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Abstract 
In	recent	years,	Illumina	MiSeq	sequencers	replaced	pyrosequencing	platforms	and	became	dominant	in	16S	rRNA	
sequencing.	One	unique	feature	of	MiSeq	technology,	compared	with	Pyrosequencing,	is	the	Paired	End	(PE)	reads,	
with	 each	 read	 can	 be	 sequenced	 to	 250-300	 bases	 to	 cover	multiple	 variable	 regions	 on	 the	 16S	 rRNA	 gene.	
However,	the	PE	reads	need	to	be	assembled	into	a	single	contig	at	the	beginning	of	the	analysis.	Although	there	
are	many	methods	capable	of	assembling	PE	 reads	 into	contigs,	a	big	portion	of	PE	 reads	can	not	be	accurately	
assembled	because	 the	poor	quality	at	 the	3’	ends	of	both	PE	 reads	 in	 the	overlapping	 region.	This	 causes	 that	
many	 sequences	 are	 discarded	 in	 the	 analysis.	 In	 this	 study,	we	developed	 a	 novel	 approach	 for	 clustering	 and	
annotation	 MiSeq-based	 16S	 sequence	 data,	 CD-HIT-OTU-MiSeq.	 This	 new	 approach	 has	 four	 distinct	 novel	
features.	 (1)	The	package	can	clustering	PE	reads	without	 joining	them	 into	contigs.	 (2)	Users	can	choose	a	high	
quality	portion	of	the	PE	reads	for	analysis	(e.g.	first	200	/	150	bases	from	forward	/	reverse	reads),	according	to	
base	quality	profile.	(3)	We	implemented	a	tool	that	can	splice	out	the	target	region	(e.g.	V3-V4)	from	a	full-length	
16S	reference	database	 into	the	PE	sequences.	CD-HIT-OTU-MiSeq	can	cluster	the	spliced	PE	reference	database	
together	 with	 samples,	 so	 we	 can	 derive	 Operational	 Taxonomic	 Units	 (OTUs)	 and	 annotate	 these	 OTUs	
concurrently.	(4)	Chimeric	sequences	are	effectively	identified	through	de	novo	approach.	The	package	offers	high	
speed	and	high	accuracy.	The	software	package	is	freely	available	as	open	source	package	and	is	distributed	along	
with	CD-HIT	from	http://cd-hit.org.	Within	the	CD-HIT	package,	CD-HIT-OTU-MiSeq	is	within	the	usecase	folder.	
	

1 Introduction		
One	 of	 the	 fundamental	 questions	 in	 microbiome	 studies	 is	 to	 estimate	 the	 microbial	 diversity	 in	 the	

environment.	And	the	most	common	approach	is	to	measure	the	16S	rRNA	genes	in	the	samples	using	amplicon	
sequencing	approach	established	and	developed	during	the	last	decade.	In	the	earlier	studies,	Pyrosequencing	(i.e.	
the	454	sequencing)	is	the	major	sequencing	platform,	which	underwent	several	generations	of	platform	with	each	
newer	platform	offering	longer	reads.	After	the	discontinuation	of	the	454	sequencing	platforms	in	2013,	Illumina’s	
MiSeq	became	the	dominant	platform	for	16S	rRNA	amplicon	sequencing.	

The	 16S	 rRNA	 sequence	 data	 are	 usually	 analyzed	 by	 clustering-based	 approach	 to	 derive	 Operational	
Taxonomic	Units	 (OTUs),	which	describe	 the	distinct	groups	of	microbial	organisms	at	different	 taxonomic	 level.	
OTUs	clustered	at	97%	sequence	identity	are	usually	used	by	the	field	to	represent	distinct	species.	However,	noise	
in	PCR-based	amplification,	sequencing	errors	and	artifacts	often	cause	overestimation	of	OTUs	[1,	2].	So,	 in	the	
past,	many	methods	and	protocols	were	developed	to	identify	these	errors	and	to	reduce	the	false	OTUs.	For	the	
data	from	Pyrosequencing	platforms,	the	most	adopted	methods	was	through	flowgram	clustering	and	denoising,	
which	were	implemented	in	programs	such	as	PyroNoise	[3],	Denoiser	[4]	and	AmpliconNoise	[5].	In	addition,	most	
methods	used	strict	quality	filtering	and	trimming	on	the	raw	sequencing	reads	and	some	methods	also	deployed	
pre-clustering	process,	as	introduced	in	SLP	[1].	In	order	to	identify	chimeric	reads,	both	reference-based	methods	
such	as	ChimeraSlayer	[6]	and	de	novo	approaches	(e.g.	UCHIME	[7])	were	introduced.	For	sequences	from	MiSeq	
platform,	although	the	 flowgram	based	denoising	methods	are	no	 longer	applicable,	but	many	other	 techniques	
and	protocols	developed	for	454	data,	such	as	strict	quality	 filtering	and	pre-clustering	are	still	applied	 in	MiSeq	
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data	analysis.	These	methods	are	all	available	from	many	commonly	used	16S	pipelines,	such	as	Mothur	 [8]	and	
Qiime	[9].	

One	unique	 feature	of	MiSeq	 technology,	 compared	 to	Pyrosequencing,	 is	 the	Paired	 End	 (PE)	 reads,	with	
forward	(R1)	and	reverse	(R2)	read	can	be	sequenced	to	250-300	bases.	Therefore,	the	whole	PE	reads	can	cover	
multiple	variable	regions	on	the	16S	rRNA	gene.	However,	the	PE	reads	need	to	be	assembled	into	a	single	contig	
at	 the	 beginning	 of	 the	 analysis.	MiSeq,	 like	 some	 other	 Illumina’s	 sequencers,	 produces	 relative	 lower	 quality	
bases	 towards	 the	 end	 of	 the	 reads.	 Also	 R2	 reads	 usually	 have	more	 errors	 than	 R1	 reads.	 So	many	 PE	 reads	
cannot	be	assembled	perfectly	without	mismatching	base.	So,	methods	have	been	developed	to	join	the	PE	reads	
to	produce	higher	quality	contigs	permitting	erroneous	and	mismatching	bases.		PANDAseq	[10]	and	PEAR	[11]	are	
two	of	such	programs	that	can	effectively	assemble	a	large	number	of	PE	reads.	Other	programs	that	can	join	the	
PE	reads	include	FLASH	[12]	and	COPE	[13].	In	addition,	pipelines	such	as	Mothur	and	Qiime	all	have	built-in	tool	to	
assemble	 PE	 reads	 into	 contigs.	 Despite	 there	 are	 many	 tools	 for	 PE	 read	 assembly,	 for	 some	 datasets,	 a	 big	
portion	of	reads	can	not	be	assembled	because	the	poor	quality	at	the	3’	end	of	both	PE	reads	in	the	overlapping	
region.	Even	 if	the	contigs	can	be	assembled	allowing	many	mismatches	 in	the	overlapping	region,	these	contigs	
may	have	 too	many	errors	 to	be	used.	 In	 fact,	discarding	 low	quality	 contigs	are	 standard	 step	 in	programs	 like	
Mothur.		

In	the	past,	we	developed	ultra-fast	sequence	clustering	tool	CD-HIT	[14-17],	which	were	used	to	cluster	16S	
sequences	 in	 many	 applications.	 In	 order	 to	 address	 the	 problem	 of	 overestimation	 of	 OTUs	 due	 to	 sequence	
errors	 in	Pyrosequencing	data,	we	developed	CD-HIT-OTU	pipeline	 [18],	with	high	 speed	and	accuracy.	Here	we	
present	 another	 novel	 approach	 that	 based	 on	 CD-HIT	 package	 for	 clustering	 and	 annotating	MiSeq	 based	 16S	
sequence	data,	CD-HIT-OTU-MiSeq.	This	new	approach	has	four	distinct	novel	features.	(1)	The	recently	released	
CD-HIT	package	can	cluster	PE	reads	without	the	requirement	for	joining	PE	reads	into	contigs,	so	the	CD-HIT-OTU-
MiSeq	can	work	with	PE	reads	that	can	not	be	effectively	assembled.	(2)	A	user	can	select	and	analyze	only	high	
quality	portion	of	the	PE	reads,	such	as	first	200	base	from	R1	reads	and	first	150	base	from	R2	reads,	according	to	
sequencing	base	quality	profile.	(3)	We	implemented	a	tool	that	can	splice	out	the	target	region	(e.g.	V3-V4)	from	a	
full-length	 16S	 rRNA	 reference	 sequence	 database	 into	 the	 PE	 sequences.	 CD-HIT-OTU-MiSeq	 can	 cluster	 the	
spliced	 PE	 reference	 database	 together	 with	 the	 sample,	 so	 we	 can	 derive	 OTUs	 and	 annotate	 these	 OTUs	
concurrently.	(4)	Chimeric	sequences	are	effectively	identified	through	de	novo	approach.	In	addition,	CD-HIT-OTU-
MiSeq	adopted	other	denoising	approaches	from	our	earlier	CD-HIT-OTU.	

Our	 approach	 provides	 an	 alternative	 way	 for	 analyzing	MiSeq	 16S	 data,	 especially	 the	 datasets	 where	 a	
considerable	portion	cannot	be	assembled	into	contigs.	The	software	package	is	freely	available	and	is	distributed	
along	with	 CD-HIT	 package	 from	 http://cd-hit.org.	Within	 the	 CD-HIT	 package,	 CD-HIT-OTU-MiSeq	 is	 within	 the	
usecase	folder.	

	

2 Methods	

2.1 Overall	Clustering	Process		
CD-HIT-OTU-MiSeq	includes	three	major	processes,	reference	database	preparation,	sequence	quality	control	

(QC),	and	OTU	clustering	and	annotation.		

The	most	important	unique	feature	of	this	method	is	to	only	use	high	quality	region	at	the	5’	ends	of	R1	and	
R2	 reads.	 For	 example,	 the	 effective	 clustering	 read	 length	 can	 be	 200	 bases	 for	 R1	 and	 150	 bases	 for	 R2.	 The	
effective	portions	of	PE	 reads	are	 clustered	 together	with	 spliced	PE	 sequences	 from	 the	 reference	database	 to	
derive	OTUs	(Figure	1).	In	this	paper,	we	will	show	the	results	of	OTUs	based	on	different	effective	clustering	read	
lengths.	 In	practice,	programs	 such	as	FASTQC	 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)	 can	
be	used	to	scan	the	raw	reads	to	help	choose	the	effective	clustering	read	length	of	R1	and	R2.		
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Figure	1.	 	Clustering	of	high	quality	portion	of	PE	reads	together	with	spliced	PE	sequences	from	16S	reference	

database	

2.2 Reference	database	preparation	
We	 implemented	a	 tool	 that	 can	 splice	out	 the	 target	 amplicon	 region	 (e.g.	V3-V4)	 from	a	 full-length	16S	 rRNA	
reference	sequence	database,	such	as	Greengene	[19],	RDP	[20]	and	Silva	[21],	into	PE	sequences.	Given	a	Miseq	
PE	dataset,	this	tool	performs	the	following	steps.		

(1) It	scans	the	5’	ends	of	both	R1	and	R2	reads	to	get	consensus	sequences	of	at	least	30	bases.	

(2) Cd-hit-est-2d	 (parameters:	 -c	 0.8	 -n	 5	 -r	 1	 -p	 1	 -b	 5	 -G	 0	 -A	 30	 -s2	 0.01)	 is	 used	 to	 align	 the	 consensus	
sequence	to	the	full-length	16S	reference	sequences.		

(3) Two	fragments	from	each	full-length	16S	reference	sequence	were	cut	out	at	the	aligned	position.	The	size	
of	forward	and	reverse	fragments	can	be	selected	to	match	the	effective	clustering	read	length.	The	reverse	
fragments	 are	 converted	 into	 complementary	 sequences	 and	 both	 fragments	 are	 saved	 in	 PE	 fasta	 files,	
which	are	compatible	with	MiSeq	PE	sequence	files.	

(4) This	 spliced	 PE	 sequences	 are	 clustered	 at	 99%	 identity	 to	 remove	 redundant	 sequences	 with	 cd-hit-est	
(parameters:	-c	0.99	-n	10	-p	1	-b	5	-G	1	-g	1	-P	1	-l	11	-sc	1).	

	

If	 there	are	multiple	samples	 in	a	project	sequenced	with	the	same	amplicon	of	same	variable	region,	only	
one	spliced	reference	database	is	needed.	

2.3 QC	

In	this	study,	the	raw	reads	are	processed	with	Trimmomatic	[22]	to	trim	low-quality	bases	and	to	filter	out	
low	quality	reads	(parameters:	SLIDINGWINDOW:4:15	LEADING:3	TRAILING:3	MINLEN:100	MAXINFO:80:0.5).	With	
this	setting,	Trimmomatic	uses	a	4-base	sliding	window	to	trim	a	read	at	window	position	where	average	quality	
score	is	below	15.	The	PE	reads	are	kept	if	both	are	at	least	100	bases	after	trimming.		

2.4 OTU	clustering	and	annotation	

Although	only	the	high	quality	portion	of	(up	to	user-selected	effective	clustering	read	lengths)	PE	reads	are	
used	in	clustering.	There	is	no	need	to	physically	trim	the	PE	reads	to	effective	clustering	read	length	since	cd-hit-
est	program	has	option	to	use	only	the	user-selected	portion	of	sequences.	OTU	clustering	has	following	steps:		

(1) PE	 reads	 are	 clustered	 with	 cd-hit-est	 at	 100%	 identity	 to	 find	 clusters	 of	 exact	 duplicated	 PE	 reads	
(parameters:		-sf	1	-sc	1	-P	1	-r	0	-cx	effective_read_length_R1	-cy	effective_read_length_R2	-c	1.0		-n	10	-G	1	
-b	 1	 -d	 0	 -p	 1).	 The	 resulting	 unique	 PE	 reads	 are	 saved	 in	 decreasing	 order	 of	 abundance	 (enabled	 by	
parameter	-sf	1).	Clusters	with	greater	number	of	exact	duplicates	are	much	more	 likely	to	be	sequencing	
error	free.		
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(2) Unique	 PE	 reads	 from	 step	 1	 are	 clustered	 at	 99%	 identity	 (cd-hit-est	 parameters:	 -P	 1	 -r	 0	 -cx	
effective_read_length_R1	-cy	effective_read_length_R2	-c	0.99	-n	10	-G	1	-b	1		-d	0	-p	1).	Since	the	input	PE	
reads	 are	 in	 decreasing	 order	 of	 abundance,	 during	 the	 cd-hit-est	 clustering	 process,	 the	most	 abundant	
unique	PE	reads	(also	the	most	 likely	error	free	reads)	will	 form	clusters	to	recruit	 less	abundant	PE	reads	
with	<=1%	errors.			

(3) R1	reads	only	from	the	unique	PE	reads	are	clustered	at	99%	identity	(cd-hit-est	parameters:		-c	0.99	-n	10	-
cx	75	-G	0	-b	1		-d	0	-p	1	-A	50).	R2	reads	are	also	separately	clustered	with	same	parameters.	Similar	to	step	
2,	less	abundant	unique	reads	will	be	clustered	into	more	abundant	unique	reads.	

(4) Using	 the	 clustering	 results	 from	 step	 1-3,	 chimeric	 sequences	 are	 identified	 using	 the	 same	way	 as	 we	
previously	implemented	in	cd-hit-dup	[18].	PE	reads	that	are	clustered	to	another	PE	reads	in	step	2	are	not	
chimeric.	For	a	remaining	PE	reads	C,	if	C.R1	and	C.R2	are	clustered	into	A.R1	and	B.R2	and	A	and	B	are	not	
paired	and	both	A	and	B’s	abundance	is	more	than	twice	of	C’s	abundance,	then	C	is	considered	chimeric.	
This	procedure	is	also	similar	to	Uchime	[7].	

(5) Given	an	abundance	cutoff	 (e.g.	0.0001),	 the	small	 clusters	with	 fewer	 than	N	sequences	are	 filtered	out.	
Here	N	=	cutoff	*	number	of	high	quality	PE	reads.		

(6) The	representative	sequences	from	step	2,	excluding	chimeric	reads	 identified	 in	step	4	and	small	clusters	
found	in	step	5	are	clustered	at	97%	identity	(cd-hit-est	parameters:	-P	1	-r	0	-cx	effective_read_length_R1	-
cy	effective_read_length_R2	-c	0.97	-n	10	-G	1	-b	10		-d	0	-p	1).	The	generated	clusters	are	OTUs.	

(7) Cd-hit-est-2d	 is	 used	 to	 recruit	 spliced	 reference	 to	 OTU	 clusters	 generated	 in	 step	 6	 (cd-hit-est-2d	
parameters:	-P	1	-r	0	-cx	effective_read_length_R1	-cy	effective_read_length_R2	-c	0.97	-n	10	-G	1	-b	10		-d	0	
-p	1).	There	may	be	multiple	reference	sequences	in	the	a	single	OTU	cluster,	only	the	sequence	most	similar	
to	the	representative	sequence	in	that	OTU	is	kept,	and	is	used	to	annotate	the	OTU.	

2.5 OTU	analysis	of	multiple	Miseq	samples	
In	 most	 experiments,	 multiple	 samples	 were	 studied	 using	 the	 same	 protocol	 and	 same	 amplicon.	 It	 is	

effective	to	pool	the	samples	together	and	cluster	them	to	a	derive	OTU	table	that	are	comparable	across	samples.		

For	 multiple	 samples,	 only	 one	 spliced	 reference	 database	 is	 needed.	 Each	 sample	 can	 be	 processed	
individually	for	QC	and	OTU	clustering.	Then	the	non-chimeric	non-small	clusters	of	all	samples	are	pooled	and	are	
clustered	at	97%	identity	(same	as	step	6	in	2.4)	and	the	spliced	reference	database	are	recruited	(same	as	step	7	
in	2.4).	

3 Results	

3.1 Mock	datasets		
In	 this	 study,	 we	 used	 several	Mock	 datasets	 sequenced	with	MiSeq	 platform.	 These	Mock	 samples	 have	

been	 used	 to	 validate	 tools	 and	 methods	 analyzing	 16S	 sequences.	 The	 First	 Mock	 community	 (Mock	 1)	 is	
composed	of	21	bacterial	isolates,	available	from	BEI	Resources	(HM-278D	v3.1).	Sequence	data	for	Mock	1	were	
from	study	[23],	which	sequenced	V4,	V34	and	V45	regions	 in	multiple	runs.	Data	from	4	runs	(130401,	130403,	
130417,	130422)	were	used	in	this	study.	The	second	Mock	community	(Mock	2)	is	an	earlier	version	of	Mock1	(BEI	
Resources,	HM-276D,	Genomic	DNA	from	Microbial	Mock	Community	B,	even	concentration).	Mock	2	contains	20	
bacteria	 strains.	 For	Mock	2,	 there	were	 two	 runs	 for	V4	and	one	 run	 for	V45	 [24].	 The	 third	Mock	 community	
(Mock	3)	contains	12	species.	Three	runs	were	performed	on	V34	region	[25].	So	total	18	Mock	samples	were	used	
in	 this	 study	 (Table	 1).	 Mock	 1	 datasets	 were	 downloaded	 from	
https://www.mothur.org/MiSeqDevelopmentData.html.	Mock	 2	 datasets	were	 downloaded	 from	 EMBL-EBI	 ENA	
under	accession	PRJEB4688	and	Mock	3	datasets	were	downloaded	 from	NCBI	SRA	under	accession	SRP066114.	
Table	1	also	shows	the	number	of	PE	reads	and	number	of	high	quality	PE	reads	after	QC.	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2017. ; https://doi.org/10.1101/153783doi: bioRxiv preprint 

https://doi.org/10.1101/153783
http://creativecommons.org/licenses/by-nd/4.0/


Article short title 

 5 

Table	1.	 	Mock	datasets	used	in	this	study		

Mock		 Run	/	ID	 Region	 PE	reads	 High	quality	
Mock	1	 130401	 V34	 184273	 25065	(13.60%)		
Mock	1	 130403	 V34	 131253	 13015	(9.92%)		
Mock	1	 130417	 V34	 102563	 7993	(7.79%)		
Mock	1	 130422	 V34	 79718	 6189	(7.76%)		
Mock	1	 130401	 V4	 1217489	 556966	(45.75%)		
Mock	1	 130403	 V4	 1191972	 714886	(59.98%)		
Mock	1	 130417	 V4	 1015635	 730465	(71.92%)		
Mock	1	 130422	 V4	 871103	 674319	(77.41%)		
Mock	1	 130401	 V45	 826245	 112955	(13.67%)		
Mock	1	 130403	 V45	 952385	 242767	(25.49%)		
Mock	1	 130417	 V45	 868615	 313404	(36.08%)		
Mock	1	 130422	 V45	 787406	 351891	(44.69%)		
Mock	2	 ERR619081		 V4	 240682	 229549	(95.37%)		
Mock	2	 ERR619082		 V4	 213043	 202835	(95.21%)	
Mock	2	 ERR619083		 V45	 90126	 81029	(89.91%)	
Mock	3	 SRR2914393		 V34	 35168	 28744	(81.73%)		
Mock	3	 SRR2914394		 V34	 60488	 49305	(81.51%)	
Mock	3	 SRR2914395		 V34	 21723	 17883	(82.32%)	
	

3.2 OTU	clustering	
Following	the	procedures	described	in	the	method,	the	18	Mock	samples	were	clustered	at	97%	identity	to	

derive	OTUs	at	 species	 level.	 In	 this	analysis,	Greengene	was	used	as	 reference	database.	 Five	pairs	of	effective	
clustering	 read	 lengths	 (225,	 175),	 (200,	 150),	 (175,	 125),	 (150,	 100)	 and	 (125,	 75)	 were	 selected	 for	 samples	
sequenced	at	V34	or	V45.	Two	pairs	of	effective	 clustering	 read	 lengths	 (150,	100)	and	 (125,	75)	were	used	 for	
samples	of	V4	region.	Two	abundance	cutoffs	were	used:	0.0001	and	0.0005.	The	numbers	of	OTUs	are	shown	in	
Table	2.	

At	different	effective	clustering	read	lengths,	the	number	of	OTUs	slightly	or	moderately	fluctuates,	but	is	not	
correlated	with	the	effective	clustering	read	length	either	positively	or	negatively.	The	number	of	OTUs	returned	
by	our	method	is	very	close	to	the	truth:	21,	20	and	12	for	Mock	1,	2	and	3,	especially	at	cutoff	0.0005.	Mock	1	
samples	were	originally	studied	in	[23],	the	average	number	OTUs	derived	from	our	study	based	on	the	whole	data	
sets	(up	to	1.2	million)	at	cutoff	0.0001	and	0.0005	are	31	and	22	respectively,	comparable	to	or	less	than	the	OTUs	
calculated	in	reference	[23],	which	range	from	22	to	192,	based	on	rarefaction	of	each	sample	to	5,000	sequences	
per	sample	(Table	2	of	reference	[23]).	

Mock	2	were	initially	analyzed	in	reference	[24];	the	reported	OTUs	for	the	3	samples	using	Qiime	are	from	
138	 to	143	 (Table	2	 in	 reference	 [24]),	which	 are	much	more	 than	 the	OTUs	 identified	by	our	method.	Mock	3	
samples	were	first	analyzed	in	previous	study	[25],	where	the	reported	OTUs	by	several	different	methods	range	
from	50	to	148	(Table	S12	in	reference	[25]),	which	are	higher	than	our	results.	

In	 fact,	 study	 [25]	analyzed	both	Mock	1,	2	and	3	 samples	and	 reported	 the	number	of	OTUs	 in	Table	S12	
using	several	methods	including	USEARCH,	UNoise,	Mothur	and	IPED.	Compared	to	that,	our	OTUs	are	constantly	
lower	than	the	reported	results,	except	that	USEARCH	and	UNoise	performed	better	on	Mock	1	V34	samples.	
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So,	compared	to	the	published	results	from	multiple	studies	[23]	[24][25]	with	many	different	methods,	the	
OTUs	by	our	method	are	generally	more	accurate.	

Table	2.	 OTUs	calculated	at	different	effective	clustering	read	lengths	and	different	abundance	cutoffs	

Run	/	ID	 Region	 OTUs	 OTUs		 OTUs		 OTUs		 OTUs		
	 	 225,	175	 200,150	 175,	125	 150,	100	 125,	75	
Mock	1	 	 	 	 	 	 	
130401	 V34	 30,20	 35,20	 29,19	 29,19	 24,19	
130403	 V34	 38,19	 38,19	 37,20	 45,21	 41,22	
130417	 V34	 36,21	 38,21	 36,21	 33,22	 33,22	
130422	 V34	 50,26	 50,27	 52,31	 56,33	 60,36	
130401	 V4	 	 	 	 24,20	 24,20	
130403	 V4	 	 	 	 25,20	 27,20	
130417	 V4	 	 	 	 24,20	 26,20	
130422	 V4	 	 	 	 27,20	 28,20	
130401	 V45	 30,21	 27,20	 25,20	 29,20	 30,20	
130403	 V45	 21,21	 21,21	 21,21	 25,21	 29,21	
130417	 V45	 23,21	 24,21	 24,21	 27,21	 30,21	
130422	 V45	 21,21	 22,21	 22,21	 24,21	 25,21	
Mock	2	 	 	 	 	 	 	
ERR619081	 V4	

	 	 	
55,23	 50,22	

ERR619082	 V4	
	 	 	

40,22	 40,20	
ERR619083	 V45	 40,18	 33,21	 39,23	 32,18	 42,19	
Mock	3	 	 	 	 	 	 	
SRR2914393	 V34	 29,12	 22,12	 26,13	 33,14	 28,14	
SRR2914394	 V34	 19,12	 23,12	 25,12	 33,12	 26,12	
SRR2914395	 V34	 29,12	 27,12	 28,12	 35,12	 32,12	

Each	cell	of	this	table	shows	number	of	OTUs	at	abundance	cutoffs	0.0001	and	0.0005.	

3.3 Compute	time	
The	 compute	 time	 for	 clustering	 these	 Mock	 samples	 varied	 from	 a	 few	 to	 ~10	 minutes	 per	 sample,	

depending	on	the	sample	size	and	effective	clustering	read	length	considered.	Our	approach	is	much	faster	than	
other	popular	methods	including	Mothur	and	Qiime.	Because	of	the	ultra-high	speed,	CD-HIT-OTU-MiSeq	is	able	to	
process	a	hundred	sample	of	similar	size	in	a	couple	of	hours.	

3.4 OTU	Annotation	

In	our	process,	sequences	were	annotated	if	they	were	clustered	together	with	the	reference	16S	genes.	We	
checked	the	clusters,	 in	all	 cases,	 the	known	bacteria	species	 included	 in	 the	Mock	1	and	Mock	2	samples	were	
found	in	the	OTUs.	 It	 is	expected,	 in	a	few	cases,	very	closely	related	species	are	clustered	in	to	the	same	OTUs,	
with	effective	 clustering	 read	 length	of	 (125,	 75).	 For	Mock	3,	we	have	difficult	 to	 find	 the	 species	 composition	
from	the	reference	[25],	but	it	is	very	clear	that	top	large	OTUs	are	corresponding	to	these	species	that	constitute	
the	Mock	3	samples.	

Besides	the	 large	OTUs	with	known	species,	the	remaining	small	OTUs	are	either	cluster	of	sequences	with	
larger	sequencing	errors,	or	 from	contaminating	microbes	at	very	 low	abundance.	We	observed	both	sequences	
for	all	Mock	samples.			

4 Conclusion	
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CD-HIT-OTU-MiSeq	gives	an	alternative	way	for	analyzing	MiSeq	16S	data,	without	assembling	the	PE	reads	
into	 contigs.	 It	 is	 especially	 useful	 when	 a	 considerable	 portion	 of	 PE	 reads	 cannot	 be	 assembled	 into	 contigs	
without	mismatch.	With	further	 improvements	from	our	previous	CD-HIT-OTU,	this	package	offers	high	accuracy	
and	speed	in	OTU	clustering	and	is	able	to	process	hundreds	of	MiSeq	samples	in	hours.		

The	software	package	is	freely	available	and	is	distributed	along	with	CD-HIT	package	from	http://cd-hit.org.	
Within	 the	 CD-HIT	 package,	 CD-HIT-OTU-MiSeq	 is	within	 the	 usecase	 folder.	 The	 detailed	 document	 and	 users’	
guide	are	available	from	the	package.	
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