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Abstract 39	
 40	
Despite the importance of an observer’s goals in determining how a visual object is categorized, 41	
surprisingly little is known about how humans process the task context in which objects occur 42	
and how it may interact with the processing of objects. Using magnetoencephalography (MEG), 43	
functional magnetic resonance imaging (fMRI) and multivariate techniques, we studied the 44	
spatial and temporal dynamics of task and object processing. Our results reveal a sequence of 45	
separate but overlapping task-related processes spread across frontoparietal and occipitotemporal 46	
cortex. Task exhibited late effects on object processing by selectively enhancing task-relevant 47	
object features, with limited impact on the overall pattern of object representations. Combining 48	
MEG and fMRI data, we reveal a parallel rise in task-related signals throughout the cerebral 49	
cortex, with an increasing dominance of task over object representations from early to higher 50	
visual areas. Collectively, our results reveal the complex dynamics underlying task and object 51	
representations throughout human cortex.  52	
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Introduction 53	
 54	
Our tasks and behavioral goals strongly influence how we interpret and categorize the objects 55	
around us. Despite the importance of task context in our everyday perception, object recognition 56	
is commonly treated as a hierarchical feedforward process localized to occipitotemporal cortex 57	
(Riesenhuber and Poggio, 2002; Serre et al., 2007; DiCarlo et al., 2012) with little to no 58	
modulation by task, while categorization and task rule-related processing are mainly localized to 59	
prefrontal and parietal cortex (Duncan, 2010; Freedman and Assad, 2016). Recent fMRI work 60	
has extended this view, revealing task representations in occipitotemporal cortex, as well as 61	
documenting the impact of task on object representations in frontoparietal and occipitotemporal 62	
cortex (Çukur et al., 2013; Harel et al., 2014; Erez and Duncan, 2015; Bracci et al., 2017; 63	
Nastase et al., 2017; Vaziri-Pashkam and Xu, 2017). 64	
 While these studies demonstrate where in the brain task may be represented and where it 65	
may affect object representations, due to the low temporal resolution of fMRI they provide only 66	
an incomplete picture of when these signals emerge across different brain regions, what 67	
processes they reflect across the time course of a trial, and how task affects object representations 68	
in time. For example, are task representations first found in frontoparietal regions, first in 69	
occipitotemporal regions, or do they emerge in parallel (Siegel et al., 2015)? Does task affect the 70	
strength of object representations (Peelen et al., 2009), does it impose qualitative changes to 71	
object representations (Harel et al., 2014), or both? Likewise, do task-dependent changes of 72	
object representations in occipitotemporal cortex reflect an expectation-relation top-down 73	
modulation of feedforward processing (Kok et al., 2012; Kok et al., 2013) or a late modulatory 74	
influence of task (McKee et al., 2014; see also Emadi and Esteky, 2014)?  75	

We addressed these questions using multivariate analysis techniques on 76	
magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) data in 77	
humans. Using multivariate decoding, we studied the temporal evolution of task and object-78	
related brain signals and their interaction (Carlson et al., 2013; Van de Nieuwenhuijzen et al., 79	
2013; Cichy et al., 2014; Isik et al., 2014; Clarke et al., 2015; Kaiser et al., 2016). Using 80	
temporal generalization analysis (King and Dehaene, 2014), we probed the dynamics of the 81	
cognitive processes underlying different phases of the task. Finally, we combined MEG data 82	
with fMRI data of the same paradigm (Harel et al., 2014) using MEG-fMRI fusion based on 83	
representational similarity analysis (Cichy et al., 2014). By developing a novel model-based 84	
MEG-fMRI fusion approach, we targeted the unique contribution of task and objects to the 85	
spatiotemporal activity patterns found in human cortex.  86	
 87	
 88	

  89	
 90	
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 91	
 92	
Figure 1. Experimental paradigm. On each trial (Procedure depicted in Panel C), participants were presented with a 93	
stimulus from one of eight different object classes (Panel B) embedded in one of four task contexts (Panel A, top) 94	
indicated at the beginning of each trial. Participants carried out a task that either targeted low-level features 95	
(perceptual tasks) of the object or its high-level, semantic content (conceptual tasks). After a short delay, a response-96	
mapping screen was shown that presented the possible response alternatives (Panel A, bottom) in random order 97	
either left or right of fixation to decouple motor responses from the correct response. 98	

 99	
 100	

 101	
Results 102	
 103	
To characterize the spatial and temporal evolution of task and object representations in the 104	
human brain, we designed a paradigm that allowed us to separately assess the effects of task and 105	
objects, as well as their interaction (Figure 1). Human participants (n = 17) categorized objects 106	
according to one of four different tasks while we monitored their brain activity using MEG. On 107	
each trial, participants were first presented with a task cue indicating the task to be carried out on 108	
an ensuing object stimulus. Two of those tasks targeted low-level perceptual dimensions (Color: 109	
red / blue, and Tilt: clockwise / counterclockwise), while the other two targeted high-level 110	
conceptual dimensions (Content: manmade / natural, Size: large / small, relative to an oven). 111	
Following the task cue, after a short delay participants were presented with an object stimulus 112	
from a set of 8 different objects (5 exemplars each). After another delay, a response mapping 113	
screen appeared that provided both possible answers left and right of fixation (random order). 114	
After onset of the response mapping screen, participants responded with a button press and an 115	
instructed eye blink. Participants responded fast and highly accurately (accuracy M: 97.19 %, 116	
SD: 2.40; response time M: 712.2 ms, SD: 121.8), demonstrating their adaptability to the varying 117	
task demands. There were no significant behavioral differences between tasks or between objects 118	
(all F < 1). On average, participants missed responses or responded too slowly (RT > 1,600 ms) 119	
in 1.80 % of all trials (SD: 2.26). 120	
 121	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2018. ; https://doi.org/10.1101/153684doi: bioRxiv preprint 

https://doi.org/10.1101/153684
http://creativecommons.org/licenses/by-nc/4.0/


	 4 

 122	
Time-resolved Representation of Task Context and Objects 123	
 124	
All MEG analyses were carried out in a time-resolved manner. Prior to multivariate analyses, to 125	
speed up computations and increase sensitivity (Grootswagers et al., 2016), MEG sensor patterns 126	
(272 channels) were spatially transformed using principal component analysis, followed by 127	
removal of the components with the lowest 1% of variance, temporal smoothing (15 ms half 128	
duration at half maximum) and downsampling (120 samples / s). 129	

To separately characterize the temporal evolution of task and object-related signals, we 130	
conducted time-resolved multivariate decoding across the trial (see Figure 1C and Figure 2A) 131	
using support vector machine classification (Chang and Lin, 2011) of all pairwise comparisons 132	
of conditions. For a given decoding analysis (e.g. task decoding), all pairwise classification 133	
accuracy time courses were averaged, leading to an overall chance-level of 50 %. This provided 134	
temporal profiles of two resulting classification time courses, one for objects averaged across 135	
task, and one for task averaged across objects. 136	
 137	

 138	
 139	
Figure 2. Schematic for multivariate analyses of MEG data. All multivariate analyses were carried out in a time-140	
resolved manner on principal components (PCs) based on MEG sensor patterns (see Materials and Methods for 141	
transformation of sensor patterns to PCs). A. Time-resolved multivariate decoding was conducted using pairwise 142	
SVM classification at each time point, classifying all pairs of tasks or categories, and averaging classification 143	
accuracies within a given decoding analysis (e.g. decoding of task or category). B. For model-based MEG-fMRI 144	
fusion, 32 ´ 32 representational dissimilarity matrices were constructed using Pearson's r for all combinations of 145	
task and category. 146	

 147	
In the following, we describe and report results from the “Task Cue Period” (0 to 2,000 148	

ms) from onset of the task cue to onset of the object stimulus, and the “Object Stimulus Period” 149	
(2,000 to 3,500 ms) from onset of the object stimulus to onset of the response screen. We did not 150	
statistically analyze the ensuing “Response-Mapping Period” (3,500 ms to 5,000 ms), because it 151	
was contaminated by instructed blinks and response screen-related processes (see Materials and 152	
Methods, Statistical Testing). However, for completeness, we show results from this Response-153	
Mapping Period in Figures 3 and 4. 154	
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 Task Cue Period. As expected, classification of objects remained at chance prior to the 155	
presentation of the object stimulus (Figure 3, red curve). In contrast, task-related information 156	
rose rapidly in response to the task cue, peaking at 100 ms (bootstrap 95 % CI: 96-121). This was 157	
followed by a slow decay of information that approached chance-level and remained significant 158	
until ~1,200 ms after cue presentation. Notably, around 1,800 ms, i.e. 200 ms prior to onset of 159	
the object stimulus, task information was again significantly above chance. This result 160	
demonstrates the presence of a task representation that is available prior to the onset of the object 161	
stimulus. 162	

Object Stimulus Period. After onset of the object stimulus at 2,000 ms, object information 163	
increased sharply, peaking after 104 ms (bootstrap 95 % CI: 100-108). This was followed by a 164	
gradual decline that remained significantly above chance until the onset of the response-mapping 165	
screen at 3,500 ms. This rapid increase in object-related information was accompanied by a slow 166	
rise of task-related information starting 242 ms (bootstrap 95 % CI: 167-308) after object onset 167	
and peaking at 638 ms after object onset (95 % CI: 517-825). Information about task then 168	
remained well above-chance until the presentation of the response-mapping screen. 169	

 170	
 171	
Figure 3. Time-resolved MEG decoding of task and objects across the trial. After onset of the task cue (Task Cue 172	
Period), task-related accuracy increased rapidly, followed by a decay towards chance and significant above-chance 173	
decoding ~200 ms prior to object onset. After onset of the object stimulus (Object Stimulus Period), object-related 174	
accuracy increased rapidly, decaying back to chance with the onset of the response-mapping screen. This was 175	
paralleled by a gradual increase in task-related accuracy, starting 242 ms and peaking 638 ms after object onset and 176	
remaining high until onset of the response-mapping screen. Error bars reflect SEM across participants for each time-177	
point separately. Significance is indicated by colored lines above accuracy plots (non-parametric cluster-correction 178	
at p < 0.05). Time periods after the onset of the response-mapping screen were excluded from statistical analyses 179	
(see Materials and Methods and Results), but are shown for completeness. 180	
 181	

Together, these results demonstrate the emergence of different components of the task, 182	
including the processing of the task cue and the presence of task-related signals before and 183	
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during object processing. Further, they highlight an actively maintained or reactivated task 184	
representation prior to object onset that becomes increasingly relevant during object processing. 185	
Importantly, the rise of task-related information 242 ms after object onset – more than 130 ms 186	
after peak object decoding – suggests that task context has limited impact on initial feedforward 187	
object processing, but points towards later modulation of object representations.  188	
 189	
Multiple Stages of Task Processing Revealed by Temporal Generalization Analysis 190	
 191	
The decoding of task at different time points as described above characterizes the temporal 192	
progression of task-related information across the trial. However, these results alone do not 193	
distinguish whether the decoding of task reflects a single or a sequence of multiple cognitive 194	
processes across time and more generally what cognitive processes may underlie task decoding 195	
at different time points. There are three pertinent candidates: For one, early decoding of task 196	
after task cue onset may reflect an early visual representation of the task cue that is maintained in 197	
short-term memory and accessed when the object stimulus appears in order to carry out the task. 198	
Alternatively, the task representation during object processing may reflect an abstract 199	
representation of the participant’s emerging choice. Finally, the visual information about the task 200	
cue may reflect a more abstract representation of task rule that has been formed after initial 201	
visual and semantic processing of the task cue and that is maintained and applied to the object 202	
stimulus representation. 203	
  204	
 205	
Figure 4. Results of temporal generalization analysis 206	
of task. A. Temporal cross-classification matrix. The 207	
y-axis reflects the classifier training time relative to 208	
task cue onset, the x-axis the classifier generalization 209	
time, and the color codes the cross-classification 210	
accuracy for each combination of training and 211	
generalization time. The outline reflects significant 212	
clusters (p < 0.05, cluster-corrected sign permutation 213	
test). Results after the onset of the response-mapping 214	
screen are not included in the statistical evaluation 215	
but are shown for completeness. (see Results) B. 216	
Panels that schematically indicate three patters in the 217	
temporal generalization results. First, there was a 218	
block structure (Within-Period Cross-Decoding) 219	
separately spanning the Task Cue Period and the 220	
Object Stimulus Period, indicating largely different 221	
representations during the different periods of the 222	
task (left panel). At the same time, there were two 223	
separate patterns of temporal generalization in the 224	
off-diagonals (Between-Period I and Between-Period 225	
II Cross-Decoding illustrated in middle and right 226	
panel, respectively), indicating a shared 227	
representational format between these time periods. 228	
 229	
 230	
 231	
 232	
 233	
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To reveal and characterize the processing stages of task, we conducted temporal generalization 234	
analysis (Meyers et al., 2008; King and Dehaene, 2014), a method to systematically analyze the 235	
similarities and differences of neural activation patterns across time. The degree to which 236	
representations are similar in different stages of the trial allows us to draw inferences about the 237	
cognitive processes involved. If a classifier can generalize from one timepoint to another, this 238	
implies similar cognitive processes at those time points. If, however, there is no temporal 239	
generalization, then this may indicate different cognitive processes. We conducted temporal 240	
generalization analysis by training a classifier at each time point during the trial to distinguish 241	
the four different tasks and then tested it at all other time points, providing us with a time ´ time 242	
temporal generalization matrix. 243	

The temporal generalization analysis revealed multiple separate, but partially overlapping 244	
stages of processing after the onset of the task cue (Figure 4A, see Supplemental Figure 1 for 245	
results separated by task type). At a coarse level, the temporal generalization matrix exhibited a 246	
block structure within the Task Cue Period and Object Stimulus Period (Within-Period Cross-247	
Decoding, Figure 4B, left panel). This indicates a shared representational format within each 248	
time period of the trial, but a largely different representational format between those time 249	
periods, and an abrupt change in the representational format of task after onset of the object 250	
stimulus. Importantly, this result speaks against a visual or semantic representation of task during 251	
the Object Stimulus Period, since those representations would likely have emerged already early 252	
in the Task Cue Period and would have led to between-period cross-decoding. 253	

At a more fine-grained level, During the Task Cue Period (0 to 2,000 ms) the results 254	
revealed cross-decoding lasting from ~100 ms until 2,000 ms. This reinforces the idea of an 255	
active maintenance of task throughout this time period, as suggested by the time-resolved 256	
decoding analysis presented above. During the Object Stimulus Period, there was a gradual 257	
build-up of task-related information until ~200 ms after object onset. At that point, the results 258	
exhibited high levels of cross-decoding, indicating a maintained representation of task context 259	
that does not change until the onset of the response mapping screen. 260	

Importantly, there was also evidence for a shared representational format between time 261	
periods (Between-Period Cross-Decoding, Figure 4B, middle and right panel), as demonstrated 262	
by the off-diagonals of the generalization matrix (i.e. training time 0 to 2,000 ms, testing time 263	
2,000 to 3,500 ms, and vice versa). First, there was generalization from the Task Cue Period to 264	
the first ~200 ms of the Object Stimulus Period (training time ~300 to 2,000 ms, testing time 265	
2,000 to ~2,200 ms, Figure 4B, middle panel), possibly reflecting a maintained short-term 266	
representation that continued until the task rule could be applied to the object. Second, there was 267	
generalization from the end of the Task Cue Period to the Object Stimulus Period (training time 268	
~1,500 to 2,000 ms, testing time 2,000 ms to ~3,300 ms, Figure 4B, right panel), indicating that 269	
the short-term memory representation of task was similar to the representation during application 270	
of the task rule to the object. Interestingly, this cross-classification was specific to the late short-271	
term memory representation and did not generalize to other time points of the Task Cue Period. 272	
Note that this result cannot be explained by a representation of the correct response, because 273	
participants could not know the correct response during this short-term memory representation 274	
prior to the presentation of the object. 275	

Together, this pattern of results suggests that the representation of task during the Object 276	
Stimulus Period likely does not reflect visual or semantic processing of the task cue (which 277	
would predict cross-classification from the early Task Cue Period); nor does it reflect only a 278	
representation of participants’ choices. Rather, the results indicate that participants form an 279	
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abstract representation of task rule during the short-term retention period prior to object onset, 280	
which they apply to the object stimulus when it is presented. 281	
 282	
Effects of Task Context on Object Representations 283	
 284	
The robust decoding of task that increases during object processing raises the question whether 285	
the task representation is independent of object processing, to what extent task influences object 286	
representations, and when those effects emerge. Task may influence object representations in 287	
two non-exclusive ways: First, task may affect the strength of object representations, which 288	
would be indicated by differences in the decoding accuracy between task types. Second, task 289	
may qualitatively influence the representation of objects, which would be reflected in different 290	
activation patterns in response to object stimuli. These effects may emerge early (before 150 ms), 291	
indicating that task affects feedforward processing of objects. Alternatively, the effects may 292	
emerge late (after 150 ms), indicating modulatory effects of existing object representations. 293	

To investigate whether and when task affects the strength of object representations, we 294	
conducted time-resolved multivariate decoding of objects separately for perceptual and 295	
conceptual task types and compared the time courses (Figure 5A). The overall time course of 296	
object decoding was very similar for conceptual and perceptual tasks, as expected (see Time-297	
resolved Representation of Task Context and Objects and Figure 3): decoding accuracies 298	
increased sharply after stimulus onset, followed by a gradual decline, dropping back to chance 299	
level towards the end of the Object Period. Comparing the decoding curves for conceptual and 300	
perceptual tasks directly revealed higher accuracies for conceptual tasks emerging after 542 ms 301	
(95 % CI: 283-658). In agreement with the results of the time-resolved analysis of task, this 302	
suggests that task exerts late modulatory effects on object representations, again arguing against 303	
a strong influence of task on feedforward processing. Responses to high-level conceptual tasks 304	
were more pronounced than those to low-level perceptual tasks, likely reflecting the fact that 305	
conceptual tasks entail more in-depth processing of the object than perceptual tasks. 306	

 307	
 308	
Figure 5. Comparison of object decoding for different task types (p < 0.05, cluster-corrected sign permutation test). 309	
Error bars reflect standard error of the difference of the means. A. Object decoding separated by perceptual and 310	
conceptual task types. Initially, object decoding for conceptual and perceptual tasks is the same, followed by 311	
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decoding temporarily remaining at a higher level for conceptual tasks than perceptual tasks between 542 and 833 ms 312	
post stimulus onset. B. Object decoding within and across task types. A classifier was trained on data of different 313	
objects from one task type and tested either on object-related data from the same task type (within tasks) or on 314	
object-related data from the other task type (between tasks). There was no difference in within and between-task 315	
decoding. 316	
 317	
 In addition to these quantitative differences in object representations across task types, 318	
we investigated whether the object representations were qualitatively similar but differently 319	
strong (more separable patterns), or whether they were qualitatively different across task types 320	
(different patterns). To this end, we compared object classification within task to object 321	
classification between tasks. The rationale of this approach is that if the between-task cross-322	
classification accuracy is lower than the within-task accuracy, this demonstrates that the 323	
classifier cannot rely on the same source of information in these two conditions, i.e. the patterns 324	
must be qualitatively different between tasks. The results of this analysis are shown in Figure 5B. 325	
We found no differences in object decoding accuracies within vs. between task types, indicating 326	
that task affected only the strength, but not the quality of object representations. 327	
 328	
Model-based MEG-fMRI Fusion for Spatiotemporally-Resolved Neural Dynamics of Task 329	
and Objects 330	
 331	
Previous studies investigating task representations in humans focused primarily on the spatial 332	
localization of task effects to areas of the human brain. However, the representation of task does 333	
not emerge instantateously in all brain regions involved in processing task and is not static, but 334	
changes dynamically over time. To provide a more nuanced view of the cortical origin and the 335	
neural dynamics underlying task and object representations, we carried out MEG-fMRI fusion 336	
based on representational similarity analysis (Cichy et al., 2014, 2016). We calculated time-337	
resolved MEG representational dissimilarity matrices (RDMs) for all combinations of task and 338	
objects (Figure 2B) and compared them to fMRI RDMs derived from brain activity patterns from 339	
five ROIs of a previously-published study employing the same paradigm (Harel et al., 2014). 340	
Similarity between an fMRI RDM and MEG RDMs indicates a representational format common 341	
to that location (i.e. ROI) and those time points (for fMRI and MEG RDMs, see Supplemental 342	
Figure 2 and Supplemental Movie 1). While previous versions of MEG-fMRI fusion reveal the 343	
shared variance between RDMs of both modalities, they leave open what portion of this variance 344	
can be attributed uniquely to specific conditions (e.g. task or objects). To overcome this 345	
limitation, we developed an approach for model-based MEG-fMRI fusion which not only 346	
provides a spatiotemporally resolved signal, but which also allows us to ascribe portions of this 347	
signal to the cognitive process of study. Our model-based MEG-fMRI fusion approach is based 348	
on commonality analysis (Seibold and McPhee, 1979), a variance partitioning approach that 349	
identifies the variance uniquely shared between multiple variables, in our case MEG, fMRI and a 350	
given model RDM (Figure 6A). Model RDMs were constructed based on the expected 351	
dissimilarity for task and objects (0 within the same condition, 1 between different conditions). 352	
The procedure results in localized time courses of task-specific and object-specific information. 353	

The results of this model-based MEG-fMRI fusion are shown in Figure 6B-F separately 354	
for five regions of interest (ROIs): early visual cortex (EVC), object-selective lateral occipital 355	
cortex (LO), posterior fusiform sulcus (pFS), lateral prefrontal cortex (lPFC), and posterior 356	
parietal cortex (PPC). The grey shaded area indicates the total amount of variance captured by 357	
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MEG-fMRI fusion. Blue and red lines indicate the amount of variance in the MEG-fMRI fusion 358	
uniquely explained by the task and object model, respectively. 359	

In all ROIs and at most time points, the task or object models collectively explained the 360	
majority of the shared variance between MEG and fMRI, as indicated by the close proximity of 361	
the colored lines to the upper boundary of the grey shaded area. This result demonstrates that 362	
task and object model RDMs are well suited for describing the observed spatio-temporal neural 363	
dynamics. 364	

All regions carried information about task and objects at some point throughout the trial, 365	
indicating that task and object representations coexist in the same brain regions, albeit not 366	
necessarily at the same point in time. Importantly, regions differed in the predominance and 367	
mixture of the represented content. Both PPC and lPFC were clearly dominated by effects of 368	
task, with much weaker object-related commonality coefficients present in these areas. These 369	
regions exhibited high task-related commonality coefficients both during the Task Cue Period 370	
and the Object Stimulus Period. Interestingly, PPC exhibited significant task-related 371	
commonality coefficients throughout the short-term retention period that were not found in lPFC 372	
(p < 0.05, cluster-corrected randomization test on differences of commonality coefficients), 373	
which may speak towards a different functional role of these regions in the retention of task 374	
rules. We found no difference between any regions in the onset of task effects after task cue 375	
onset (all p > 0.05), indicating the parallel rise of task-related information in these brain regions 376	
at the temporal precision afforded by our analysis approach. 377	

In contrast to frontoparietal regions, occipitotemporal regions EVC, LO and pFS 378	
generally exhibited weaker but significant task-related commonality coefficients than PPC and 379	
lPFC. All three regions displayed significant task-related commonality coefficients in the Task 380	
Cue Period. Interestingly, in the Object Stimulus Period all three regions exhibited a mixture of 381	
task and object-related commonality coefficients, indicating the concurrent encoding of task and 382	
objects in these brain areas. Moreover, the relative size of task-related commonalities increased 383	
gradually from EVC through LO to pFS (randomization test comparing difference of task and 384	
object representations between regions: p = 0.0002), indicating an increasing importance of task 385	
encoding when progressing up the visual hierarchy. Visual inspection of the results suggests a 386	
temporal shift in the dominance of task over object representations along occipitotemporal 387	
cortex, with an earlier dominance of task in pFS than EVC. In all five regions, after onset of the 388	
object stimulus object-related commonality coefficients peaked earlier than task-related 389	
commonality coefficients (all p < 0.05, based on bootstrap CI for differences in peaks), in line 390	
with the results of the time-resolved multivariate decoding analysis. 391	

Together, we found that the spatiotemporal neural dynamics as revealed by model-based 392	
MEG-fMRI fusion predominantly reflected task or object processing, with systematic differences 393	
across cortical regions: While PPC and lPFC were dominated by task and PPC carried task 394	
information throughout the Task Cue Period, EVC, LO and pFS exhibited a mixture of task and 395	
object-related information during the Object Stimulus Period, with relative increases in the size 396	
of task-related effects when moving up the visual cortical hierarchy. This indicates the parallel 397	
representation of object and task-related signals in those brain regions, with an increasing 398	
relevance of task in category-selective brain regions. 399	
 400	
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 401	
 402	
Figure 6. Model-based MEG-fMRI fusion procedure and results. A. Model-based MEG-fMRI fusion in the current 403	
formulation reflects the shared variance (commonality) between three dissimilarity matrices: (1) an fMRI RDM 404	
generated from voxel patterns of a given ROI, (2) a model RDM reflecting the expected dissimilarity structure for a 405	
variable of interest (e.g. task) excluding the influence of another variable of interest (e.g. object) and (3) an MEG 406	
RDM from MEG data at a given time point. This analysis was conducted for each MEG time point independently, 407	
yielding a time course of commonality coefficients for each ROI. B-F. Time courses of shared variance and 408	
commonality coefficients for five regions of interest (ROIs) derived from model-based MEG-fMRI fusion (p < 0.05, 409	
cluster-corrected randomization test, corrected for multiple comparisons across ROIs): PPC (Panel B), lPFC (Panel 410	
C), EVC (Panel D), LO (Panel E) and pFS (Panel F). Blue plots reflect the variance attributed uniquely to task, 411	
while red plots reflect the variance attributed uniquely to object. Grey shaded areas reflect the total amount of 412	
variance shared between MEG and fMRI RDMs, which additionally represents the upper boundary of the variance 413	
that can be explained by task or object models. Y-axes are on a quadratic scale for better comparability to previous 414	
MEG-RSA and MEG-fMRI fusion results reporting correlations (Cichy et al., 2014) and to highlight small but 415	
significant commonality coefficients. 416	
 417	
Discussion 418	
 419	
We used MEG and time-resolved multivariate decoding to unravel the representational dynamics 420	
of task context, objects, and their interaction. Information about task was found rapidly after 421	
onset of the task cue and throughout the experimental trial, which was paralleled by information 422	
about objects after onset of the object stimulus. Temporal cross-decoding revealed separate and 423	
overlapping task-related processes, suggesting a cascade of representations including visual 424	
encoding of the task cue, the retention of the task rule, and its application to the object stimulus. 425	
Investigating the interaction of task context and object, we found evidence for late effects of task 426	
context on object representations, with task impacting the strength rather than the quality of 427	
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object-related MEG patterns. Finally, model-based MEG-fMRI fusion revealed a parallel rise of 428	
task-related information across all regions of interest and differences in the timecourses of task 429	
and object information. Parietal and frontal regions were strongly dominated by effects of task, 430	
whereas occipitotemporal regions reflected a mixture of task and object representations 431	
following object presentation, with relative increases in task-related effects over time and along 432	
the visual cortical hierarchy. 433	
 434	
Representational Dynamics of Task Context 435	
 436	
Previous fMRI studies investigating the effects of task context during visual object processing 437	
focused on the cortical location of task effects (Harel et al., 2014; Erez and Duncan, 2015; Bracci 438	
et al., 2017; Bugatus et al., 2017; Vaziri-Pashkam and Xu, 2017), leaving open the question of 439	
the temporal dynamics of task representations in those regions. Our work addressed this gap in 440	
knowledge by examining the emergence of task representations and probing what cognitive 441	
processes underlie task representations at different points in time. By manipulating task context 442	
on a trial-by-trial basis we (1) mapped out the temporal evolution of task context effects across 443	
different stages of the trial, (2) uncovered different stages of processing using temporal 444	
generalization analysis, and (3) localized task-related information to different regions of the 445	
brain using model-based MEG-fMRI fusion. 446	
 The results from multivariate decoding and temporal generalization analyses indicate that 447	
following initial encoding of visual information about task cue, there was a weak but consistent 448	
short-term memory representation of this information, paralleled by an abstract representation of 449	
the task rule. Temporal generalization analysis additionally revealed multiple distinct but 450	
overlapping stages of task processing, extending previous findings of prefrontal recordings in 451	
non-human primates (Sigala et al., 2008; Stokes et al., 2013). The pattern of generalization 452	
results suggests that during object processing task is not represented in a purely visual (or 453	
semantic) format; rather, they suggest a more abstract representation of task rule that is applied 454	
to the visually-presented object stimulus (Wallis et al., 2001; Stoet and Snyder, 2004; Bode and 455	
Haynes, 2009; Woolgar et al., 2011; see also Peters et al., 2016). 456	

Of note, the representation of task in monkey prefrontal cortex has been shown to be even 457	
more dynamic than described above and not to generalize at all between different periods of the 458	
task (Stokes et al., 2013). Since our results demonstrate phases of cross-classification between 459	
these time periods, this suggests that the source of the cross-classification between these task 460	
periods may originate from other brain regions such as posterior parietal cortex. Indeed, this 461	
interpretation is supported by our MEG-fMRI fusion results that show no significant prefrontal 462	
representations of task context during the delay period prior to the onset of the object stimulus, 463	
but a representation of task in posterior parietal cortex. 464	
 465	
Frontoparietal and Occipitotemporal Brain Areas are Differentially Involved in Task and 466	
Object Representations 467	
 468	
Previous research has suggested a dominance of parietal and prefrontal cortex in representing 469	
task context (Duncan, 2010; Woolgar et al., 2011), while the processing of objects has been 470	
attributed to occipitotemporal cortex (Grill-Spector et al., 1999; Kravitz et al., 2010; Cichy et al., 471	
2011). More recently, this view has been challenged: First, object representations have been 472	
found – with some dependence on task context – in both parietal (Konen and Kastner, 2008; 473	
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Jeong and Xu, 2016; Bracci et al., 2017; Vaziri-Pashkam and Xu, 2017) and prefrontal cortex 474	
(Harel et al., 2014; Erez and Duncan, 2015; Bracci et al., 2017). Second, there is some evidence 475	
for task effects in occipitotemporal cortex, although the extent of such effects remains debated 476	
(Harel et al., 2014; Erez and Duncan, 2015; Lowe et al., 2016; Bracci et al., 2017; Bugatus et al., 477	
2017; Vaziri-Pashkam and Xu, 2017), and the time course of any such effects has remained 478	
elusive. 479	

Our model-based MEG-fMRI fusion results provide a nuanced spatiotemporal 480	
characterization of task and object representations in frontoparietal and occipitotemporal cortex. 481	
Task representations emerged in parallel across all brain regions, emphasizing the importance of 482	
task representations throughout human cortex and suggesting a rapid communication of task 483	
information between brain regions (Siegel et al., 2015). Frontoparietal cortex was strongly 484	
dominated by task context, with much weaker object representations. This finding reinforces the 485	
notion that the dominant role of frontoparietal cortex is the representation of task, with a 486	
secondary role in representing objects (but see Bracci et al., 2017). In contrast, in 487	
occipitotemporal cortex, responses reflected a mixture of object and task-related effects after 488	
object onset, with an increasing dominance of task over time and along the visual cortical 489	
hierarchy from low- to high-level visual cortex (EVC, LO, pFS). These results reveal that both 490	
task and objects are encoded in parallel in the same regions of occipitotemporal cortex and 491	
suggest an increasing role of task context in high-level visual cortex. 492	

The finding of parallel effects of task and object suggests an important role of task during 493	
object processing already in occipitotemporal cortex. This contrasts with the view of a “passive” 494	
role of occipitotemporal cortex in the processing of objects, according to which object 495	
representations are read out by prefrontal cortex (Freedman et al., 2003). Instead, our results 496	
suggest that task may bias late components of object processing along occipitotemporal cortex 497	
(albeit at relatively late stages), an influence that may originate in brain regions strongly 498	
dominated by task in frontoparietal cortex (Waskom et al., 2014). In addition, our results suggest 499	
that this influence may increase along the visual cortical hierarchy. Indeed, pFS but not EVC or 500	
LO was found to represent task immediately prior to object onset, suggesting that task has the 501	
potential to affect the early stages of visual processing through a top-down bias. This bias may 502	
reflect a task-specific modulation of the representational strength of task-relevant object features 503	
after object onset. While this interpretation is in line with studies of attentional enhancement of 504	
objects and their features in occipitotemporal cortex (Jehee et al., 2011; Peelen and Kastner, 505	
2011), our results go further by demonstrating the concurrent representation of both task and 506	
objects in the same brain region, which may be beneficial for optimizing the tuning of 507	
categorical brain responses to the demands of the task. 508	

While it is possible that the MEG-fMRI fusion results found in this study are driven by a 509	
small subset of conditions or a simple one-dimensional representation, we believe this to be 510	
unlikely based on the complexity of the empirically observed MEG and fMRI RDMs (see 511	
Supplemental Figure 2 and Supplemental Movie 1). However, future studies are required to 512	
assess the degree to which complex patterns found in multivariate analyses are driven by low-513	
dimensional representations (Hebart and Baker, 2017). 514	
 515	
Task Affects the Strength of Object Representations Late in Time 516	
 517	
The direct investigation of the temporal dynamics of task and object interactions revealed three 518	
key findings. First, we found that differences in object processing between low-level perceptual 519	
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and high-level conceptual tasks emerged late in time, suggesting a late top-down modulation of 520	
object processing after initial object processing has been completed, arguing against an early 521	
expectation-related modulation of feedforward processing. This finding is consistent with a 522	
previous EEG study using natural images in an animal and vehicle detection task, reporting a fast 523	
initial object-related signal followed by later task-related responses after ~160-170 ms signaling 524	
the presence of a target stimulus (VanRullen and Thorpe, 2001). Similarly, a more recent MEG 525	
study (Ritchie et al., 2015) reported results for visual category processing in two different tasks 526	
(object categorization vs. letter discrimination) that are indicative of late differences in task-527	
dependent stimulus processing. Finally, another recent EEG study reported late effect of task on 528	
scene processing (Groen et al., 2016). Overall, these combined results suggest that task 529	
representations affect late, rather than early processing of visual information.  530	

Second, object-related information leveled off more slowly for conceptual than 531	
perceptual tasks, indicating different neural dynamics for different task types. This suggests that 532	
for conceptual tasks encoding and maintenance of object category may be beneficial for carrying 533	
out the task, in contrast to perceptual tasks for which the extraction of task-relevant features may 534	
be sufficient. Differences in the difficulty between the tasks may account for this pattern of 535	
results; however, we found no differences in response times or accuracy for the different tasks, 536	
arguing against the relevance of task difficulty. In support of this view, a previous study 537	
emploing a speeded version of the same tasks and objects found no differences in response times 538	
between tasks (Harel et al., 2014). 539	
 Finally, while task context affected the separability of object-related MEG patterns 540	
between task types, we found no evidence that the overall structure of those patterns changed. 541	
This result contrasts with a prior study demonstrating qualitatively different object-related 542	
patterns in lateral prefrontal and high-level object-selective cortex (Harel et al., 2014; Nastase et 543	
al., 2017). However, the contribution of multiple brain regions to the MEG response may be 544	
masking an interaction between object and task representations. Indeed, our MEG-fMRI fusion 545	
data suggest that both task and objects are being processed in parallel in pFS, although future 546	
work with independent data will be needed to resolve this issue. 547	

While our experimental design precluded interpretation of results in the response period, 548	
future studies could explicitly target all stages of the task, from the instructional cue to the 549	
response. In addition, our study did not distinguish between different stages of object processing 550	
(e.g. low-level features or high-level categories), and our temporal generalization analysis of 551	
objects did not explicitly reveal multiple object processing stages (Supplemental Figure 3). Task 552	
may interact with objects at any stage of processing, and while in the present study interactions 553	
arose late in time, it is still a matter of debate to what degree late responses reflect high-level 554	
categorical processing of objects (Kaiser et al., 2016; Bankson et al., 2017; Proklova et al., 555	
2017). Future studies on task effects during object processing could address this issue by using a 556	
larger, controlled set of objects (Bracci and Op de Beeck, 2016) or by explicitly including 557	
models of shape (Belongie et al., 2002) or texture (Proklova et al., 2016). By revealing the 558	
spatiotemporal dynamics of task and object processing, our results serve as a stepping stone for 559	
future investigations addressing these questions. 560	
 561	
 562	
 563	
 564	
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Materials and Methods 565	
 566	
Participants 567	
 568	
22 healthy volunteers with normal or corrected-to-normal visual acuity took part in the study. 569	
Five participants were excluded due to at least one of the following exclusion criteria: behavioral 570	
performance below 90 % correct, excessive artifacts, or incomplete or corrupted recordings. Data 571	
from the remaining 17 participants (8 female, mean age 25.12, SD = 5.16) were used in all 572	
analyses throughout the study. The sample size was chosen based on previous studies employing 573	
multivariate decoding of MEG signals (Carlson et al., 2013; Cichy et al., 2014, 2016). All 574	
participants gave written informed consent as part of the study protocol (93-M-0170, 575	
NCT00001360) prior to participation in the study. The study was approved by the Institutional 576	
Review Board of the National Institutes of Health and was conducted according to the 577	
Declaration of Helsinki. 578	
 579	
Experimental Design and Stimuli 580	
 581	
We chose four tasks that could be carried out on a set of object images, two targeting low-level 582	
perceptual dimensions of the images, and two high-level conceptual dimensions (Figure 1A). 583	
The perceptual dimensions were Color (red / blue) and Tilt (clockwise / counterclockwise), and 584	
the conceptual dimensions were Content (manmade / natural) and Size (real world, large / small 585	
relative to an oven). Object images were chosen from 8 different categories (Figure 1B): 586	
Butterfly, cow, dresser, flower, motorbike, skate, tree, and vase. For each of the 8 object 587	
categories, we chose five different image exemplars. For the Color and Tilt tasks, each object 588	
was presented with a thin red or blue outline, and objects were either tilted 30 degrees clockwise 589	
or counterclockwise relative to the principal axis of the object. The combination of stimulus 590	
types led to 160 unique stimulus combinations (8 categories ´ 5 exemplars ´ 2 colors ´ 2 tilts). 591	
Each stimulus was presented once in each task context, making a total of 640 stimulus 592	
presentations per participant. The presentation order of these stimulus-task combinations was 593	
randomized. In addition, we interspersed 80 catch trials that were chosen to be random 594	
combinations of task and stimulus (see below). 595	

All stimuli were presented on black background with a white central fixation cross 596	
present throughout the experiment. Object images were greyscale cropped images of objects and 597	
were a subset selected from a previous fMRI study (Harel et al., 2014). Both task cues (e.g. 598	
‘Content’) and possible responses (e.g. ‘manmade’ or ‘natural’) were shown as words in white 599	
font. Task cues were always presented centrally and possible responses were shown left and right 600	
of fixation. 601	
  602	
Procedure 603	
 604	
Prior to the experiment, participants were familiarized with the task by carrying out 36 randomly 605	
chosen trials outside of the MEG. For the actual experiment, participants were seated in an 606	
electromagnetically shielded MEG chamber with their head placed in the mold of the dewar 607	
while stimuli were backprojected on a translucent screen in front of them (viewing distance: 70 608	
cm, image size: 6 degrees of visual angle). Each trial was preceded by a white fixation cross (0.5 609	
s) that turned green (0.5 s) to prepare participants for the upcoming trial. A trial consisted of 610	
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three major components: (1) A task cue which indicated the relevant task for the trial, (2) an 611	
object stimulus which was categorized according to the task, and (3) a response-mapping screen 612	
which indicated the task-relevant response options left and right of fixation (Figure 1C). Based 613	
on these components, in the following we separate each trial into three different time periods: a 614	
“Task Cue Period”, an “Object Stimulus Period”, and a “Response Mapping Period”. Each trial 615	
lasted 5 s. A trial began with the Task Cue Period consisting of the presentation of a task cue (0.5 616	
s) followed by a fixation cross (1.5 s). This was followed by the Object Stimulus Period 617	
consisting of the presentation of an object stimulus (0.5 s) followed by another fixation cross (1.0 618	
s). Finally, the trial ended with the Response Mapping Period during which a response-mapping 619	
screen was displayed (1.5 s). Participants responded with the left or right index finger using an 620	
MEG-compatible response box. In addition to the button press, participants were instructed to 621	
make an eye blink during the response period to minimize the contribution of eye blink artifacts 622	
to other time periods. The order of the options on the response-mapping screen was intermixed 623	
randomly to prevent the planning of motor responses before the onset of the response screen 624	
(Hebart et al., 2012). 625	

Participants were instructed to encode the task rule as soon as being presented with the 626	
task cue and to apply it immediately to the stimulus. To encourage this strategy, they were asked 627	
to respond as fast and accurately as possible. To enforce a faster application of task to object 628	
category, we introduced catch trials for which the fixation period between stimulus offset and 629	
response-mapping screen onset was shortened from 1.0 s to 0.2 s. The experiment consisted of 630	
20 runs of 36 trials each (32 experimental trials, 4 catch trials). 631	
 632	
MEG Recordings and Preprocessing 633	
 634	
MEG data were collected on a 275 channel CTF system (MEG International Services, Ltd., 635	
Coquitlam, BC, Canada) with a sampling rate of 1,200 Hz. Recordings were available from 272 636	
channels (dead channels: MLF25, MRF43, MRO13). Preprocessing and data analysis were 637	
carried out using Brainstorm (version 02/2016, Tadel et al., 2011) and MATLAB (version 638	
2015b, The Mathworks, Natick, MA). The specifics of preprocessing and multivariate decoding 639	
(see below) were based on previously published MEG decoding work (Cichy et al., 2014; 640	
Grootswagers et al., 2016) and fine-tuned on a pilot subject that did not enter the final data set. 641	
MEG triggers were aligned to the exact presentation time on the screen that had been recorded 642	
using an optical sensor attached to the projection mirror. Data were epoched in 5.1 s trials, 643	
starting 100 ms prior to the onset of the task cue and ending with the offset of the response-644	
mapping screen. Then, data were bandpass filtered between 0.1 and 300 Hz and bandstop filtered 645	
at 60 Hz including harmonics to remove line noise. 646	

To further increase SNR and to reduce computational costs, we carried out (1) PCA 647	
dimensionality reduction, (2) temporal smoothing on PCA components, and (3) downsampling 648	
of the data. For PCA, data were concatenated within each channel across all trials. Note that 649	
PCA leads to orthogonal temporal components without mixing the MEG signal in time. After 650	
PCA, the components with the lowest 1 % of the variance were removed, unless this would 651	
remove more than 50 % of components. Since all subjects exceeded this 50 % criterion, this led 652	
to 136 components for all subjects. All further analyses were conducted on the reduced set of 653	
principal components. Then, data were normalized relative to the baseline period (for task 654	
decoding: -0.1 to 0 s, for object category decoding: 1.9 to 2.0 s). To this end, for each channel we 655	
calculated the mean and standard deviation of the baseline period and subtracted this mean from 656	
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the rest of the data before dividing it by the standard deviation (univariate noise normalization). 657	
Finally, the components were temporally smoothed with a Gaussian kernel of ± 15 ms half 658	
duration at half maximum, and downsampled to 120 Hz (621 samples / trial). 659	
 660	
Time-resolved Multivariate Decoding 661	
 662	
Multivariate decoding was carried out using custom-written code in MATLAB (Mathworks, 663	
Natick, MA), as well as functions from The Decoding Toolbox (Hebart et al., 2015), and 664	
LIBSVM (Chang and Lin, 2011) using linear support vector machine classification (C = 1). 665	
Classification was conducted for each participant separately in a time-resolved manner, i.e. 666	
independently for each time point. Each pattern that entered the classification procedure 667	
consisted of the principal component scores at a given time point. In the following we describe 668	
one iteration of the multivariate classification procedure that was carried out for the example of 669	
object category classification. In the first step, we created supertrials by averaging 10 trials of the 670	
same object category without replacement (Isik et al., 2014). In the next step, we separated these 671	
supertrials into training and testing data, with one supertrial pattern per object category serving 672	
as test data and all other supertrial patterns as training data. This was followed by one-vs-one 673	
classification of all 28 pairwise comparisons of the 8 object categories (chance-level 50 %). To 674	
test the trained classifier on the left-out data, we compared the two predicted decision values and 675	
assigned an accuracy of 100 % if the order of the two test samples was predicted correctly and an 676	
accuracy of 0 % if the order was the opposite (for two samples and two classes this is 677	
mathematically equivalent to the common area-under-the-curve measure of classification 678	
performance and represents a classification metric that is independent of the bias term of the 679	
classifier). In a last step, the resulting pairwise comparisons were averaged, leading to an 680	
estimate of the mean accuracy across all comparisons. This training and testing process was then 681	
repeated for each time point. This completes the description of one multivariate classification 682	
iteration for the decoding of object category. The procedure for task classification was 683	
analogous, with 4 tasks and 6 pairwise combinations. To achieve a more fine-grained and robust 684	
estimate of decoding accuracy, we ran a total of 500 such iterations of trial averaging and 685	
classification, and the final accuracy time series reflects the average across these iterations. This 686	
provided us with time-resolved estimates of MEG decoding accuracy for object category and 687	
task classification, respectively.  688	
 689	
Temporal Generalization of Task 690	
 691	
To investigate whether the task representation remained stable across time or whether it changed, 692	
we carried out cross-classification across time, also known as temporal generalization analysis 693	
(King and Dehaene, 2014). The rationale of this method is that if a classifier can generalize from 694	
one time point to another, this demonstrates that the representational format is similar for these 695	
two time points. If, however, a classifier does not generalize, then under the assumption of stable 696	
noise (Hebart and Baker, 2017) this indicates that the representational format is different. To 697	
carry out this analysis, we repeated the same approach as described in the previous section, but 698	
instead of testing a classifier only at a given time point, we tested the same classifier for all other 699	
time points separately. This cross-classification analysis was repeated with each time point once 700	
serving as training data, yielding a time–time decoding matrix that captures classifier 701	
generalization performance across time. 702	
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 703	
Model-based MEG-fMRI Fusion for Spatiotemporally-Resolved Information 704	
 705	
To resolve task and category-related information both in time and space simultaneously, we 706	
carried out RSA-based MEG-fMRI fusion (Cichy et al., 2014, 2016). RSA makes it possible to 707	
compare brain patterns across modalities in terms of pattern dissimilarity, abstracting from the 708	
activity patterns of measurement channels (e.g. MEG sensors) to all pairwise distances of those 709	
patterns in form of a representational dissimilarity matrices (RDMs). RSA-based MEG-fMRI 710	
fusion allows a researcher to ask the following question: At what point in time does the 711	
representational structure in a given brain area (as determined from fMRI) match the 712	
representational structure determined from the time-resolved MEG signal? The reasoning for this 713	
approach is that if the fMRI RDM of a brain region and the MEG RDM of a time point show a 714	
correspondence, this suggests that there is a shared representational format in a given brain 715	
location and at a given point in time. Here we apply this approach to investigate the 716	
spatiotemporal evolution of object category and task representations. 717	
 FMRI RDMs for each combination of task and category (4 ´ 8 = 32 ´ 32 matrices) were 718	
available from five regions of interest (ROIs) in 25 participants who took part in a separate study 719	
employing the same task (Harel et al., 2014). None of these participants overlapped with the 720	
sample from the MEG study. The major difference between the MEG and the fMRI experiments 721	
were (1) that the fMRI study used an extended set of 6 tasks and (2) the exact timing of each trial 722	
was slower and jittered in the fMRI study. Details about data preprocessing have been described 723	
previously (Harel et al., 2014). RDMs were based on parameter estimates in a GLM for each 724	
condition which were converted to t-values (univariate noise normalization). Each entry in the 725	
matrix reflects 1 minus the correlation coefficient of the t-values across conditions, calculated 726	
separately for each ROI. RDMs were reduced to the relevant four task types. The five ROIs were 727	
early visual cortex (EVC), object-selective LO and pFS, lateral prefrontal cortex (lPFC) and 728	
posterior parietal cortex (PPC). EVC, LO and pFS were defined based on contrasts in an 729	
independent visual and object localizer session, and lPFC and PPC were defined by a 730	
combination of anatomical criteria and responses in the functional localizer session to the 731	
presence of objects. 732	

For better comparability to this previous study, we created correlation-based MEG 733	
pattern dissimilarity matrices for all combinations of task and object category. In particular, for 734	
each combination of task and category, we created a mean pattern, yielding a total 32 brain 735	
patterns per participant (8 categories ´ 4 tasks). We then ran a Pearson correlation between all 736	
patterns and converted these similarity estimates to dissimilarity estimates (using 1 minus 737	
correlation), providing us with a 32 ´ 32 RDM for each time point and participant. 738	

Since different groups of participants were tested in the fMRI and MEG studies, we used 739	
the group average pattern dissimilarity matrices of each modality as the best estimate of the true 740	
pattern dissimilarity. These RDMs were symmetrical around the diagonal, so we extracted the 741	
lower triangular component of each pattern dissimilarity matrix – importantly, excluding the 742	
diagonal (Ritchie et al., 2017) – and converted them to vector format for further analyses, in the 743	
following referred to as representational dissimilarity vector (RDV). 744	

For a given brain region, we conducted MEG-fMRI fusion by calculating the squared 745	
Spearman correlation between the fMRI RDV and the MEG RDV for each time point separately. 746	
The squared correlation coefficient is mathematically equivalent to the coefficient of 747	
determination (R2) of the fMRI RDV explaining the MEG RDV. This approach was repeated for 748	
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each fMRI RDV of the five ROIs, providing us with five time courses of representational 749	
similarity between MEG and fMRI. 750	

While MEG-fMRI fusion provides a temporal profile of representational similarities for a 751	
given brain region, these MEG-fMRI fusion time courses do not distinguish whether MEG-fMRI 752	
representational similarities reflect task, object category, or a mixture of the two. To disentangle 753	
task and object category-related information with MEG-fMRI fusion, we extended this approach 754	
by introducing model RDMs of the same size (32 ´ 32). These RDMs reflected the expected 755	
dissimilarity for the representation of task and category, respectively, with entries of 1 for high 756	
expected dissimilarity (different task / category) and 0 for low expected dissimilarity (same task / 757	
category). This model-based MEG-fMRI fusion approach was carried out using commonality 758	
analysis (Seibold and McPhee, 1979), a variance decomposition approach that makes it possible 759	
to estimate the shared variance between more than two variables (see Greene et al., 2016, for a 760	
similar approach using multiple model RDMs). For a given brain region and time point, these 761	
variables reflect (1) an MEG RDV, (2) an fMRI RDV and (3) the two model RDVs for task and 762	
object category representations. 763	

A schematic of this model-based MEG-fMRI fusion is shown in Figure 6A. We 764	
conducted commonality analysis by comparing two squared semi-partial correlation coefficients 765	
(Spearman correlation), one reflecting the proportion of variance shared between MEG and 766	
fMRI partialling out all model variables excluding the variable of interest (e.g. task) from fMRI, 767	
and the other reflecting the proportion of shared variance when partialling out all model variables 768	
from fMRI including this variable of interest. The difference between both coefficients of 769	
determination (R2) then provides the commonality, which is the variance shared between MEG 770	
and fMRI that is uniquely explained by the variable of interest. Formally, the commonality at 771	
time t and location j can be described as: 772	

 773	
𝐶"#,(&',() = 	𝑅

-
"#,(&'./) −	𝑅

-
"#,(&'.(,/) 774	

 775	
where X reflects MEG, Y reflect fMRI, A reflects task, and B reflects object category. Note that 776	
this variable can become slightly larger than the total R2 or slightly negative, due to numerical 777	
inaccuracies or the presence of small suppression effects (Pedhazur, 1997). In addition, 778	
commonality coefficients always reflect the shared variance relative to a target variable (in our 779	
case MEG), but depending on the relationship between the variables the estimate of shared 780	
variance can change when a different target variable is used (in our case fMRI). In the present 781	
study, the pattern of results was comparable irrespective of which variable served as a target 782	
variable. 783	
 784	
Statistical Testing 785	
 786	
Throughout this article, we used a non-parametric, cluster-based statistical approach to test for 787	
time periods during which the group of participants showed a significant effect (Nichols and 788	
Holmes, 2002), and bootstrap sampling to determine confidence intervals for peak latencies and 789	
peak latency differences. We did not compute statistics in time periods after the onset of the 790	
response-mapping screen, because (1) these time periods were corrupted by the instructed eye 791	
blinks and (2) information about task is contained in the response-mapping screen, making it 792	
difficult to uniquely assign these responses to task or response-mapping screen. For object 793	
category-related responses we did not compute statistics for time periods prior to the onset of the 794	
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object stimulus, because it was not reasonable to assume that these periods would contain 795	
information about the category before its identity is revealed. For completeness, however, we 796	
plot these results in Figures 3 and 4. Please note that the pattern of results reported is very similar 797	
when including these time periods into our statistical analyses. 798	
 799	
Non-parametric Cluster-based Statistical Approach 800	
 801	
We carried out a non-parametric, cluster-based statistical analysis using the maximum cluster 802	
size method (Nichols and Holmes, 2002). Clusters were defined as neighboring time points that 803	
all exceed a statistical cutoff (cluster-inducing threshold). This cutoff was determined through a 804	
sign-permutation test based on the distribution of t-values from all possible permutations of the 805	
measured accuracy values (217 = 131,072). The cluster-inducing threshold was defined as the 95th 806	
percentile of the distribution at each time point (equivalent to p < 0.05, one-sided). To identify 807	
significant clusters, we determined the 95th percentile of maximum cluster sizes across all 808	
permutations (equivalent to p < 0.05, one-sided). This provided us with significant clusters at the 809	
pre-specified statistical cutoffs. 810	

For temporal generalization matrices, we extended the cluster-based approach described 811	
above to two dimensions, revealing significant 2D clusters. Because of computational 812	
limitations, we ran only a subset of 10,000 permutations drawn randomly without replacement 813	
from all available permutations. 814	

For model-based MEG-fMRI fusion, we used an approach similar to that described 815	
above. However, instead of running a sign-permutation test across participants, we conducted a 816	
randomization test for which we created 5,000 MEG similarity matrices for each of the five 817	
ROIs. These matrices were based on random permutations of the rows and columns of the group 818	
average MEG similarity matrix (Kriegeskorte et al., 2008). We then carried out model-based 819	
MEG-fMRI fusion using these matrices to create an estimated null distribution of information 820	
time courses for each ROI. For each time point in each ROI, a cluster-inducing threshold was 821	
determined by choosing the 95th percentile of this estimated null distribution (equivalent to p < 822	
0.05, one-sided). This was followed by determining the maximum cluster sizes across all 823	
permutations as described above, but across all ROIs to correct for multiple comparisons 824	
(equivalent to p < 0.05, one-sided, corrected for multiple comparisons across ROIs). 825	
 826	
Determining Confidence Intervals for Peak Latencies 827	
 828	
We used bootstrap sampling to estimate the 95 % confidence intervals (CI) of peak latencies and 829	
peak latency differences, respectively. For each iteration of the bootstrap sampling approach, we 830	
calculated a time course based on the bootstrap sample. For multivariate decoding analyses, this 831	
was a time course of accuracy from an average of n = 17 time courses of decoding accuracy 832	
sampled with replacement from the pool of subjects. For MEG-fMRI fusion, this was a  time 833	
course of commonality coefficients, generated by sampling n = 17 time courses of MEG 834	
similarity matrices from the pool of subjects with replacement, averaging them, and repeating the 835	
model-based MEG-fMRI fusion approach as described above. For each bootstrap sample time 836	
course, we then calculated timing estimates in the relevant time periods (for peak latency: timing 837	
of maximum, for peak latency difference: time difference between maxima). This process was 838	
repeated (100,000 times for multivariate decoding and 5,000 times for MEG-fMRI fusion), 839	
which generated a distribution of timing estimates. The 2.5 and 97.5 percentiles of this 840	
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distribution reflect the 95 % confidence interval of the true timing estimate. Since we 841	
downsampled our data (bin width: 8.33 ms), the confidence intervals were conservative and 842	
overestimated by up to 16.67 ms. 843	

 844	
Source Data and Code 845	
 846	
Data and Matlab code used for statistical analyses and producing figures is available as “Source 847	
Data” with this article. 848	
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 1019	
 1020	
Supplemental Figure 1. Temporal generalization analysis of task separated by task type. Each map reflects the 1021	
average of all pairwise classifications of a given task with all other tasks (e.g. color vs. tilt, color vs. content, color 1022	
vs. size). The y-axis reflects the classifier training time relative to task cue onset, the x-axis the classifier 1023	
generalization time, and the color codes the cross-classification accuracy for each combination of training and 1024	
generalization time. The outline reflects significant clusters (p < 0.05, cluster-corrected sign permutation test). Time 1025	
periods after the onset of the response-mapping screen were excluded from statistical analyses (see Methods and 1026	
Results), but are shown for completeness. 1027	
 1028	
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 1029	
 1030	
Supplemental Figure 2. FMRI representational dissimilarity matrices (RDMs) for the five regions of interest: 1031	
Posterior parietal cortex (PPC), lateral prefrontal cortex (lPFC), early visual cortex (EVC), object-selective lateral 1032	
occipital cortex (LO), and posterior fusiform sulcus (pFS). Since RDMs are compared to MEG data using Spearman 1033	
r, rank-transformed dissimilarities are plotted. 1034	
 1035	
 1036	
Supplemental Movie 1. Time-resolved MEG representational dissimilarity matrices, scaled using the rank 1037	
transform across dissimilarities. 1038	
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 1039	
 1040	
Supplemental Figure 3. Temporal generalization analysis of objects. The y-axis reflects the classifier training time 1041	
relative to task cue onset, the x-axis the classifier generalization time, and the color codes the cross-classification 1042	
accuracy for each combination of training and generalization time. The outline reflects significant clusters (p < 0.05, 1043	
cluster-corrected sign permutation test). Time periods after the onset of the response-mapping screen were excluded 1044	
from statistical analyses (see Methods and Results), but are shown for completeness. 1045	
 1046	
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