Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

CD-HIT-OTU-MiSeq, an Improved Approach for Clustering and Analyzing Paired End MiSeq 16S rRNA Sequences

View ORCID ProfileWeizhong Li, Yuanyuan Chang
doi: https://doi.org/10.1101/153783
Weizhong Li
J Craig Venter Institute, La Jolla, California, United States of America
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Weizhong Li
  • For correspondence: wli@jcvi.org liwz@sdsc.edu
Yuanyuan Chang
J Craig Venter Institute, La Jolla, California, United States of America
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

In recent years, Illumina MiSeq sequencers replaced pyrosequencing platforms and became dominant in 16S rRNA sequencing. One unique feature of MiSeq technology, compared with Pyrosequencing, is the Paired End (PE) reads, with each read can be sequenced to 250-300 bases to cover multiple variable regions on the 16S rRNA gene. However, the PE reads need to be assembled into a single contig at the beginning of the analysis. Although there are many methods capable of assembling PE reads into contigs, a big portion of PE reads can not be accurately assembled because the poor quality at the 3’ ends of both PE reads in the overlapping region. This causes that many sequences are discarded in the analysis. In this study, we developed a novel approach for clustering and annotation MiSeq-based 16S sequence data, CD-HIT-OTU-MiSeq. This new approach has four distinct novel features. (1) The package can clustering PE reads without joining them into contigs. (2) Users can choose a high quality portion of the PE reads for analysis (e.g. first 200 / 150 bases from forward / reverse reads), according to base quality profile. (3) We implemented a tool that can splice out the target region (e.g. V3-V4) from a full-length 16S reference database into the PE sequences. CD-HIT-OTU-MiSeq can cluster the spliced PE reference database together with samples, so we can derive Operational Taxonomic Units (OTUs) and annotate these OTUs concurrently. (4) Chimeric sequences are effectively identified through de novo approach. The package offers high speed and high accuracy. The software package is freely available as open source package and is distributed along with CD-HIT from http://cd-hit.org. Within the CD-HIT package, CD-HIT-OTU-MiSeq is within the usecase folder.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted June 22, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
CD-HIT-OTU-MiSeq, an Improved Approach for Clustering and Analyzing Paired End MiSeq 16S rRNA Sequences
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
CD-HIT-OTU-MiSeq, an Improved Approach for Clustering and Analyzing Paired End MiSeq 16S rRNA Sequences
Weizhong Li, Yuanyuan Chang
bioRxiv 153783; doi: https://doi.org/10.1101/153783
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
CD-HIT-OTU-MiSeq, an Improved Approach for Clustering and Analyzing Paired End MiSeq 16S rRNA Sequences
Weizhong Li, Yuanyuan Chang
bioRxiv 153783; doi: https://doi.org/10.1101/153783

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3479)
  • Biochemistry (7318)
  • Bioengineering (5296)
  • Bioinformatics (20196)
  • Biophysics (9976)
  • Cancer Biology (7701)
  • Cell Biology (11249)
  • Clinical Trials (138)
  • Developmental Biology (6417)
  • Ecology (9915)
  • Epidemiology (2065)
  • Evolutionary Biology (13276)
  • Genetics (9352)
  • Genomics (12551)
  • Immunology (7673)
  • Microbiology (18937)
  • Molecular Biology (7417)
  • Neuroscience (40887)
  • Paleontology (298)
  • Pathology (1226)
  • Pharmacology and Toxicology (2125)
  • Physiology (3140)
  • Plant Biology (6837)
  • Scientific Communication and Education (1270)
  • Synthetic Biology (1891)
  • Systems Biology (5296)
  • Zoology (1084)