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ABSTRACT 

The RAS proteins (KRAS, NRAS, and HRAS) play important roles in multiple 
diseases.  This includes many types of cancer and the developmental syndromes 
collectively referred to as the RASopathies.  There are many different RAS mutants that 
are found to drive these diseases.  Mutant-to-mutant differences pose a challenge for 
personalized medicine.  To investigate this problem, we extend our previously 
developed model of oncogenic RAS mutants to a total of 16 oncogenic mutants.  We 
also extend our model to RASopathy associated mutants using data for 14 such RAS 
mutants.  The model finds that the known biochemical defects of these mutants are 
typically sufficient to explain their elevated levels of RAS signaling.  In general, our 
analysis finds that the oncogenic mutants are stronger than the RASopathy mutants.  
However, the model suggests that RAS signal intensities are spanned by the 
pathological variants; there does not appear to be a perfect separation between cancer 
promoting and developmental syndrome promoting mutants. Analysis of the panel also 
finds that the relative strengths of pathological RAS mutants is not absolute, but rather 
can vary depending on context.  We discuss implications of this finding for personalized 
cancer medicine and for medical genetics. As genomics permeates clinical medicine, 
computational models that can resolve mutant specific differences, like the one 
presented here, may be useful for augmenting clinical thinking with their ability to 
logically translate biochemical knowledge into system level outputs of perceived clinical 
relevance.  
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INTRODUCTION 
Multiple human diseases are associated with RAS gene mutations that encode mutated 

RAS proteins.  Somatic mutations to the RAS genes are common in many cancers, including 

lung, colon, and pancreatic cancer [1-3].  Germline mutations to the RAS genes are found in 

several developmental syndromes, including Noonan syndrome [4] and Costello syndrome [5].  

These syndromes are members of a group of developmental syndromes with overlapping 

phenotypes that are collectively referred to as RASopathies because the causative mutations 

occur within RAS signaling pathway genes [6]. 

Many different point mutations to the RAS genes have been found within patients with 

these diseases.  The presence of multiple mutations of similar, but non-identical, function 

associated with a disease poses multiple problems for genomic medicine.  For example, 

different mutations to the same gene may respond differently to the same drug [7].  Genetic and 

genomic medicine will progress slowly if each mutation must be considered separately.  For 

example, it will be more difficult to acquire large cohorts of patients to study individual mutations 

compared to studying patients with functionally equivalent mutations. Methods to better 

anticipate mutant behaviors and to better extrapolate between mutants are needed.  Clinicians 

and scientists have few tools to investigate this problem.  Additionally, there are limited 

examples on which to build intuition.  This lack of knowledge and intuition poses a significant 

challenge to the advancement of personalized medicine. 

We have previously developed a mathematical model of the processes that regulate 

RAS nucleotide binding [8, 9].  Simulations of this model have proven effective at estimating the 

proportion of mutant RAS in the “on” state responsible for pathological signaling.  This has also 

allowed for many different questions about mutant-driven RAS signaling to be investigated in 

silico and then experimentally [8, 10].   

With the demonstrated challenges of intuiting how pathological mutations behave, and 

the demonstrated success of the RAS model, we decided to apply our model to the problem of 

studying multiple RAS mutations.  Our goal was to develop intuition that could apply to problems 

in personalized medicine and genetic medicine. We extend our RAS model to a total of 16 

oncogenic RAS mutants and to 14 RASopathy RAS mutants.  We find patterns of activation of 

the model to be consistent with known patterns of activation, such as oncogenic mutants 

tending to be stronger than RASopathy mutants, and the known strong (and weak) mutants in 

each class being among the strongest (and weakest).  This demonstrates that known 

biochemical properties of these mutants, when analyzed with our model, tend to be sufficient to 

explain the pathological increase in signal.  Interestingly, we find the relative strengths of RAS 
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mutants is not fixed, but can rather vary between conditions.  In other words, if mutant A is 

stronger than mutant B in condition X, it cannot be assumed that mutant A is stronger than 

mutant B in condition Y.  We discuss implications of this in cancer and in the RASopathies. 

 

MODEL 
The model is based on the well-known mechanisms of RAS signaling. RAS is commonly 

considered to be a switch.  RAS bound to GDP is considered to be in the “off” state, and RAS 

bound to GTP is considered to be in the “on” state.  Whether RAS is in the “on” state and bound 

to GTP, or in the “off” state and bound to GDP is controlled by several different processes. 

Individual RAS proteins cycle between “on” and “off” states. RAS mutations that promote 

disease also cycle between “on” and “off” states, but disease promoting mutations tend to spend 

a larger proportion of time in the “on” state compared to a cell with all wild-type RAS. The 

disease promoting mutations typically alter the biochemical rate constants for one or more of the 

processes that regulate RAS signaling to result in a shifting of the dynamic equilibrium toward 

the “on” state.  

The details of the model have been described extensively in our previous publications 

[8-13].  Briefly, the model includes RAS GTPases, GAPs (negative regulators of RAS), GEFs 

(positive regulators of RAS) and Effector proteins with which RAS directly interacts.  GAPs, 

GEFs, and Effectors are all grouped into one pool each; there are two pools of RAS in the 

model (a wild-type pool and a mutant pool) (Figure 1).  The entire model is specified with nine 

coupled, nonlinear, ordinary differential equations.  Each equation corresponds to the rate of 

change of one possible state of RAS (RASGDP, RASGTP, RAS nucleotide free, RASGTP-

Effector) for both wild-type and mutant RAS, as well as a pool of free Effector proteins (Figure 
2).  

 Within our model, a RAS mutant is modeled by the choice of rate constants used to 

characterize the reactions involved in the regulation of RAS signaling.  We obtain these 

parameter values from the experimental literature (Table I).  As the value of wild-type rate 

constants can vary between different studies that measure the same reaction, we focus upon 

the ratio of change between mutant and wild-type rate constants within a single study.  This 

ratio characterizes the change in value of the mutant for that parameter, and is multiplied by our 

previously set value for the corresponding wild-type parameter. In cases where we could not 

find that a parameter has been measured, we assume no change from wild-type RAS. As such, 

the values in this panel can be considered estimates based on currently available data.  The 

analysis of these computational mutants allows us to both assess whether known biochemical 
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changes are consistent with observed changes in total RASGTP (a system property).  We can 

also use this panel as a study set to investigate consequences of variation between mutants. 

 We assume that all hot-spot mutations to oncogenic RAS proteins have no appreciable 

change in GTP hydrolysis upon binding to GAPs [14].  If only one nucleotide dissociation rate 

constant was measured in an experimental study, we assume an equivalent change in 

dissociation for the other nucleotide. If an enzymatic deficiency was measured for a RASopathy 

mutant and it was not specifically attributed to kcat or Km, we apply the change to kcat.  For 

Noonan syndrome mutants, which generally had significantly decreased capacity to bind 

effectors, we assumed a similar deficiency in binding to GAPs by increasing the GAP-RAS Km 

by same factor that the Effector-RAS Kd increased. 

 

RESULTS 
Expansion of the model to additional oncogenic mutants 

Our original RAS model focused on the oncogenic G12D and G12V mutants, as well as 

fast-cycling F28L mutant [8]. To study problems pertaining to specific RAS mutants important to 

cancer, we have since extended our model to include G13D, Q61L, Q61K, Q61W, Q61H, Q61P, 

and Q61R [15] and G12C. We here extend our model to an additional 6 oncogenic mutations: 

G12R, G12P, G13S, G13V, A59T, and 10dupG, yielding a total of 16 different oncogenic 

mutants 

We considered the case where all of the RAS in the cell is mutated (Figure 3A,B). 

Simulations of the mathematical model were used to find the amount of RASGTP and RASGTP-

Effector complex (the active signaling complex) that would occur for each of these mutations 

when all of the RAS in the modeled network is mutated.  We use this case where all of the RAS 

is mutant to assess the “intrinsic strength” of the mutant.  Simulations find that the available 

data, when analyzed with our model, are sufficient to result in elevated levels of RASGTP and 

RASGTP-Effector signaling complex for all of the oncogenic mutants.  The simulations also 

demonstrate that known RAS biochemistry suggests different oncogenic mutants have different 

strengths, i.e. result in defferent levels of active RASGTP and productive RASGTP-Effector 

signaling complexes. In recent years, there have been many studies that demonstrate different 

oncogenic mutants have different behaviors and/or different associations with cancer [16-18].  

We hypothesize that differences in the strength of the different mutants, as suggested by our 

modeling, may underlie some of these different biological behaviors. 

In general, a RAS mutation occurs at one of the two RAS alleles. We therefore also 

considered the case where 50% of the RAS is mutated, and 50% of the RAS is wild-type 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/153726doi: bioRxiv preprint 

https://doi.org/10.1101/153726
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5 

(Figure 3C,D).  In general, the trends are similar, although the magnitude of activation is less. In 

both cases, we note that known strong mutations and known weak mutations are at the 

extremes of the oncogenic mutations.  The Q61L mutation, for example, is generally considered 

to be a highly activating RAS mutation, which is consistent with its observed transformation 

activity in multiple comparative studies [19, 20].  Additionally, G12P mutation has long been 

considered an exceptionally weak hot-spot mutation [21].  Of note, the G12P mutation is only 

noted one time in the current release of the COSMIC database for NRAS, and not once for 

KRAS and HRAS [22].  According to model-based analysis of existing biochemical data 

characterizing, the Q61L mutant is found among the strongest of the mutants studied and the 

G12P mutant is found among the weakest of the hot-spot mutants studied.   

 

Expansion of the panel to RASopathy RAS mutants 
We also incorporated parameters for 14 germline RAS mutations observed in Noonan 

Syndrome (Table I).  These mutations that have been observed in patients with a RASopathy 

include: E153V, F156L, G60R, K5N, P34L, P34R, Q22E, T58I, V14I, DupGly37, Y71H, K147E, 

K117R, and Q22R.  We used simulations of the mutants at different levels of relative expression 

to evaluate these mutants, as we did for the oncogenic mutants.  The intrinsic strength of these 

mutants (100% mutant) is presented in Figure 3A,B. It is generally believed that RASopathy 

mutants like these tend to be intrinsically less strong than the oncogenic mutants, and this has 

been demonstrated experimentally [23-25].  Our model finds that RASopathy mutants tend to be 

weaker than oncogenic mutants, although this was not universally true.  We also considered 

50% mutant, 50% wild-type for the reasons discussed above (Figure 3C,D).  The same trend 

with RASopathy mutants tending to be weaker than oncogenic mutants was also observed. 

 

Modeling suggests RASopathy mutants have less correlation between levels of RASGTP 
and productive signaling complexes than oncogenic mutants 

A comparison of RASopathy mutants and oncogenic mutants is notable for several 

reasons.  First, the RASopathy mutants clearly tend to be weaker than oncogenic mutants 

(Figure 3).  This is consistent with known experimental data comparing these mutants [4, 24] 

and is consistent with expert opinion on these mutants [6, 23]. That the model naturally 

reproduces this pattern via incorporation of measured biochemical rate constants that were 

published after our model was developed and published highlights the quality of information in 

the RAS mutation field and its logical consistency.   
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It is worth noting that levels of RASGTP are not as clearly segregated between 

oncogenic and RASopathy mutants as they are for RASGTP-Effector (Figure 3B,D).  The 

explanation between this discrepancy is that many RASopathy mutants have been described to 

have impaired binding to effector proteins.  That is, many RASopathy mutants are predicted to 

be highly bound to GTP, but their ability to signal is impaired due to the reported decrease in the 

ability to bind to effectors [24].  This can also be seen when levels of RASGTP and RASGTP-

Effector are compared for the different mutants in these different conditions (Figure 4).  

Visualizing the relationship in this manner demonstrates that the RASopathy associated 

mutants tend to fall off of the diagonal much more than the oncogenic mutants.  Of note, there is 

generally a good correlation between levels of RASGTP between high and low levels of 

mutation, and between levels of RASGTP-Effector complex between high and low levels of 

mutation (Figure 5). 

 

Modeling finds a spectrum of strengths for pathological RAS mutants 
 Within a cell, KRAS, NRAS, and HRAS proteins may all be expressed [26, 27].  Even 

when a mutation is present, there is still wild-type RAS within the cell.  For example, when 

KRAS is mutated, NRAS and HRAS are generally present and in their wild-type (non-mutated) 

form.  Therefore, in a cell with a RAS mutation, only a fraction of total RAS is mutated.  We now 

consider total RAS signal for different proportions of total RAS mutated and 50% RAS mutated.  

Figure 6 shows absolute signal intensities for all of the RAS mutants in the panel, color coded 

to distinguish oncogenic mutants from RASopathy mutants.   There is a trend that 

mutations identified as “RASopathy” mutants tend to be less activating than mutations identified 

as “oncogenic”.  However, there is a clear overlap and a lack of a clear separation.  This 

suggests that there is a spectrum of signal strengths and not a clear segregation into “strongly 

activating” and “moderately activating” mutations, as it might appear from experimental studies 

that are typically limited to a small number of mutants in a limited number of conditions. 

 

The relative strengths of RAS mutants are not absolute  
 We further investigated the strengths of RAS mutants in more detail.  First, we focus on 

the oncogenic RAS mutants. Figure 7A shows signal intensities of oncogenic RAS mutants.  

Figure 7B presents the relative intensities of the different mutants compared to the G12D RAS 

mutant, which is the most common RAS mutant. By visual inspection, it is easy to note that 

there are many intersections between these curves that relate the level of predicted RAS signal 

for each of the oncogenic mutants when expressed at different proportions of total cellular RAS.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/153726doi: bioRxiv preprint 

https://doi.org/10.1101/153726
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7 

When two lines cross, the relative ordering of strength of signal produced by the different 

mutations changes.  That is, on one side of the intersection mutant A is stronger than mutant B, 

but on the other side of the intersection mutant B is stronger than mutant A.   

 This variation in the relative ranking of oncogenic RAS mutants is highlighted in Figure 
8A, which presents the rank order of signal strength as a function of the proportion of total RAS 

mutated for each of these mutants.  These patterns of signaling intensity suggest that the 

relative strength of two different mutants is not absolute, but is rather context dependent. 

 We also considered the same relationship of signal intensity as a function of proportion 

of total RAS in the mutant form for the RASopathy mutants.  We observe a similar pattern of 

intersections (Figure 8B).   This prediction that the relative strengths of RAS mutants can vary 

based upon physiological variables such as proportion of total RAS mutated follows naturally 

from the known biochemical regulation of RAS which is the basis of our mathematical model. 

Although experimental measurement error and/or gaps in knowledge may shift points of 

crossing, or even largely shift curves for mutants that were less well characterized, the finding 

that mutant signal intensity curves will cross seems likely to be a general property of the system. 

 

DISCUSSION 
We have previously used modeling to address specific questions pertaining to RAS 

mutants G12D, G12V, F28L, G12C, and G13D [8, 15].  Here, an extension of the number of 

mutants studied was undertaken to develop intuition for how a collection of related, but distinct, 

pathological mutants might behave.  One challenge of modeling pathological mutants is 

incomplete information.  When reaction parameters have not been determined experimentally, 

we utilized the values of wild-type RAS.  (That is, we assume no change.)  This assumption is 

unlikely to be universally true.  Still, we argue there are many benefits to such a study.  First, 

consider that our model finds that available data are generally sufficient to predict increased 

levels of RAS signaling for the majority of these (described) pathological mutants.  This 

suggests that the factors most responsible for pathological activation are generally known.  

The analysis also provided new insights.  For example, several RASopathy mutants 

were predicted to have high levels of RASGTP but much lower levels of RASGTP-Effector 

complex due to their inability to bind effectors well. The prediction that these mutants actually 

have high RASGTP has, to the best of our knowledge, yet to be tested, but would be an 

important experiment to investigate RASopathy mutants.     

A discrepancy between predictions and observations can suggest that additional biology 

is at play. Consider that the predicted level of signal for P34R and P34L is quite low, but the 
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level of signal observed has been high [25].  Additionally, consider that the predicted level of 

signal for D153V and Q22R is moderately increased, but experimentally no change has been 

noted [25].  Additional biochemical characterization and functional characterization may uncover 

parameters that result in predictions that match experiments, or perhaps there are additional 

biological processes that explain the discrepancy.  The model has identified interesting 

candidates for further exploration. 

It is also worth noting that mutants Y71H and K5N does not appear to be activated 

relative to wild-type based on the known biochemical parameters or via experiments [25, 28].  

This suggests that there may be yet-to-be-determined mechanisms of activation for these 

mutants that may be independent of RASGTP or RASGTP-Effector complex.  Although low 

levels of RAS pathway signal were detected experimentally, our computational concurrence 

strengthens the case that these outlier mutants may be interesting to study more thoroughly. 

 
A spectrum of RAS strengths 
 The discovery of germline, intrinsically active, RAS mutations in individuals with 

RASopathies like Noonan syndrome was initially surprising, because intrinsically active RAS 

mutations are also associated with cancer.  Biochemical characterization of these mutants 

found them to be less activating than the most common oncogenic RAS mutants.  A logical 

interpretation was that the mutations found in RASopathies were a distinct class that were less 

activating than the oncogenic mutations, explaining the different disease phenotype. 

 In years since, the situation has become less clear.  Consider that some of the germline 

mutations in the RASopathy Costello syndrome occur at codon 12 [29] which is also the most 

common codon mutated in RAS mutations found in cancer [30].  Our analysis demonstrates that 

the quantity of mutant expressed is an important variable for determining signal strength.  Of 

note, HRAS appears to be expressed at a lower level than KRAS and NRAS in many tissues 

[26, 27].  Perhaps the critical factor in determining whether a mutation promotes a RASopathy is 

not the specific mutation, but the quantity of RAS signal generated by the mutation.  Strong 

mutations in less expressed RAS genes may be essentially equivalent to a moderate strength 

mutation in a more highly expressed RAS gene. 

 Our computational modeling similarly finds that there is not a clear separation of signal 

strength between “oncogenic” and “RASopathy” mutants.  Clearly, there is a trend that 

“RASopathy” mutants tend to be weaker, but this difference is not absolute.  Further suggesting 

that there is no clear delineation between oncogenic mutations and RASopathy mutations is the 

routine detection in cancer genomics of RAS mutations associated with RASopathies [31, 32].  
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Even though these mutations may be comparatively weaker, they still appear capable of 

promoting cancer. 

Overall, this analysis suggests that it may be more correct to think of a wide range of 

RAS signal intensities that may follow from the nature of the mutant and its expression level, 

and that downstream phenotypes and disease phenotypes are influenced by the quantity of 

signal.  Recent mouse models investigating dosage of mutation [33, 34] and comparing different 

mutants [17, 18] can all be interpreted to support the idea that strength of signal, as a function of 

specific mutation and expression level, is a key factor in determining RAS pathologies. 

 
Clinical Implications of Variable Rank Order of Strength  

Simulations found that the relative strengths of RAS mutants is not fixed, but can vary 

between different conditions.  That is, if one mutant is found to be stronger than another in an 

experiment, it cannot be assumed that this is always the stronger mutant of the two.  It seems 

reasonable to assume that signal strength is a factor that may contribute to clinically important 

behaviors of a cancer, such as the response to treatment, rate of tumor growth, and prognosis.  

Our work here suggests that associations between specific mutations and clinically important 

behaviors in one cancer cannot be assumed to hold in other cancers.  

Variable rank order strength has additional implications for RASopathies. Consider that 

the RAS mutations in RASopathies are germline and expressed in all tissues, as compared to 

RAS mutations in cancer which are somatically acquired and only expressed in the tumor and 

premalignant field. Different tissues within a patient presumably provide different contexts, such 

as different proportions of total RAS in HRAS, NRAS, and KRAS.  The total amount of RAS 

signal in the different tissues of a RASopathy patient should therefore vary.  A different 

RASopathy patient with a different germline mutations would also be expected to have varying 

signal strengths between tissues, but the tissues with the strongest signal could vary between 

patients.  This may help explain why different patients with the same disease can have different 

phenotypes. 

This prediction that relative strength varies between contexts could be tested in several 

different ways.  Previously, we have studied RAS signaling by using flow-cytometry to obtain 

measurements of downstream RAS signaling (measured with anti-pERK antibodies) as a 

function of RAS mutant expression (using HA-tagged RAS mutant proteins, and anti-HA 

antibodies to quantify protein expression) [8, 10].  A similar assay, using different RAS mutants, 

may be able to detect the predicted differences.  Additionally, previous experiments expressing 

different KRAS mutants in the zebrafish pancreas suggested that the capacity of a mutant to 
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activate ERK/MAPK signaling played an important role in cancer development [35].  We 

hypothesize that if similar experiments were performed where different KRAS mutants were 

expressed in other tissues, that there would be different patterns of which mutations most 

promote tumor formation, and that relative pERK induction by the mutants would correlate with 

these patterns. 

 
CONCLUSION 

There are compelling visions of the future of pathology that involve “computational 

pathology”, an envisioned sub-discipline of pathology that utilizes computer simulations to help 

interpret pathological data [36].  However, the visions of computational pathology present few 

examples and do not address how to extrapolate between pathological mutants.  It is difficult to 

build a field without a foundation.  Here, we demonstrate how our computational model of RAS 

signaling can be used as a tool to study the behavior of pathological mutations and to gain 

insights into the relationships between mutations and increased signaling (which in turn 

presumably influences disease phenotypes). We have previously used the model to study 

problems involving targeted therapies and specific RAS mutations [15], differences in the 

pathogenicity of different mutants, and methods to target the most common RAS mutants in 

cancer [8]. We believe that this modeling approach applied more broadly has much to offer 

computational pathology and personalized medicine. 

 
 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/153726doi: bioRxiv preprint 

https://doi.org/10.1101/153726
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11 

Table I.  Parameters used to model the expanded pool of computation pool of pathological RAS mutants. 
Table presents factors by which corresponding wild-type parameter changes for the mutant of interest.  Factor is determined by comparing ratios of mutant to wild-
type parameter in the indicated reference; truncated decimal representation presented in table.  When the property was not measured, wild-type (WT) parameter 
values are utilized. NC: no change.  For incompletely determined parameters, such as when Kd had measured (rather than ka,Eff and kd,Eff), we consider ka,Eff, 
KM,GDP,GEF, and KM,GTP,GEF to be unchanged and apply the change to the equilibrium constant to kd,Eff or kcat,GDP,GEF. Because of thermodynamic equivalence 
between intrinsic and GEF mediated exchange, all parameters in these processes are not independent.  The parameter kcat,GTP,GEF was designated function of the 
intrinsic and GEF mediated exchange parameters to ensure thermodynamic validity. Mutants for the model first described here are specified in bold. 
 

 kGTPase  kd,GDP  kd,GTP  ka,GDP  ka,GTP  kcat,GAP  KM,GAP  kd,Eff  kcat,GDP,GEF  
G12V 0.15	 [37] 0.31	 [37] 0.80	 [37] 2.27	 [37] 4.14	 [37] NC	  WT	  0.44	 [38] WT	  
G12D 0.40	 [37] 0.48	 [37] 5.00	 [37] 1.37	 [37] 3.43	 [37] NC	  WT	  WT	  WT	  
G12P 1.54	 [21] 0.70	 [21] 1.18	 [21] WT	  WT	  0.01	 [39] WT	  WT	  WT	  
G12R 0.14	 [40] 0.47	 [40] 0.05	 [40] WT	  WT	  NC	  WT	  WT	  WT	  
G12C 0.72	 [41] WT	  WT	  WT	  WT	  NC	  WT	  1.20	 [41] WT	  
G13V 0.46	 [42] 79	 [42] 6.00	 [42] WT	  WT	  NC	  WT	  WT	  WT	  
G13S 1.14	 [42] 2.91	 [42] 1.00	 [42] WT	  WT	  NC	  WT	  WT	  WT	  
G13D 0.14	 [41] 3.00	 [43] 3.00	 [43] WT	  WT	  NC	  100	 [44] WT	  WT	  
Q61L 0.02	 [19] 2.46	 [19] 1.07	 [19] WT	  WT	  NC	  0.06	 [19] 0.78	  WT	  
Q61K 0.02	 [19] 1.40	 [19] 0.60	 [19] WT	  WT	  NC	  57.14	 [19] WT	  WT	  
Q61W 0.07	 [19] 1.00	 [19] 0.80	 [19] WT	  WT	  NC	  2.86	 [19] WT	  WT	  
Q61R 0.02	 [19] 1.14	 [19] 0.45	 [19] WT	  WT	  NC	  42.86	 [19] WT	  WT	  
Q61H 0.09	 [19] 1.48	 [19] 0.61	 [19] WT	  WT	  NC	  0.71	 [19] WT	  WT	  
Q61P 0.08	 [19] 1.05	 [19] 1.27	 [19] WT	  WT	  WT	  1.43	 [19] WT	  WT	  
A59T 0.24	 [40] 0.56	 [40] 1.22	 [40] WT	  WT	  NC	  WT	  WT	  WT	  

10G11 8.46	 [45] 5.46	 [45] 2.36	 [45] WT	  WT	  NC	  WT	  WT	  WT	  
E153V 0.47	 [24] 1.67	 [24] 1.67	 [24] 0.08	 [24] 0.10	 [24] 0.87	 [24] 2.68	 [24] 2.68	 [24] 2.22	 [24] 
F156L 0.85	 [24] 63	 [24] 63	 [24] 0.16	 [24] 0.19	 [24] 0.03	 [24] 22	 [24] 22	 [24] 33	 [24] 
G60R 0.08	 [24] 1.33	 [24] 1.33	 [24] 0.19	 [24] 0.80	 [24] NC	 [24] 51	 [24] 51	 [24] NC	 [24] 
K5N 1.01	 [24] 1.33	 [24] 1.33	 [24] 0.06	 [24] 0.06	 [24] WT	 [24] 0.73	 [24] 0.73	 [24] 1.22	 [24] 
P34L 0.99	 [24] 2.67	 [24] 2.67	 [24] 0.38	 [24] 0.54	 [24] NC	 [24] 125	 [24] 125	 [24] 1.56	 [24] 
P34R 0.96	 [24] 2.00	 [24] 2.00	 [24] 0.56	 [24] 0.69	 [24] NC	 [24] 108	 [24] 108	 [24] 0.67	 [24] 
Q22E 1.11	 [24] 26	 [24] 26	 [24] 0.08	 [24] 0.11	 [24] 0.03	 [24] 6.41	 [24] 6.41	 [24] 2.22	 [24] 
Q22R 0.69	 [24] 1.33	 [24] 1.33	 [24] 0.15	 [24] 0.16	 [24] 0.04	 [24] 2.32	 [24] 2.32	 [24] 2.22	 [24] 
T58I 0.58	 [24] 4.33	 [24] 4.33	 [24] 0.81	 [24] 1.08	 [24] 0.88	 [24] 6.32	 [24] 6.32	 [24] 1.67	 [24] 
V14I 1.08	 [24] 29	 [24] 29	 [24] 0.11	 [24] 0.22	 [24] WT	 [24] 6.18	 [24] 6.18	 [24] 19	 [24] 

DupGlu37 0.27	 [25] 2.35	 [25] 8.47	 [25] 1.06	 [25] 1.06	 [25] WT	  266	 [25] 154	 [25] 0.38	 [25] 
Y71H 2.28	 [28] 1.44	 [28] 1.44	 [28] WT	  WT	  2.08	 [28] WT	  0.26	 [28] 0.50	 [28] 

K147E 0.78	 [28] 150	 [28] 150	 [28] WT	  WT	  0.75	 [28] WT	  2.17	 [28] 0.42	 [28] 
K117R WT	 [46] 134	 [46] 134	 [46] WT	  WT	  WT	 [46] WT	  WT	  WT	  
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FIGURE LEGENDS 
 

Figure 1: Schematic of RAS signal regulation for wild-type and mutant RAS.  The four 

states of RAS proteins in the model (bound to GDP, bound to GTP, bound to no nucleotide, or 

bound to GTP and Effector) and their paths between states with biochemical parameters and 

partners indicated. 

 

Figure 2: Equations of the RAS model.  The reactions indicated in Figure 1 are individually 

specified by mass-action kinetics or Michaelis-Menten kinetics (for GEF and GAP reactions).  

The ordinary differential equation model is built from the individual reaction specifications. 

 

Figure 3: Levels of RAS signal for the computational panel of pathological RAS mutants.  
Simulations of the model were used to find level of RAS signal for 30 different pathological RAS 

mutants.  The intrinsic strength of each mutant is presented in A) for RASGTP signal and B) 

RASGTP-Effector complex by simulating 100% of total RAS mutated.  The strengths of each 

mutant in conditions where one allele is mutated and one allele is wild-type is in C) for RASGTP 

and D) for RASGTP-Effector. RASopathy mutants: red; oncogenic mutants: blue. 

 

Figure 4: Relationship between RAS loading with GTP and RAS binding to Effector.  A) 

Presents each of the 30 mutants’ values of RASGTP and RASGTP-Effector for intrinsic strength 

of each mutant (data from Figure 3A,B).  B) Presents each of the 30 mutants’ values of 

RASGTP and RASGTP-Effector for conditions of 50% mutated and 50% wild-type. RASopathy 

mutants: red; oncogenic mutants: blue. 

 

Figure 5: Relationship between RAS signal at different proportions of total RAS mutated. 
A) Comparison of RASGTP levels for conditions of 100% mutated and 50% mutated.  B) 

Comparisons of RASGTP-Effector levels for conditions of 100% mutated and 50% mutated.  

RASopathy mutants: red; oncogenic mutants: blue. 

 

Figure 6: RAS signal as a function of the proportion of total RAS mutated for the 
computational panel of pathological RAS mutants.  A) RASGTP levels.  B) RASGTP-

Effector levels.  RASopathy mutants: red; oncogenic mutants: blue. 
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Figure 7: RAS signal as a function of the proportion of total RAS mutated reveals relative 
strength of oncogenic mutants is not absolute. A) RASGTP-Effector levels for the oncogenic 

mutants.  B) RASGTP-Effector levels for the oncogenic mutants relative to the RASGTP-

Effector level for the G12D Ras mutant. 

 

Figure 8: Relative strengths of oncogenic and RASopathy mutants as a function of the 
proportion of total RAS mutated.  A) Oncogenic mutants’ relative strengths.  B) RASopathy 

mutants’ relative strengths. 
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