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Abstract

Decoding sensory stimuli from neural signals can be used to reveal how we sense
our physical environment, and is valuable for the design of brain-machine interfaces.
However, existing linear techniques for neural decoding may not fully reveal or ex-
ploit the fidelity of the neural signal. Here we develop a new approximate Bayesian
method for decoding natural images from the spiking activity of populations of
retinal ganglion cells (RGCs). We sidestep known computational challenges with
Bayesian inference by exploiting artificial neural networks developed for computer
vision, enabling fast nonlinear decoding that incorporates natural scene statistics
implicitly. We use a decoder architecture that first linearly reconstructs an image
from RGC spikes, then applies a convolutional autoencoder to enhance the image.
The resulting decoder, trained on natural images and simulated neural responses,
significantly outperforms linear decoding, as well as simple point-wise nonlinear
decoding. These results provide a tool for the assessment and optimization of reti-
nal prosthesis technologies, and reveal that the retina may provide a more accurate
representation of the visual scene than previously appreciated.

1 Introduction

Neural coding in sensory systems is often studied by developing and testing encoding models that
capture how sensory inputs are represented in neural signals. For example, models of retinal function
are designed to capture how retinal ganglion cells (RGCs) respond to diverse patterns of visual
stimulation. An alternative approach – decoding visual stimuli from RGC responses – provides a
complementary method to assess the information contained in RGC spikes about the visual world
[31, 37]. Understanding decoding can also be useful for the design of retinal prostheses, by providing
a measure of the visual restoration that is possible with a prosthesis [26].

The most common and well-understood decoding approach, linear regression, has been used in various
sensory systems [29, 40]. This method was shown to be successful at reconstructing white noise
temporal signals from RGC activity [37] and revealed that coarse structure of natural image patches
could be recovered from ensemble responses in the early visual system [33]. Other linear methods
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Figure 1: Outline of approach. A) The original image is fed through the simulated neural encoding
models to produce RGC responses on which we fit a linear decoder. A deep neural network is then
used to further enhance the image. B) We use a convolutional autoencoder with a 4 layer encoder and
a 4 layer decoder to enhance the linear decoded image.

such as PCA and linear perceptrons have been used to decode low-level features such as color and
edge orientation from cortical visual areas [14, 4]. For more complex natural stimuli, computationally
expensive approximations to Bayesian inference have been used to construct decoders that incorporate
important prior information about signal structure [25, 27, 30]. However, despite decades of effort,
deriving an accurate prior on natural images poses both computational and theoretical challenges, as
does computing the posterior distribution on images given an observed neural response, limiting the
applicability of traditional Bayesian inference.

Here we develop and assess a new method for decoding natural images from the spiking activity of
large populations of RGCs, to sidestep some of these difficulties. Our approach exploits inference
tools that approximate optimal Bayesian inference, and emerge from the recent literature on deep
neural network (DNN) architectures for computer vision tasks such as super-resolution, denoising,
and inpainting [17, 39]. We propose a novel staged decoding methodology – linear decoding followed
by a (nonlinear) DNN trained specifically to enhance the images output by the linear decoder – and
use it to reconstruct natural images from realistic simulated retinal ganglion cell responses. This
approach leverages recent progress in deep learning to more fully incorporate natural image priors in
the decoder. We show that the approach substantially outperforms linear decoding. These findings
provide a potential tool to assess the fidelity of retinal prostheses for treating blindness, and provide a
substantially higher bound on how accurately real visual signals may be represented in the brain.

2 Approach

To decode images from spikes, we use a linear decoder to produce a baseline reconstructed image,
then enhance this image using a more complex nonlinear model, namely a static nonlinearity or a
DNN (Figure 1). There are a few reasons for this staged approach. First, it allows us to cast the
decoding problem as a classic image enhancement problem that can directly utilize the computer
vision literature on super-resolution, in-painting, and denoising. This is especially important for the
construction of DNNs, which remain nontrivial to tune for problems in non-standard domains (e.g.,
image reconstruction from neural spikes). Second, by solving the problem partially with a simple
linear model, we greatly reduce the space of transformations that a neural network needs to learn,
constraining the problem significantly.

In order to leverage image enhancement tools from deep learning, we need large training data sets.
We use an encoder-decoder approach: first, develop a realistic encoding model that can simulate
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neural responses to arbitrary input images, constrained by real data. We build this encoder to predict
the average outputs of many RGCs, but this approach could also be applied to encoders fit on a
cell-by-cell basis [3]. Once this encoder is in hand, we train arbitrarily complex decoders by sampling
many natural scenes, passing them through the encoder model, and training the decoder so that the
output of the full encoder-decoder pipeline matches the observed image as accurately as possible.

2.1 Encoder model: simulation of retinal ganglion cell responses

For our encoding model, we create a static simulation of the four most numerous retinal ganglion cell
types (ON and OFF parasol cells and ON and OFF midget cells) based on experimental data. We fit
linear-nonlinear-Poisson models to RGC responses to natural scene movies, recorded in an isolated
macaque retina preparation [7, 10, 12]. These fits produce imperfect but reasonable predictions of
RGC responses (Figure 2 A). We averaged the parameters (spatial filter, temporal filter, and sigmoid
parameters) of these fits across neurons, to create a single model for each of four cell types. We chose
this model as it is simple and a relatively good baseline encoder with which to test our decoding
method. (Recently, encoding models that leverage deep neural networks [3, 24] have been shown to
fit RGC responses better than the simple model we are using; substituting a more complex encoding
model should improve the quality of our final decoder, and we intend to pursue this approach in
future work.) To deal with static images, we then reduced these models to static models, consisting
of one spatial filter followed by a nonlinearity and Poisson spike generation. The outputs of the static
model are equal to summing the spikes produced by the full model over the image frames of a pulse
movie: gray frames followed by one image displayed for multiple frames. Spatial filters and the
nonlinearity of the final encoding model are shown in Figure 2 B and C.

We then tiled the image space (128 x 128 pixels) with these simulated neurons. For each cell type,
we fit a 2D Gaussian to the spatial filter of that cell type and then chose receptive field centers with a
width equal to 2 times the standard deviation of the Gaussian fit rounded up to the nearest integer.
The centers are shifted on alternate rows to form a lattice (Figure 2 D). The resulting response of
each neuron to an example image is displayed in Figure 2 E as a function of its location on the image.
The entire simulation consisted of 5398 RGCs.

2.2 Model architecture

Our decoding model starts with a classic linear regression decoder (LD) to generate linearly decoded
images ILD [37]. The LD learns a reconstruction mapping ✓̂ between neural responses X and
stimuli images IST by modeling each pixel as a weighted sum of the neural responses: ✓̂ =
(XTX)�1XT IST . X is augmented with a bias term in the first column. The model inputs are m
images, p pixels and n neurons such that: IST 2 Rm⇥p, X 2 Rm⇥(n+1), ✓̂ 2 R(n+1)⇥p. To decode
the set of neural responses X we compute the dot product between ✓̂ and X: ILD = X ✓̂.

The next step of our decoding pipeline enhances ILD through the use of a deep convolutional
autoencoder (CAE). Our model consists of a 4-layer encoder and a 4-layer decoder. This model
architecture was inspired by similar models used in image denoising [11] and inpainting [35, 22].
In the encoder network E, each layer applies a convolution and downsampling operating to the
output tensor of the previous layer. The output of the encoder is a tensor of activation maps
representing a low-dimensional embedding of ILD. The decoder network D inverts the encoding
process by applying a sequence of upsampling and convolutional layers to the output tensor of the
previous layer. This model outputs the reconstructed image ICAE . We optimize the CAE end-to-end
through backpropagation by minimizing the pixelwise MSE between the output image of the CAE:
ICAE = D(E(ILD)) and the original stimuli image IST .

The filter sizes, number of layers, and number of filters were all tuned through an exhaustive grid-
search. We searched over the following parameter space in our grid search: number of encoding
/ decoding layers: [3, 4, 5], number of filters in each layer: [32, 64,128,256], filter sizes: [7x7,
5x5, 3x3], learning rates: [0.00005, 0.0001, 0.0002, 0.0004, 0.0008, 0.001, 0.002, 0.004]. Specific
architecture details are provided in Figure 1.
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Figure 2: Encoding model. A) Full spatiotemporal encoding model performance on experimental data.
Recorded responses (black) vs LNP predictions (red; using the averaged parameters over all cells of
each type) for one example cell of each type. The spiking responses to 57 trials of a natural scenes test
movie were averaged over trials and then smoothed with a 10 ms SD Gaussian. B) Spatial filters of
the simulated neural encoding model are shown for each cell type. C) The nonlinearity following the
spatial filter-stimulus multiplication is shown for each cell type. We draw from a Poisson distribution
on the output of the nonlinearity to obtain the neural responses. D) Demonstration of the mosaic
structure for each cell type on a patch of the image space. The receptive fields of each neuron are
represented by the 1 SD contour of the Gaussian fit to the spatial filter of each cell type. E) The
response of each cell is plotted in the square around its receptive field center. The visual stimulus is
shown on the left. The color maps of ON and OFF cells are reversed to associate high responses with
their preferred stimulus polarity.
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2.3 Training and Evaluation

To train the linear decoder, we iterate through the training data once to collect the sufficient statistics
XTX and XT IST . We train the convolutional autoencoder to minimize the pixelwise MSE PMSE

with the Adam optimizer [15]. To avoid overfitting, we monitor PMSE changes on a validation set
three times per epoch and keep track of the current best loss PMSE,best. We stop training if we have
gone through 2 epochs worth of training data and the validation loss has not decreased by greater
than 0.1%PMSE,best.

In our experiments we use two image datasets, ImageNet [8] and the CelebA face dataset [21]. We
apply preprocessing steps described previously in [17] to each image: 1) Convert to gray scale, 2)

rescale to 256x256, 3) crop the middle 128x128 region. From Imagenet we use 930k random images
for training, 50K for validation, and a 10k held-out set for testing. We use ImageNet in all but one of
our experiments - context-decoding. For the latter, we use the CelebA face dataset [21] with 160k
images for training, 30k for validation, and a 10k held-out set for testing.

We evaluate all the models in our results using two separate metrics, pixelwise MSE and multi-
scale structural-similarity (SSIM) [36]. Although each metric alone has known shortcomings, in
combination, they provide an objective evaluation of image reconstruction that is interpretable and
well-understood.

3 Results

3.1 ImageNet decoding

As expected [33], the linear decoder reconstructed blurry, noisy versions of the original natural images
from the neural responses, a result that is attributable to the noisy responses from the RGCs down-
sampling the input images. The CAE trained on the linear decoded images resulted in substantially
improved reconstructions, perceptually and quantitatively (Figure 3). CAE decoding outperformed
linear decoding both on average and for the vast majority of images, by both the MSE and 1�SSIM
measures. Qualitatively, the improvements made by the CAE generally show increased sharpening
of edges, adjustment of contrast, and smoothing within object boundaries that reduced overall
noise. Similar improvement in decoding could not be replicated by utilizing static nonlinearities to
transform the linear decoded output to the original images. We used a 6th degree polynomial fitted
to approximate the relation between linearly decoded and original image pixel intensities, and then
evaluated this nonlinear decoding on held out data. This approach produced a small improvement
in reconstruction: 3.25% reduction in MSE compared to 34.50% for the CAE. This reveals that the
improvement in performance with the CAE involves nonlinear image enhancement beyond simple
remapping of pixel intensities. Decoding noisier neural responses especially highlights the benefits
of using the autoencoder: there are features identifiable in the CAE enhanced images that are not in
the linear decoder images (Supplementary Figure 6).

The results shown here utilize a large training dataset size for the decoder so it is natural to ask
for a given fixed encoder model, how many training responses do we need to simulate to obtain a
good decoder. We tested this by fixing our encoder and then training the CAE decoder with varying
amounts of training data. (Supplementary Figure 8). We observed that even with a small training
data set of 20k examples, we can improve significantly on the linear decoder and after around 500k
examples, our performances begins to saturate. An analogous question can be asked about the amount
of training data required to fit a good encoder and we intend to explore this aspect in future work.

3.2 Phase Scrambled Training

A possible explanation for the improved performance of the CAE compared to linear decoding is
that it more fully exploits phase structure that is characteristic of natural images [2], perhaps by
incorporating priors on phase structure that are not captured by linear decoding. To test this possibility,
we trained both linear and CAE decoders on phase-scrambled natural images. The CAE input was
produced by the linear decoder trained on the same image type as that CAE. Observed responses
of RGCs to these stimuli followed approximately the same marginal distribution as responses to
the original natural images. We then compared the performance of these linear and CAE decoders
to the performance of the original decoders, on the original natural images (Figure 4). The linear
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Figure 3: Comparison of linear and CAE decoding. A) MSE on a log-log plot for the ImageNet 10k
example test set comparing the (Linear + CAE) model trained on ImageNet (only 1k subsampled
examples are plotted here for visualization purposes). B) 1-SSIM version of the same figure. C)
Example images from the test set show the original, linear decoded, CAE enhanced versions. The
average (MSE, 1-SSIM) for LD over the full test set was (0.0077, 0.35) and the corresponding
averages for CAE were (0.0051, 0.25).

decoders exhibited similar decoding performance when trained on the original and phase-scrambled
images, while the CAE exhibited substantially higher performance when trained on real images.
These findings are consistent with the idea that the CAE is able to capture prior information on
image phase structure not captured by linear decoding. However, direct comparisons of the CAE
and LD trained and tested on phase scrambled images show that the CAE does still lead to some
improvements which are most likely just due to the increased complexity of the decoding model
(Supplementary Figure 7).

3.3 Context Dependent Training

The above results suggest that the CAE is capturing important natural image priors. However, it
remains unclear whether these priors are sufficient to decode specific classes of natural images as
accurately as decoding models that are tuned to incorporate class-specific priors. We explored this in
the context of human faces by fully re-training a class-specific CAE using the CelebA face dataset.

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2017. ; https://doi.org/10.1101/153759doi: bioRxiv preprint 

https://doi.org/10.1101/153759
http://creativecommons.org/licenses/by/4.0/


Li
ne

ar
Ph

as
eS

cr
am

bl
ed

LinearImageNet

CA
E Ph

as
eS

cr
am

bl
ed

CAEImageNet

A) B) E)

Li
ne

ar
Ph

as
eS

cr
am

bl
ed

LinearImageNet CAEImageNet

CA
E Ph

as
eS

cr
am

bl
ed

C) D)

O
rig

in
al

Li
ne

ar
Ph

as
eS

cr
am

bl
ed

Li
ne

ar
Im

ag
eN

et

CAE
PhaseScram

bled
Phase Scram

bled
CAE

Im
ageN

et

MSE on Test
ImageNet

MSE on Test
ImageNet

1-SSIM on Test
ImageNet

1-SSIM on Test
ImageNet

10-3 10-3

10-2 10-2

10-3 10-2 10-3 10-2

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

0.6

0.4

0.2

0.0

Figure 4: Comparison of phase scrambled and ImageNet trained models. A) MSE on log-log plot
comparing the performance of the linear decoder fit on natural images to the linear decoder fit on
phase scrambled images. The subscript of each model indicates the dataset on which it was trained.
The reported MSE values are based on performance on the natural image test set (1k subsampled
examples shown). B) Similar plot to A but comparing the CAE fit on natural images to the CAE fit
on phase scrambled images. C) 1-SSIM version of A. D) 1-SSIM version of B. E) One example test
natural image (represented by blue dot in A-D) showing the reconstructions from all 4 models and
the phase scrambled version.

Both linear and CAE models were trained from scratch (random initialization) using only this dataset.
As with the phase scrambled comparisons, the CAE input is produced by the linear decoder trained
on the same image type. We then compare these different linear decoder and CAE models on a test
set of CelebA faces. For the linear decoders, we see a 17% improvement in average test MSE and a
14% improvement in 1-SSIM when training on CelebA as compared to training on ImageNet (Figure
5 A and C). We find that the differences in MSE and 1-SSIM between the differently trained CAEs
are smaller (5% improvement in MSE and a 4% improvement in 1-SSIM) (Figure 5 B and D). The
much smaller difference in MSE and 1-SSIM suggests that the CAE decoder does a better job at
generalizing to unseen context-specific classes than the linear decoder. However, the images show
that there are still important face-specific features (such as nose and eye definition) that are much
better decoded by the CAE trained on faces (Figure 5E). This suggests that while the natural image
statistics captured by the CAE do help improve its generalization to more structured classes, there are
still significant benefits in training class-specific models.

4 Discussion

The work presented here develops a novel approximate Bayesian decoding technique that uses
non-linear DNNs to decode images from simulated responses of retinal neurons. The approach
substantially outperforms linear reconstruction techniques that have usually been used to decode
neural responses to high-dimensional stimuli.

Perhaps the most successful previous applications of Bayesian neural decoding are in cases where the
variable to be decoded is low-dimensional. The work of [5] stimulated much progress in hippocampus
and motor cortex using Bayesian state-space approaches applied to low-dimensional (typically
two- or three-dimensional) position variables; see also [16] and [28] for further details. The low
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Figure 5: Comparison of CelebA and ImageNet trained models. A) MSE on log-log plot comparing
the performance of the linear decoder fit on CelebA to the linear decoder fit on ImageNet. The
subscript of each model indicates the dataset on which it was trained. The reported MSE values are
based on performance on the natural image test set (1k subsampled examples shown). B) Similar plot
to A but comparing the CAE fit on CelebA to the CAE fit on ImageNet. C) 1-SSIM version of A. D)
1-SSIM version of B. E) One example test natural image (represented by blue dot in A-D) showing
the reconstructions from all 4 models.

dimensionality of the state variable and simple Markovian priors leads to fast Bayesian computation
in these models. At the same time, non-Bayesian approaches based on support vector regression [32]
or recurrent neural networks [34] have also proven powerful in these applications.

Decoding information from the retina or early visual pathway requires efficient computations over
objects of much larger dimensionality: images and movies. Several threads are worth noting here.
First, some previous work has focused on decoding of flicker stimuli [37] or motion statistics [18, 23],
both of which reduce to low-dimensional decoding problems. Other work has applied straightforward
linear decoding methods [33, 9]. Finally, some work has tackled the challenging problem of decoding
still images undergoing random perturbations due to eye movements [6, 1]. These studies developed
approximate Bayesian decoders under simplified natural image priors, and it would be interesting in
future work to examine potential extensions of our approach to those applications.

While our focus here has been on the decoding of spike counts from populations of neurons recorded
with single-cell precision, the ideas developed here could also be applied in the context of decoding
fMRI data. Our approach shares some conceptual similarity to previous work [25, 27] which used
elegant encoding models combined with brute-force computation over a large discrete sample space
to compute posteriors, and to other work [38] which used neural network methods similar to those
developed in [41] to decode image features. Our approach, for example, could be extended to
replace a brute-force discrete-sample decoder [25, 27] with a decoder that operates over the full
high-dimensional continuous space of all images.

Many state-of-the-art models for in-painting and super-resolution image enhancement rely on gener-
ative adversarial networks (GANs). However, these models currently require specific architecture
tuning based on the exact problem structure. Because our problem involves some complex and un-
known combination of denoising, super-resolution, and inpainting, we required a more robust model
that could be tested with little hand-tuning. Furthermore, we have no parametric form for the noise
in the linear decoded images, so standard pre-trained networks could not be applied directly. Based
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on previous work in [39], it seems that autoencoder architectures can robustly achieve reasonable
results for these types of tasks; therefore, we chose the CAE architecture as a useful starting point.
We have begun to explore GAN architectures, but these early results do not show any significant
improvements over our CAE model. We plan to explore these networks further in future work.

In Section 3.3 we saw that even though there were small differences in MSE and 1-SSIM between
the outputs of the CAE decoders trained on ImageNet vs. CelebA datasets, visually there were still
significant differences. The most likely explanation for this discrepancy is that these loss functions
are imperfect and do not adequately capture perceptually relevant differences between two images.
In recent years, more complex perceptual similarity metrics have gained traction in the deep learning
community [42, 20, 13]. While we did not extensively explore this aspect, we have done some
preliminary experiments that suggest that using just a standard VGG-based perceptual metric [13]
decreases some blurring seen using MSE, but does not significantly improve decoding in a robust
way. We plan to further explore these ideas by implementing perceptual loss functions that utilize
more of our understanding of operations in the early human visual system [19]. Progress in this space
is vital as any retinal prosthetics application of this work would require decoding of visual scenes
that is accurate by perceptual metrics rather than MSE.

We have shown improved reconstruction based on simulated data; clearly, an important next step
is to apply this approach to decode real experimental data. In addition, we have shown better CAE
reconstruction only based on one perfect mosaic of the simulated neurons. In reality, these mosaics
differ from retina to retina and there are gaps in the mosaic when we record from retinal neurons.
Therefore, it will be important to investigate whether the CAE can learn to generalize over different
mosaic patterns. We also plan to explore reconstruction of movies and color images.

The present results have two implications for visual neuroscience. First, the results provide a
framework for understanding how an altered neural code, such as the patterns of activity elicited in
a retinal prosthesis, could influence perception of the visual image. With our approach, this can be
assessed in the image domain directly (instead of the domain of spikes) by examining the quality
of "optimal" reconstruction from electrical activity induced by the prosthesis. Second, the results
provide a way to understand which aspects of natural scenes are effectively encoded in the natural
output of the retina, again, as assessed in the image domain. Previous efforts toward these two goals
have relied on linear reconstruction. The substantially higher performance of the CAE provides a
more stringent assessment of prosthesis function, and suggests that the retina may convey visual
images to the brain with higher fidelity than was previously appreciated.
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