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Abstract

RNA sequencing is increasingly performed with less starting material and at a higher

sample throughput, e.g. to analyse single-cell transcriptomes. In this context, unique

molecular identifiers (UMIs) are used to reduce amplification noise and sample-specific

barcodes are used to track libraries. Here, we present a fast and flexible pipeline to

process data from such RNA-seq protocols.

Availability: https://github.com/sdparekh/zUMIs

1 Introduction

The recent development of sensitive protocols allows to generate RNA-seq libraries

of single cells [1]. The throughput of such scRNA-seq protocols is rapidly increasing,

enabling the profiling of tens of thousands of cells [2, 3] and opening exciting possibilities

to analyse cellular identities [4, 5]. As the required amplification from such low starting

amounts introduces substantial amounts of noise [6], many scRNA-seq protocols incor-

porate unique molecular identifiers (UMIs) to label individual cDNA molecules with a

random nucleotide sequence before amplification [7]. This allows to computationally

remove amplification noise and thus increases the power to detect expression differences

[8, 9]. To increase the throughput, many protocols also incorporate sample-specific

barcodes (BCs) to label all cDNA molecules of a single cell with a nucleotide sequence

before library generation [10, 2]. Additionally, for cell types such as neurons it has
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Name Reference Open Quality Mapper intron Down-
Source UMI/BC counting sampling

CellRanger [2] no no STAR no yes
Drop-seq [10] no yes STAR no no
CEL-seq [13] yes yes bowtie2 no no
umis [14] yes no Kallisto no no
zUMIs This work yes yes STAR yes yes

Table 1. Pipelines handling UMI expression data

proven to be more feasible to isolate RNA from single nuclei rather than whole cells

[11, 12]. This decreases mRNA amounts further, so that it has been suggested to count

intron-mapping reads as part of nascent RNAs. However, the few bioinformatic tools that

process RNA-seq data with UMIs and BCs have limitations with respect to availability,

mapping, quality assessment and/or can not consider intronic reads (Table 1). Here, we

present zUMIs, a fast and flexible pipeline to overcome such limitations.

2 zUMIs

zUMIs is a pipeline that processes paired fastq files containing the UMI and BC in one

read and the cDNA sequence in the other read, filters out reads with bad BCs or UMIs

based on sequence quality, maps reads to the genome and outputs count tables of unique

UMIs or reads per gene (Figure 1). To allow the quantification of intronic reads that are

generated from unspliced RNAs especially when using nuclei as input material, three

separate count tables for exons, introns and exon+introns are provided. Another unique

feature of zUMI is that it allows for downsampling of reads before summarizing UMIs

per feature, which is recommended for cases of highly different read numbers per sample

[15]. zUMIs is flexible with respect to the length and sequences of the BC and UMIs,

making it compatible with a large number of protocols [16, 17, 10, 13, 3, 2].
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Figure 1. zUMIs schematic overview.

A Each of the grey panels from left to right depicts a step of the zUMIs pipeline. First, paired fastq

files are filtered according to user-defined BC and UMI quality thresholds. Next, the remaining cDNA

reads are mapped to the reference genome using STAR. Then gene-wise read and UMI count tables are

generated for exon, intron and exon+intron overlapping reads. To obtain comparable library sizes, reads

can be downsampled to a desired range during the counting step. Optionally, zUMIs also generates data

and plots for several quality measures, such as the number of detected Genes/UMIs per barcode and

distribution of reads into mapping feature categories (Supplementary Figure 3).

2.1 Processing pipeline

The input for zUMIs is a pair of fastq files, whereas one file contains the cDNA sequences

and the other one the read containing the BC and UMI. The exact location and length

of UMI and BC are specified by the user. Note that both fastq files need to be ordered

by read name, which is usually the case if unprocessed files are used. The first step

in our pipeline is to filter reads where the BC or the UMI fails a user-defined quality

threshold. This helps to eliminate spurious BCs and is expected to reduce noise. The

cleaned-up reads are then mapped to the genome using the splice-aware aligner STAR

[18]. The user is free to adapt the STAR options to their data, however zUMIs requires

that only one mapping position per read is reported. Next, reads are assigned to genes

and to exons or introns based on the provided gtf file, whereas introns are defined as not

overlapping with any exon. Rsubread featureCounts [19] is used to first assign reads

to exons and afterwards to check whether the remaining reads fall into introns. The

resulting output is then read into R using data.table [20] and count tables for UMIs and

reads are generated. zUMIs tabulates the UMIs/gene either for user-specified BCs or

for the n BCs with the highest read counts.
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2.2 Output and statistics

zUMis outputs three UMI and three read count tables: one for traditional exon mapping

gene-wise counts, one for intron and one for intron+exon counts. If a user chooses

the downsampling option, 6 additional count-tables are provided in which samples

with an excess of reads are downsampled and samples with too few reads are dismissed

(Supplementary Figures 4). We highly recommend to use this option, because normalizing

across samples with vastly different library sizes does not work well [15, 21]. zUMIs

also reports descriptive statistics. To evaluate library quality zUMIs summarizes the

fractions of unmapped, ambiguously mapped, exon and intron mapped reads and to

evaluate library complexity, the numbers of detected genes and UMIs per sample are

provided (Supplementary Figures 2,3).

We processed 227 million reads with zUMIs and quantified expression levels for

exonic and intronic counts on a unix machine using up to 16 threads, which took barely

3 hours. Increasing the number of reads increases the processing time approximately

linearly, whereas filtering, mapping and counting each take up roughly one third of the

total time (Supplementary Figure 1).

3 Conclusions

zUMIs is a fast and flexible pipeline to process raw reads to count tables for RNA-seq

data using UMIs. To our knowledge it is the only open source pipeline that has a barcode

and UMI quality filter, allows intron counting and has an integrated downsampling

function (Table 1). These features ensure that zUMIs is applicable for most experimental

designs of RNA-seq data, such as single-nuclei sequencing techniques [11, 12, 22], droplet

based methods where the BC is unknown and the library sizes can vary a lot as well as

plate-based UMI-methods with known BCs.
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Availability

The pipeline is freely available at https://github.com/sdparekh/zUMIs.

4/6

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2017. ; https://doi.org/10.1101/153940doi: bioRxiv preprint 

https://github.com/sdparekh/zUMIs
https://doi.org/10.1101/153940
http://creativecommons.org/licenses/by-nc/4.0/


References

1. Rickard Sandberg. Entering the era of single-cell transcriptomics in biology and medicine. Nat.

Methods, 11(1):22–24, January 2014.

2. Grace X Y Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan Wilson,

Solongo B Ziraldo, Tobias D Wheeler, Geoff P McDermott, Junjie Zhu, Mark T Gregory, Joe Shuga,

Luz Montesclaros, Jason G Underwood, Donald A Masquelier, Stefanie Y Nishimura, Michael Schnall-

Levin, Paul W Wyatt, Christopher M Hindson, Rajiv Bharadwaj, Alexander Wong, Kevin D Ness,

Lan W Beppu, H Joachim Deeg, Christopher McFarland, Keith R Loeb, William J Valente, Nolan G

Ericson, Emily A Stevens, Jerald P Radich, Tarjei S Mikkelsen, Benjamin J Hindson, and Jason H

Bielas. Massively parallel digital transcriptional profiling of single cells. Nat. Commun., 8:14049,

16 January 2017.

3. Alexander B Rosenberg, Charles Roco, Richard A Muscat, Anna Kuchina, Sumit Mukherjee, Wei

Chen, David J Peeler, Zizhen Yao, Bosiljka Tasic, Drew L Sellers, Suzie H Pun, and Georg Seelig.

Scaling single cell transcriptomics through split pool barcoding. 2 February 2017.

4. Allon Wagner, Aviv Regev, and Nir Yosef. Revealing the vectors of cellular identity with single-cell

genomics. Nat. Biotechnol., 34(11):1145–1160, 8 November 2016.

5. Aviv Regev, Sarah Teichmann, Eric S Lander, Ido Amit, Christophe Benoist, Ewan Birney, Bernd

Bodenmiller, Peter Campbell, Piero Carninci, Menna Clatworthy, Hans Clevers, Bart Deplancke, Ian

Dunham, James Eberwine, Roland Eils, Wolfgang Enard, Andrew Farmer, Lars Fugger, Berthold

Gottgens, Nir Hacohen, Muzlifah Haniffa, Martin Hemberg, Seung K Kim, Paul Klenerman, Arnold

Kriegstein, Ed Lein, Sten Linnarsson, Joakim Lundeberg, Partha Majumder, John Marioni, Miriam

Merad, Musa Mhlanga, Martijn Nawijn, Mihai Netea, Garry Nolan, Dana Pe’er, Anthony Philipakis,

Chris P Ponting, Stephen R Quake, Wolf Reik, Orit Rozenblatt-Rosen, Joshua R Sanes, Rahul Satija,

Ton Shumacher, Alex K Shalek, Ehud Shapiro, Padmanee Sharma, Jay Shin, Oliver Stegle, Michael

Stratton, Michael J T Stubbington, Alexander van Oudenaarden, Allon Wagner, Fiona M Watt,

Jonathan S Weissman, Barbara Wold, Ramnik J Xavier, Nir Yosef, and Human Cell Atlas. The

human cell atlas. 8 May 2017.

6. Swati Parekh, Christoph Ziegenhain, Beate Vieth, Wolfgang Enard, and Ines Hellmann. The impact

of amplification on differential expression analyses by RNA-seq. Sci. Rep., 6:25533, 9 May 2016.
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