb) is 

initiated at the current state of θe with a negative drift rate (−vb). If θb reaches the 
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0 boundary before θe reaches the execution boundary then no response or RT is 

recorded from the model. The in θb over time is given by equation 3, expressing 

the same temporal dynamics of φe but with a negative drift rate (−|vb|and no 

urgency signal in the absence of the dynamic bias signal. The dependency 

between θb and θe in the model is described by the conditional statement in 

equation 4, declaring that the initial state of θb (occurring at t = SSD) is equal to 

the state of θe(SSD).  

 

dθb = υbdt + σdW   (3) 

θb(SSD) = θe(SSD)   (4) 

 

In order to determine which of the model parameter(s) best accounted for 

the observed behavioral effects across Contexts, we first fit the model to the 

average data in the Uniform group, leaving all parameters free (see Table 1). 

Using the optimized Uniform parameter estimates to initialize the model, we then 

fit different versions of the model to data in the Early and Late groups allowing 

only one or two select parameters to vary between conditions. This form of model 

comparison provides a straightforward means of testing alternative hypotheses 

about the mechanism underlying Context-specific adaptation. The fitting 

procedure utilized a combination of global and local optimization techniques 

(Bogacz & Cohen, 2004; Dunovan et al., 2015). All fits were initialized from 

multiple starting values in steps to avoid biasing model selection to unfair 

advantages in the initial settings. Given a set of initial parameter values, all model 

parameters – Execution Drift-Rate (ve), Braking Drift-Rate (vb), Execution onset 

delay (tr), boundary height (a) and dynamic gain (γ) were optimized by 

minimizing a weighted cost function (see eq. 5 below) equal to the summed and 

squared error between an observed and simulated (denoted by ^) vector 

containing the following statistics: probability (P) of responding on Go trials (g), 

probability of stopping at each Probe SSD (d={200, 250, 300, 350, 400ms}), and 
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RT quantiles (q={.1, .2, …, .9}) on correct (RTC) and error (RTE) trials.  

 

 (5) 

 

The cost-function weights (w) were derived by first taking the variance of each 

summary measure included in the observed vector (across subjects), then dividing 

the mean variance by the full vector of variance scores. This approach represents 

the variability of each value in the vector as a ratio (Ratcliff & Tuerlinckx, 2002), 

where values closer to the mean are assigned a weight close to 1, and values 

associated with higher variability a weight <1, lower variability a weight >1 

(Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Dunovan et al., 2015). 

Weights applied to the RT quantiles were calculated by estimating the variance 

for each of the RT quantiles (Maritz & Jarrett, 1978) and then dividing the mean 

variance by that of each quantile. Stop accuracy weights were calculated by 

taking the variance in stop accuracy at each Probe SSD (across subjects) and then 

dividing the mean variance by that of each condition.  

In order to obtain an estimate of fit reliability for each model we restarted 

the fitting procedure from 20 randomly sampled sets of initial parameter values. 

Each initial set was then optimized to average data in the Uniform condition using 

the Basinhopping algorithm (Wales & Doye, 1997) to find the region of global 

minimum followed by a Nelder-Mead simplex optimization (Nelder & Mead, 

1964) for fine tuning globally optimized parameter values. The simplex-optimized 

parameter estimates were then held constant except for one or two designated 

context-dependent parameter(s) that were submitted to a second Simplex run in 

order to find the best fitting values in the Early and Late conditions.  

 

Adaptive DPM  
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On correct Go trials, the drift-rate (vt) was updated according to equation 6 to 

reflect the signed difference between model’s response time on the current trial 

and the Target time (TG
 = 520ms), increasing the drift-rate following “slow” 

responses (i.e., RTt>TG, Fig. 5A left) and decreasing the drift-rate following “fast” 

responses (i.e., RTt<TG, Fig. 5A middle). On failed stop trials, vt was updated 

according to the same equation but with the error term reflecting the difference 

between RTt and the trial response deadline (TS=680), thus, slowing the drift-rate 

to reduce the probability of failed stops in the future.  

 

   (6) 
 

The boundary height (a0) adapted to failed stop trials (Fig. 5A right) by increasing 

according to a delta function with height βt and decaying exponentially on each 

subsequent trial (aterr) until reaching its baseline value a0 or until another stop 

error occurred (eq. 7). 

 
  (7) 

 
On all correct Go trials and the first failed stop trial, the timing errors were scaled 

by the same learning rate (α0). An additional parameter was included to modulate 

the sensitivity ( ) to stop errors over time, calculated according the power rule 

shown in equation 8. The trial-wise stop-error sensitivity was used to scale αt (eq. 

9) and βt (eq. 10) learning rates on failed stop trials before calculating the drift 

(eq. 6) and boundary height (eq. 7) updates.  

 

      (8) 

 
    (9) 

 
    (10) 
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To obtain estimates for the learning rate parameters for adaptation in the drift-rate 

(α), boundary-height (β), and sensitivity to stop errors (p) this adaptive form of 

the model was re-fit to the RT and stop accuracy data in the Uniform condition, 

holding all previously estimated parameters constant. Because standard parameter 

optimization for accumulator models requires information about the variance of 

response-times across trials, these approaches are poorly suited for investigating 

how decision parameters respond to error on a trial-wise basis. To overcome this 

issue, the cost function was modified to identify the values for α, β, and p that 

minimized the difference between the average observed and model-predicted RT 

and stop accuracy over a moving window of 30 trials (eq. 11). By averaging the 

behavior in 30-trial bins (30 bins total), this ensured that multiple Stop trials were 

included in each bin while still allowing relatively high-frequency behavioral 

changes to be expressed in the cost function.  

 

  (11)   

 

These fits were performed by iteratively simulating the same trial sequence as 

observed for each individual subject, and fitting the average simulated subject to 

the average observed subject.  This ensures that direct comparisons can be made 

between the trajectory of learning in the model and actual behavior.   
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Tables 
 
Table 1. Average Uniform Parameters and Static Model Fit Statistics  

 a vE vB tr γ χ2 AIC BIC 

Mean .629 1.146 -1.012 .0746 1.149 .013 -173.19 -178.61 

95% CI .022 .065 .046 .009 .27 8e-4 1.06 1.06 

	
	
Table 2. Static Fit Statistics for Early and Late Contexts 

 χ2 AIC BIC 

Context Parameter Best (Mean, 95%CI) Best (Mean, 95%CI) Best (Mean, 95%CI) 

Execution Drift (vE) .020 (.026, .002) -369.26 (-357.49, 4.06) -365.51 (-353.75, 4.06) 
Boundary Height (a) .036 (.039, .001) -341.02 (-337.66, 1.04) -337.28 (-333.91, 1.04) 
Braking Drift (vB) .036 (.038, .001) -341.74 (-338.55, 1.02) -337.10 (-334.81, 1.02) 
Urgency Gain (γ) .028 (.030, .001) -353.43 (-350.13, 1.13) -349.69 (-346.38, 1.13) 
*a & vE .014 (.025, .005) -381.52 (-357.84, 7.52) -374.04 (-350.35, 7.52) 
vB & vE .021 (.026, .002) -364.11 (-353.66, 4.11) -356.63 (-346.18, 4.11) 
γ & vE .018 (.025, .003) -371.02 (-355.77, 4.57) -363.54 (-348.29, 4.57) 

* Denotes the best-fitting model  
 
 
Table 3. Adaptive Model Parameters 

 α0 β0 p AIC BIC 

 .24 .031 .002 -173.19 -178.61 
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Figures 
 

 
 

Figure 1. Basal Ganglia Circuitry and Dependent Process Model. (A) Major 

cortico-basal ganglia (BG) pathways and hypothesized control functions. 

Projections from the substantia nigra (SNc) deliver dopaminergic feedback 

signals to the striatum that have opposing effects on the excitability of direct and 

indirect pathway neurons. (B) Competition between direct and indirect pathways 

represented by mutually inhibiting “believer” (green; direct pathway) and 

“skeptic” (blue; indirect pathway) populations. Circuit-level dynamics of this 

competition modulate the rate of evidence accumulation leading up to action 

execution, leading to faster actions when competition is dominated by “believer”. 

(C) The Dependent Process Model (DPM) assumes that the state of an 

accumulating execution process at the time a stop cue is registered determines 

initial state of the braking process, making it more difficult to cancel actions 

closer to the execution boundary. Panels A and B have been adapted with 

permission from Dunovan and Verstynen (2016). Panel C has been adapted with 

permission from Dunovan et al., (2015). 
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Figure 2. Adaptive Stop-Signal Task and Contextual SSD Statistics. (A) 

Anticipatory stop-signal task. On Go trials (upper) subjects were instructed to 

press a key when the ascending bar crossed a target line, always occurring on 520 

ms after trial onset. Feedback was given informing the subject if their response 

was earlier or later than the Go Target (max +100 points). On Stop trials (lower), 

the bar stopped and turned red prior to reaching the Target line. If no response 

was made (correct), the subject received a bonus of +200 points. Failure to inhibit 

the keypress resulted in a -100 point penalty. (B) Stop-Signal statistics across 

Contexts. Distributions show the sampling distributions for SSDs on Context 

trials in the Early (blue), Uniform (gray), and Late (purple) groups. Early and Late 

SSDs were Normally distributed (parameters stated as in-figure text N(µ, σ)). 

Below the distributions, each row of tick-marks shows the Context SSDs for a 

single example subject each group. Bottom row of red tick-marks shows the five 

Probe SSDs included for all subjects regardless of context. 
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Figure 3. Effects of Context on Stop Accuracy and Response Times. (A) 

Subject-averaged stop-accuracy (left) and cumulative RT distributions for correct 

(Go trials; middle) and error (Stop trials; right) responses in the Early (blue), 

Uniform (gray), and Late (purple) Contexts. (B) Post-error slowing following 

failed Stop trials in each context and subsequent decay over five trials (C) The 

post-error slowing observed immediately after a failed stop (terr+1) in each 

Context (e.g., first data point in panel B). Error bars and shaded area reflect the 

95% confidence interval (CI) calculated across subjects.  

	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2017. ; https://doi.org/10.1101/153676doi: bioRxiv preprint 

https://doi.org/10.1101/153676
http://creativecommons.org/licenses/by/4.0/


28 

	

Figure 4. Model Comparison and Best-Fit Predictions Across Context. (A) 

AIC (dark) and BIC (light) scores for all single-parameter models, allowing either 

execution drift-rate (ve; green), boundary height (a; cyan), braking drift-rate (vb; 

red), or urgency (γ; blue) to vary across Context conditions. Three dual-parameter 

models were also included to test for possible benefits of allowing ve (best-fitting 

single parameter model) to vary along with either a (yellow), vb (purple), or γ 

(teal). Each dot shows the information criterion (IC) value for one of twenty fits 

performed with each model. Error bars show the 95% CI. (B) Qualitative effects 

of context on boundary height (top) and drift-rate parameter estimates (bottom) in 

the Early and Late Contexts. (C) Model predicted data (lines and larger 

transparent circles) simulated with best-fit parameters from the a & ve 

(corresponding to dotted circle in A) overlaid on the average empirical data for 

Early (blue), Uniform (gray), and Late (purple) context conditions. 
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Figure 5. Adaptive DPM and Predicted Learning Trajectory in Uniform 

Condition. (A) Schematic showing how the execution drift-rate is modulated 

following timing errors on Go trials (left) and how the boundary height is 

modulated following failed inhibitions on Stop trials. (B) Subject-averaged 

timeseries (dark line) and 95% CI (transparent gray) showing the RT on Go trials 

(left) accuracy percentage on Stop trials (right). Both timeseries are 30 points in 

total, each calculated as by taking the average RT/stop-accuracy over 

successive~30-trial windows). The corresponding model predictions are overlaid 

(light gray line), averaged over simulations to each individual subject’s data. (C) 

Average empirical stop-accuracy and RT statistics in the Uniform condition, 

(same as shown in Figure 3) with the predictions generated from simulations with 

the adaptive DPM.	
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Figure 6. Adaptive DPM Modulates Behavior to Context-Specific Control 

Demands. (A) Average stop-accuracy curves (left) and correct (middle) and error 

(right) RT distributions predicted by adaptive model simulations in the Early 

(blue) and Late (purple) Contexts (initialized with the optimal parameters of the 

Uniform Context). (B) Empirical timeseries of Go RT’s with model predictions 

overlaid (calculated using the same method described for Figure 5B-C for Early 

(left), Uniform (middle, same as in Figure 5C), and Late (right) Contexts. (C) 

Empirical and model predicted timeseries of stop-accuracy for the same 

conditions as in B. 
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Figure 7. Predictive utility of including boundary adaptation compared to 

drift-only model (A) Relative error of simulated compared to observed RT, 

accuracy, and post-error slowing measures based on twenty simulated data sets 

for the drift-only and drift & bound adaptive models. Post-error slowing in each 

context condition as predicted by the (B) drift-only and (C) drift & bound models. 

Error bars reflect the 95% CI around the mean. 
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