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Abstract

Single cell RNA-seq (scRNA-seq) experiments typically analyze hundreds or thousands of cells after ampli�cation of the
cDNA. The high throughput is made possible by the early introduction of sample-speci�c barcodes (BCs) and the
ampli�cation bias is alleviated by unique molecular identi�ers (UMIs). Thus the ideal analysis pipeline for scRNA-seq data
needs to e�ciently tabulate reads according to both BC and UMI. zUMIs is such a pipeline, it can handle both known and
random BCs and also e�ciently collapses UMIs, either just for exon mapping reads or for both exon and intron mapping
reads. Another unique feature of zUMIs is the adaptive downsampling function, that facilitates dealing with hugely varying
library sizes, but also allows to evaluate whether the library has been sequenced to saturation. zUMIs �exibility allows to
accommodate data generated with any of the major scRNA-seq protocols that use BCs and UMIs. To illustrate the utility of
zUMIs, we analysed a single-nucleus RNA-seq dataset and show that more than 35% of all reads map to introns. We
furthermore show that these intronic reads are informative about expression levels, signi�cantly increasing the number of
detected genes and improving the cluster resolution.
Availability: https://github.com/sdparekh/zUMIs
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Introduction

The recent development of increasingly sensitive protocols al-
lows to generate RNA-seq libraries of single cells [1]. The
throughput of such single-cell RNA-sequencing (scRNA-seq)
protocols is rapidly increasing, enabling the pro�ling of tens
of thousands of cells [2, 3] and opening exciting possibilities
to analyse cellular identities [4, 5]. As the required ampli�-
cation from such low starting amounts introduces substantial
amounts of noise [6], many scRNA-seq protocols incorporate
unique molecular identi�ers (UMIs) to label individual cDNA
molecules with a random nucleotide sequence before ampli�-
cation [7]. This enables the computational removal of ampli-
�cation noise and thus increases the power to detect expres-

sion di�erences between cells [8, 9]. To increase the through-
put, many protocols also incorporate sample-speci�c barcodes
(BCs) to label all cDNA molecules of a single cell with a nu-
cleotide sequence before library generation [10, 2]. This allows
for early pooling, which further decreases ampli�cation noise
[6]. Additionally, for cell types such as neurons it has been
proven to be more feasible to isolate RNA from single nuclei
rather than whole cells [11, 12]. This decreases mRNA amounts
further, so that it has been suggested to count intron-mapping
reads originating from nascent RNAs as part of single cell ex-
pression pro�les [11]. However, the few bioinformatic tools
that process RNA-seq data with UMIs and BCs have limita-
tions. For example the Drop-seq pipeline is not open source
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Key Points

• zUMIs processes UMI-based RNA-seq data from raw reads to count tables in one command.
• Unique features of zUMIs:
– Automatic cell barcode selection
– Adaptive downsampling
– Counting of intron-mapping reads for gene expression quanti�cation

• zUMIs is compatible with all major UMI based RNA-seq library protocols.

[10]. While Cell Ranger is open, it is exceedingly di�cult to
adapt the code to new or unknown sample barcodes and other
library types. Other tools are speci�cally designed to work with
one mapping algorithm and focus mainly on transcriptomes
[13, 14]. Furthermore, to our knowledge, no UMI-RNA-seq
pipeline provides the utility to also consider intron mapping
reads [2, 15, 14, 13, 16]. Here, we present zUMIs, a fast and
�exible pipeline that overcomes these limitations.

Findings

zUMIs is a pipeline that processes paired fastq �les contain-
ing the UMI and BC reads and the cDNA sequence. Read pairs
are �ltered to remove reads with bad BCs or UMIs based on se-
quence quality and the remaining reads are then mapped to the
genome (Figure 1). To allow the quanti�cation of intronic reads
that are generated from unspliced mRNAs, especially when us-
ing nuclei as input material, zUMIs generates separate UMI and
read count tables for exons, introns and exon+introns. An-
other unique feature of zUMIs is that it allows for downsam-
pling of reads before collapsing UMIs, uniquely enabling the
user to assess whether a library was sequenced to saturation or
whether deeper sequencing is necessary to depict the full mRNA
complexity. Furthermore, zUMIs is �exible with respect to the
length and sequences of the BC and UMIs, supporting protocols
that have both sequences in one read [17, 18, 10, 14, 3, 2, 12]
or split across several reads, as is the case in the InDrops v3
[19, 20] and STRT-2i [21] methods. Thus, zUMIs is compatible
with all major UMI-based scRNA-seq protocols. Finally, zUMIs
can be easily installed as an application on any unix machine
or be conveniently deployed for cloud computing at Amazon’s
elastic compute service with a provided machine image.

Implementation and Operation

Pre-processing, Mapping and Counting
The input for zUMIs is a group of paired fastq �les, where one
�le contains the cDNA sequence and the other �le(s) the read(s)
containing the BC and UMI. The exact location and length of
UMI and BC are speci�ed by the user, thus zUMIs can process
sequences obtained from any scRNA-seq with UMIs. The �rst
step in our pipeline is to �lter reads that have low quality BCs
according to a user-de�ned threshold, this should eliminate
the bulk of spurious BCs. A similar sequence quality based cut-
o� can be applied to the UMI. Others have suggested to use
edit distances and frequencies of the UMIs to collapse spuri-
ous counts due to errors [16]. However, in the data that we
analyzed, quality �ltering of UMIs had no signi�cant impact
on the power to detect di�erentially expressed genes (Figure
2), implying that the computationally expensive distance �lter
will be mostly unnecessary.
The remaining reads are then mapped to the genome us-

ing the splice-aware aligner STAR [22]. The user is free to cus-
tomize mapping by using the options of STAR. Furthermore, if

the user wishes to use a di�erent mapper, it is also possible
to provide zUMIs with an aligned bam-�le instead of the fastq-
�le with the cDNA sequence, with the sole requirement that
only one mapping position per read is reported in the bam-�le.
Next, reads are assigned to genes and to exons or introns based
on the provided gtf �le, while ensuring introns are not overlap-
ping with any exon. Rsubread featureCounts [23] is used to �rst
assign reads to exons and afterwards to check whether the re-
maining reads fall into introns. The output is then read into R
using data.table [24] count tables for UMIs and reads per gene
per BC are generated. Only identical UMI sequences that were
mapped either to the exon or intron of the same gene are col-
lapsed. Note that only the processing of intron and exon reads
together allows to properly collapse UMIs that can be sampled
from the intronic as well as from the exonic part of the same
nascent mRNA molecule.
Cell Barcode Selection
In order to be compatible with well-based and droplet-based
scRNA-seq methods, zUMIs needs to be able to deal with known
as well as random BCs. As default behavior, zUMIs infers which
barcodes mark good cells from the data (Figure 3 A,B). To this
end, we �t a k-dimensional multivariate normal distribution
[25, 26] for the number of reads/BC, and reason that only the
kth normal distribution with the largest mean contains bar-
codes that identify reads originating from intact cells. We ex-
clude all barcodes that fall in the lower 1% tail of this distribu-
tion. The HEK dataset used in this paper contains 96 cells with
known barcodes and zUMIs identi�es 99 barcodes as intact, in-
cluding all the 96 known barcodes. Also for the single-nucleus
RNA-seq from Habib et al.[12] zUMIs identi�ed a reasonable
number of cells: Habib et al. report 10,877 nuclei and zUMIs
identi�ed 11,013 intact nuclei. However, if the number of bar-
codes or barcode sequences are known, it is preferable to use
this information. In the case that zUMIs is either given the
number of BCs or is provided with a list of BC sequences, it will
use this information and forgo automatic inference.
Downsampling
scRNA-seq library sizes can vary by orders ofmagnitude, which
complicates normalization [27, 28]. A straight-forward solu-
tion for this issue is to downsample over-represented libraries
[29]. zUMIs has an inbuilt function for downsampling datasets
to a user-speci�ed number of reads or a range of reads. By
default, zUMIs downsamples all selected barcodes to be within
three absolute deviations from the median number of reads per
barcode (Figure 3 C). Alternatively, the user can provide a tar-
get sequencing depth and zUMIs will downsample to the spec-
i�ed read number or omit the sample from the downsampled
count table. Furthermore, zUMIs also allows to specify multi-
ple target read number at once for downsampling. This fea-
ture is helpful, if the user wishes to determine whether the
RNA-seq library was sequenced to saturation or whether fur-
ther sequencing would increaset the number of detected genes
or UMIs enough to justify the extra cost. In our HEK-cell exam-
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ple dataset the number of detected genes starts leveling of at
one million reads, sequencing double that amount would only
increase the number of detected genes from 9,000 to 10,600,
when counting exon reads (Figure 3D). The saturation curve of
exon+intron reads runs parallel to the one for exon reads, both
indicating that a sequencing depth of one million reads per cell
is su�cient for these libraries.
Output and Statistics
zUMIs outputs three UMI and three read count tables: gene-
wise counts for traditional exon mapping, one for intron and
one for exon+intron counts. If a user chooses the downsam-
pling option, 6 additional count-tables per target read count
are provided. To evaluate library quality zUMIs summarizes
the mapping statistics of the reads. While exon and intron
mapping reads likely represent mRNA quantities, a high frac-
tion of intergenic and unmapped reads indicates low-quality
libraries. Another measure of RNA-seq library quality is the
complexity of the library, for which the number of detected
genes and the number of identi�ed UMIs are good measures
(Figure 1). We processed 227 million reads with zUMIs and
quanti�ed expression levels for exon and intron counts on a
unix machine using up to 16 threads, which took barely 3 hours.
Increasing the number of reads increases the processing time
approximately linearly, where �ltering, mapping and count-
ing each take up roughly one third of the total time (Figure
3 E). We also observe that the peak RAM usage for process-
ing datasets of 227, 500 and 1000 million pairs was 42 Gb,
89 Gb and 172 Gb, respectively. Finally, zUMIs could process
the largest scRNA-seq dataset reported to date with around
1.3 million brain cells and 25 billion read pairs generated with
10xGenomics Chromium https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.3.0/1M_neurons on a
22-core Intel Xeon E5-2699 processor in only 7 days.
Intron Counting
Assuming that intron mapping reads originate from nascent
mRNAs, zUMIs also counts and collapses intron mapping reads
with other reads mapping to the same gene with the same UMI.
To assess the information gain from intronic reads to estimate
gene expression levels, we analysed a publicly available DroNc-
seq mouse brain dataset ([12], https://portals.broadinstitute.
org/single_cell). For the ∼ 11, 000 single nuclei of this dataset,
the fraction of intron mapping reads of all reads goes upto
61%. Thus, if intronic reads are considered, the mean num-
ber of detected genes per cell increases signi�cantly from 1041
for exon reads to 1995 for exon+intron reads (Welch two sam-
ple t-test: p-value < 2.2e-16). To assess the impact of intronic
reads on the inference of di�erential expression, we performed
power simulations using empirical mean and dispersion dis-
tributions from this dataset [9]. The simulations assumed a
balanced two-group comparison of variable sample sizes with
10% of the genes di�erentially expressed between groups. We
observed a 0.5% decrease of the marginal false discovery rate
(FDR) for exon+intron relative to exon counts for group sam-
ple sizes of < 250 cells, while the power to detect di�eren-
tially expressed genes was similar for exon and exon+intron
counts. Next, we investigated whether exon+intron count-
ing improves the identi�cation of cell types, as suggested in
[11]. Following the Seurat pipeline [30], we clustered the cells
of the DroNc-seq dataset based on the exon as well as our
exon+intron counts. The KNN-clustering reported 24 distinct
clusters for the exon+intron counts, while we could only dis-
criminate 15 clusters using exon counts (Figure 4). This analy-
sis shows, that the additional genes that were detected by also
counting intron-mapping reads are not spurious, but carry bi-
ological meaning.

Conclusion

zUMIs is a fast and �exible pipeline processing raw reads to ob-
tain count tables for RNA-seq data using UMIs. To our knowl-
edge it is the only open source pipeline that has a barcode and
UMI quality �lter, allows intron counting and has an integrated
downsampling functionality. These features ensure that zUMIs
is applicable to most experimental designs of RNA-seq data,
including single nucleus sequencing techniques, droplet-based
methods where the BC is unknown, as well as plate-based UMI-
methods with known BCs. Finally, zUMIs is computationally
e�cient, user-friendly and easy to install.

Availability of Source Code and Requirements

• Project name: zUMIs
• Project home page: https://github.com/sdparekh/zUMIs
• Operating system(s): UNIX
• Programming language: shell, R, perl
• Other requirements: STAR >= 2.5.3a, R >= 3.4, pigz >= 2.3
& samtools >= 1.1

• License: GNU GPLv3.0

Availability of supporting data and materials

All data that were generated for this project were submitted to
GEO under accession GSE99822.
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Figure 1. Schematic of the zUMIs pipeline. Each of the grey panels from left to right depicts a step of the zUMIs pipeline. First, fastq �les are �ltered according to
user-de�ned barcode (BC) and unique molecular identi�er (UMI) quality thresholds. Next, the remaining cDNA reads are mapped to the reference genome using
STAR. Gene-wise read and UMI count tables are generated for exon, intron and exon+intron overlapping reads. To obtain comparable library sizes, reads can be
downsampled to a desired range during the counting step. In addition, zUMIs also generates data and plots for several quality measures, such as the number of
detected genes/UMIs per barcode and distribution of reads into mapping feature categories.

False Discovery Rate True Positive Rate
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48 vs 48
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no filter 1 < 17 UMI−tools
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Figure 2. Impact of UMI quality �ltering on Di�erential Gene Expression. We estimated the mean expression and dispersion of genes across the cells from our
HEK dataset without any UMI quality �lters (red); reads where the UMI has at least one base with a quality score < 17 (blue) and using the directional-adjacency
method implemented in UMI-tools[16] (yellow), that collapses UMIs based on their distance in a sequence graph also considering the frequency. The resulting
count matrices were then used for power simulations using powsimR [9] with balanced sample sizes of n in each group. We performed 50 simulations with 9000
genes where 10% of the genes are di�erentially expressed with log2 fold changes drawn from a normal distribution N(µ = 0,σ = 1.5). We report here A) false
discovery rate (FDR) and B) true positive rate (TPR) to detect di�erential expression for each �ltering criterion.
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Figure 3. Utilities of zUMIs. Each of the panels shows the utilities of zUMIs pipeline. The plots from A-D are the results from the example HEK dataset used in the
paper. A) The plot shows a density distribution of reads per barcode. Cell barcodes with reads above the blue line are selected. B) The plot shows the cumulative
read distribution in the example HEK dataset where the barcodes in light blue are the selected cells. C) The barplot shows the number of reads per selected cell
barcode with the red lines showing upper and lower MAD (Median Absolute Deviations) cuto�s for adaptive downsampling. Here, the cells below the lower MAD
have very low coverage and are discarded in downsampled count tables. D) Cells were downsampled to six depths from 100,000 to 3,000,000 reads. For each
sequencing depth the genes detected per cell is shown. E) Runtime for three datasets with 227, 500 and 1000 million read-pairs. The runtime is divided in the
main steps of the zUMIs pipeline: Filtering, Mapping, Counting and Summarizing. Each dataset was processed using 16 threads ("-p 16").
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Figure 4. Contribution of intron reads in scRNA-seq. We analyse published single-nucleus RNA-seq data[12] to assess the utility of counting intron reads. We
processed the raw data with zUMIs to obtain a count table with exon reads as well as exon+intron reads. We follow the Seurat pipeline[30] for �ltering, normalising
and clustering of cells for exon and exon+intron count tables and �nd 15 and 24 clusters, respectively. The t-SNE plot in panel (A) is colored by cluster identity of
exon reads and panel (B) colored by cluster identity from exon+intron reads.
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