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ABSTRACT 

Background Developmental dysplasia of the hip (DDH) is a common, heritable condition characterised 

by abnormal formation of the hip joint, but has a poorly understood genetic architecture due to small 

sample sizes. We apply a novel case-ascertainment approach using national clinical audit (NCA) data 

to conduct the largest DDH genome-wide association study (GWAS) to date, and replicate our findings 

in independent cohorts.  

Methods We used the English National Joint Registry (NJR) dataset to collect DNA and conducted a 

GWAS in 770 DDH cases and 3364 controls. We tested the variant most strongly associated with DDH 

in independent replication cohorts comprising 1129 patients and 4652 controls. 

Results The heritable component of DDH attributable to common variants was 55% and distributed 

similarly across autosomal and the X-chromosomes. Variation within the GDF5 gene promoter was 

strongly and reproducibly associated with DDH (rs143384, OR 1.44 [95% CI 1.34-1.56], p=3.55x10-

22). Two further replicating loci showed suggestive association with DDH near NFIB (rs4740554, OR 

1.30 [95% CI 1.16-1.45], p=4.44x10-6) and LOXL4 (rs4919218, 1.19 [1.10-1.28] p=4.38x10-6). Through 

gene-based enrichment we identify GDF5, UQCC1, MMP24, RETSAT and PDRG1 association with 

DDH (p<1.2x10-7). Using the UK Biobank and arcOGEN cohorts to generate polygenic risk scores we 

find that risk alleles for hip osteoarthritis explain <0.5% of the variance in DDH susceptibility. 

Conclusion Using the NJR as a proof-of-principle, we describe the genetic architecture of DDH and 

identify several candidate intervention loci and demonstrate a scalable recruitment strategy for genetic 

studies that is transferrable to other complex diseases. 
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Key Messages 

 We report the first genome-wide scan for DDH in a European population, and the first to use 

national clinical audit data for case-ascertainment in complex disease. 

 The heritable component of DDH attributable to common variants is 55% and is distributed 

similarly across autosomal and the X-chromosomes.  

 Variation within the GDF5 gene promoter is strongly and reproducibly associated with DDH, 

with fine-mapping indicating rs143384 as the likely casual variant. 

 Enrichment analyses implicate GDF5, UQCC1, MMP24, RETSAT and PDRG1 as candidate 

targets for intervention in DDH. 

 DDH shares little common genetic aetiology with idiopathic osteoarthritis of the hip, despite 

sharing variation within the GDF5 promoter as a common risk factor. 
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INTRODUCTION 

Developmental dysplasia of the hip (DDH) is characterised by abnormal development of the hip joint 

and presents with varying severity from mild uncovering of the femoral head to complete dislocation 

of the joint.1 It is the most common developmental musculoskeletal anomaly, with population-weighted 

average incidence that ranges strongly with ethnic background from 0.06 per 1000 live births in Black 

Africans to 76.1 per 1000 live births in Native Americans,2 and with an incidence in the UK European 

population of 3.6 per 1000. DDH is a complex disorder, with known associations including female sex, 

first-born, breech presentation, and family history.2 There is a 7-fold increase in the incidence between 

siblings and a 10-fold increase in the parents of probands compared to the general population,3 and a 

concordance rate of 41% between identical twins versus 3% in dizygotic twins.4  

Whilst DDH is heritable, its genetic architecture remains poorly characterised. Several linkage scans 

and candidate gene studies have implicated possible associated genetic variants, including in GDF5,5 

but to date no replicated loci of genome-wide significance have been identified.2, 6-9 A recent genome-

wide association study (GWAS) of 386 patients and 558 controls in the Han Chinese population 

suggested an association with variation in UQCC (odds ratio (OR) 1.35, P=3.63x10-6), a gene adjacent 

to GDF5.10 Morphological abnormalities of the hip such as DDH are also recognised as risk factors for 

the development of secondary degenerative change of the hip,11, 12 and commonly result in hip 

replacement in adult life.12, 13 Idiopathic hip osteoarthritis (OA) is very common and has a substantial 

heritable component,14 and may share common genetic aetiology with DDH.2, 7, 15 

Systematic examination of genome-wide variation in DDH in larger sample sizes is necessary to clarify 

its heritable biology and inform mechanism-driven preventative strategies. However, sample collection 

for uncommon diseases can be challenging and time-consuming, as attested by the relative paucity of 

sample sets for genetic studies of DDH. Routinely-collected national clinical audit datasets (NCAs) 

present an opportunity for efficient case ascertainment in genetic epidemiology. The National Joint 

Registry for England, Wales, Northern Ireland, and the Isle of Man (NJR, http://www.njrcentre.org.uk/) 

was established in 2003 to collect audit data on all hip and knee replacement surgery in these regions, 
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for which it has a completeness rate of 97% (http://www.njrreports.org.uk/Data-Completeness-and-

quality). As at December 31st 2014, the dataset held information on 711 765 primary hip replacement 

procedures, including data on the diagnostic indication for surgery. We used the NJR as a case-

ascertainment tool to conduct a nationwide genome-wide association scan to characterise the genetic 

architecture of DDH. We examine the heritable contribution to DDH, and use fine-mapping and gene-

based enrichment approaches to identify likely causal variants and genes. Finally, we use independent 

OA-datasets to examine for shared genetic aetiology between DDH and hip OA. 

 

PATIENTS AND METHODS 

NCA-based recruitment strategy 

Between January 2013 and April 2014, 5411 adults (4095 female) from a total NJR database of 711 

765 procedures (0.76%) had undergone a hip replacement for the recorded indication of hip dysplasia 

and were invited to participate in the screening program (figure 1, and supplementary section 1a.). 

Subsequent screening comprised filtering by self-reported questionnaires for UK European ancestry 

and a childhood history of idiopathic DDH (supplementary section 1.a and table S1). Following 

screening, 1091 individuals confirming both UK European ancestry and idiopathic DDH diagnosed in 

childhood were invited to return by post a saliva sample for DNA extraction and genotyping. Of these, 

907 (803 female) returned a sample. The sex distribution of the responding subjects was similar to that 

of the DDH population in the UK.2 Radiographic validation of the DDH phenotype was conducted using 

a plain pelvic radiograph preceding hip replacement retrieved electronically via the National Data 

Sharing Network (http://www.image-exchange.co.uk/) in a convenience subset of 231 (25%) subjects 

completing saliva return. The age and sex distribution of the validation subset was similar to the 907 

that returned a saliva sample. Radiographic analysis confirmed DDH in 224/231 (97%, supplementary 

section 1.a). Non-DDH cases were excluded from further analysis. Samples from 900 subjects 

proceeded to DNA extraction and quality control. In 834 samples DNA yield was sufficient to progress 

to genome-wide genotyping.  
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The replication cohort comprised 838 children (725 female) from the UK DDH case control consortium 

recruited at 18 English hospitals (supplementary section 1.a and table S2) and 225 adults (220 female) 

with DDH recruited at the Royal National Orthopaedic Hospital. In addition, 66 cases (59 female) from 

the NJR discovery cohort of insufficient DNA yield for genome-wide genotyping were also included in 

the replication cohort. Subject overlap between the discovery and replication populations, and between 

the replication cohorts was excluded using individual patient identifiers and by cross-referencing to the 

NJR dataset. Case duplication was excluded in the discovery cohort at both subject ID and genotype 

quality control stages. 

The control population comprised 8016 participants from the United Kingdom Household Longitudinal 

Study (UKHLS, https://www.understandingsociety.ac.uk/about). A sample of 3364 UKHLS controls 

was included in the discovery stage and an independent sample of 4652 UKHLS controls was used in 

the replication stage at a case:control ratio of ~1:4. The proportion of female controls in the discovery 

stage reflected the distribution in cases. All replication and control participants were of UK European 

ancestry. The study was approved by the National Research Ethics Service in England (NRES 

12/YH/0390, October 30th 2012). All subjects provided written informed consent prior to participation.  

Genotyping, quality control, and association analyses 

DNA from 834 NJR DDH cases and UKHLS controls was genotyped using the Illumina 

HumanCoreExome BeadChip (Illumina, San Diego, USA; supplementary section 1.b and table S3). 

Power was calculated by fixing the sample size to our post-quality control (QC) sample size and gave 

>80% power to detect common variants with moderate effect size at genome-wide significance 

(p=5.0x10-8, supplementary section 1.b and figure S1). Following QC checks at both the sample and 

single nucleotide polymorphism (SNP) level (supplementary section 1.b), 256 867  variants were tested 

using the likelihood ratio test under an additive genetic model for association with DDH in 770 (693 

female) DDH cases and 3364 (3048 female) controls using SNPTEST v2.2.16 

Independent variants (p<1x10-4) (supplementary section 1.b) in the discovery set were selected for 

replication. De novo genotyping for these SNPs in 1129 (1004 female) replication cases was conducted 
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using the iPLEX® Assay and the MassARRAY® System (Agena Bioscience, Inc). Case-control 

association analysis versus 4652 (2527 female) controls was performed under an additive genetic 

model. Finally, a fixed-effects meta-analysis was conducted across the discovery and replication 

datasets, comprising a total of 1899 cases and 8016 controls. Conditional single-variant association 

analyses were used to identify statistical independence. A variant was considered independent of the 

index SNP if the pre- and post-conditioning p-value difference was lower than two orders of magnitude. 

Heritability analysis 

We estimated the heritability of DDH using the genome-wide analysis dataset using genetic complex 

trait analysis (GCTA) and phenotype correlation genotype correlation (PCGC), assuming a DDH 

prevalence of 3.6 per 1000 live births in the UK,2 and using a minor allele frequency (MAF) cut-off of 

0.01 (supplementary section 1.c).   

Fine-mapping 

In order to fine-map the replicating association signals, we imputed variant genotypes locally using 

1000 Genomes Project17 combined with UK10K Project18 data as the reference panel (supplementary 

section 1d.). We then applied a method that assigns a relative “probability of regulatory function” (PRF) 

score among candidate causal variants, reweighting association statistics based on epigenomic 

annotations, and delineating the 95% probability set of likely causal variants (supplementary section 

1.d).  

Gene-based enrichment analyses 

In order to quantify the degree of association each gene has with the phenotype and understand the 

potential functional effects of the identified variants, we used the GWAS results to perform gene-based 

enrichment analyses in MAGMA v1.03 to identify the joint association of all markers in a given gene 

with the phenotype (supplementary section 1.e). 

Genetic overlap with hip OA 
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Polygenic risks scores were created for all genotyped participants to test for shared genetic aetiology 

with idiopathic hip OA. Two independent UK cohorts were used for these analyses: 3266 cases with 

hip OA versus 11 009 controls from the arcOGEN study; and 2396 cases with International 

Classification of Diseases (ICD) 10 coded hip OA versus 9593 controls from the UK Biobank 

(supplementary section 1.f). High-resolution polygenic risk scores were made using evenly spaced p-

value thresholds (Pt) between 0.001 to 0.5, at increments of 0.0001, to produce 4991 risk thresholds.  

Data Availability 

Genome-wide genotype data of the DDH cases and UKHLS controls have been deposited to the 

European Genome-Phenome Archive (www.ebi.ac.uk/ega/home, DDH accession numbers: 

EGAD00010000766 and EGAS00001000916; UKHLS accession numbers: EGAD00010000891 and 

EGAS00001001232) and of the DDH NJR cases to the NJR data archive (www.njrcentre.org.uk). 

 

RESULTS 

The heritable component of DDH 

Using GCTA we found that common-frequency autosomal SNPs explain 55% (±se=6%, p<0.0001) of 

the liability-scale heritability of DDH. The heritability estimate by PCGC was very similar to that 

identified by GCTA (supplementary table S4). The heritability estimate was also similar (54.7±5.8%) 

when the analysis was repeated using sex as a covariate. 

Discovery GWAS 

Genome-wide analysis showed an excess of signals in the discovery case-control population (figure 2). 

A total of 53 SNPs comprising 25 independent signals showed suggestive evidence for association with 

DDH at p<1x10-4 compared to 3 independent variants expected under the null hypothesis of no 

association (binomial p=9.57x10-17, supplementary table S5). Eleven correlated variants reached 

genome-wide significance (p<5.0x10-8) and all reside in the same region. The lead variant, rs143384 
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(effect allele A, effect allele frequency (EAF) 0.60, OR[95%CI] 1.57[1.3-1.77] p=1.72x10-14), is located 

in the 5’ untranslated region of GDF5 (20q11.22). Since DDH is sex-biased toward females, we also 

repeated the analysis using gender as a covariate and found no qualitative difference (supplementary 

table S6).   

Replication  

Replication of the independent signals was conducted in three further DDH populations of UK 

European ancestry, totalling 1129 cases and 4652 UKHLS controls. The variant rs143384 reached 

genome-wide significance in the replication dataset (effect allele A, EAF 0.61, OR 1.37[1.24 to 1.51] 

p=1.33x10-10). Four further SNPs showed nominal association (p<0.05) with the same direction of effect 

as the discovery cohort, compared with 1.35 under the null expectation (binomial test p=0.01, 

supplementary table S7). When the replication analysis was performed excluding the 66 NJR subjects 

that failed genome-wide genotyping QC, the findings were similar (data not shown). 

Meta-analysis 

At meta-analysis, 20 SNPs were associated with DDH with the same direction of effect in both the 

discovery and replication analysis. Three SNPs in the same region of chromosome 20 showed 

association with DDH at genome-wide significance: rs143384 in GDF5 (figure 3A, effect allele A, OR 

1.44[1.34 to 1.56] p=3.55x10-22), rs12479765 in MMP24 (effect allele G, OR 1.33[1.20 to 1.47] 

p=3.18x10-08), and rs2050729 in RMB29 (effect allele G, OR 1.41[1.25 to 1.58] p=1.15x10-08). 

Conditional analysis of rs12479765 and rs2050729 on the lead variant rs143384 attenuated their 

association with DDH, indicating that they were conditionally dependent upon the lead variant. 

rs143384 explained 0.96% of DDH variance on the liability scale (h2
L) and the sibling relative risk ratio 

(λs) attributable to this variant was λs=1.04 (supplementary figure S2). 

Two further independent signals showed evidence of replicating association with DDH, although this 

did not reach genome-wide significance at meta-analysis: rs4740554 (effect allele C, EAF 0.10, OR 

1.30[1.16 to 1.45] p=4.44x10-6) and rs4919218 (effect allele C, EAF 0.31, OR 1.19[1.10 to 1.28] 
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p=4.38x10-6) (figure 3B and 3C, and Table 1). rs4740554 and rs4919218 explained 0.36% and 0.24% 

of phenotypic variance (λs= 1.02 and 1.01), respectively (supplementary figure S2). 

Fine-mapping 

For the GDF5 signal, five variants were included in the 95% probability set of being causal. Among 

these, both rs143384 and rs143383 have high epigenomic scores as they are located in the 5’ UTR of 

GDF5, have high nucleotide sequence conservation, and overlap DNase hypersensitivity and activating 

histone marks. Considering annotations and association statistics p-values together, rs143384 had a 

>99% likelihood of being the causal variant, assuming only 1 variant as causal.  

Gene-based enrichment analyses  

After adjusting for the family-wise error rate (FWER), we found five genes that were associated with 

DDH susceptibility: GDF5, UQCC1, MMP24, RETSAT and PDRG1 (p=9.24x10-12, p=1.86x10-10, 

p=3.18x10-9, p=3.70x10-8 and p=1.06x10-7, respectively; Supplementary table S8). To exclude 

association through GDF5, we repeated the analysis by removing GDF5 and all genes remained 

associated with DDH.  

Shared genetic aetiology with hip OA 

We found little evidence for shared genetic aetiology between DDH and hip OA. The best fit polygenic 

risk score for hip OA in the arcOGEN and ICD-10 coded hip  OA in the UK Biobank datasets explained 

~0.05% and 0.35%, respectively, of the variation in DDH susceptibility (FWER P>0.05,  supplementary 

figure S3).  

 

DISCUSSION  

We used case-ascertainment by NCA database search and postal recruitment to facilitate the largest 

genome-wide association scan for DDH to date. We found that the heritable component of DDH due to 

common autosomal variants is approximately 55%, consistent with the complex nature of the disease. 
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We establish variation within GDF5 on chromosome 20 as robustly associated with DDH susceptibility, 

with the variant rs143384 as the causal signal by fine-mapping, although GDF5 variation makes only a 

small contribution to overall DDH heritability. Through gene-based enrichment analyses we identify 

GDF5, UQCC1, MMP24, RETSAT and PDRG1, as independently associated with DDH susceptibility. 

Previous studies examining the epidemiology of DDH within families using epidemiological linkage 

approaches have demonstrated that heritable factors contribute between 50% and 85% of the total 

liability of disease,3, 19, 20 depending on population ethnicity. Here, we used dense genome-wide 

genotyping data to estimate the heritable risk of DDH amongst unrelated individuals of UK European 

ancestry in the general English population. Our estimate of DDH heritability attributable to variation 

within autosomal chromosomes was broadly similar to the estimates derived from linkage analyses.2 

When the heritability analysis was stratified by chromosome, we found that the X-chromosome 

contributed a similar amount to overall DDH heritability as the autosomes (Supplementary Fig. 4), and 

we identified no individual chromosome X signals. Taken together, these data suggest that although 

DDH is strongly sex-linked, this is not substantially due to variation in genomic DNA. 

The gene GDF5 encodes growth differentiation factor 5 (GDF5), belonging to the transforming growth 

factor beta superfamily.21 GDF5 is required for normal bone and joint development by promoting 

cartilage condensation and increasing the size of the skeletal elements through proliferation within 

epiphyseal cartilage.22 Two GDF5 variants, rs143383 and 143384, have previously shown suggestive 

association with DDH in unreplicated candidate gene studies in Asians and in Europeans.5, 23 Here we 

validate and extend these findings at the genome-wide level and with robust replication. These variants 

are in high linkage disequilibrium (r2=0.82, D'=0.99), and were both directly genotyped in this study. 

Our data implicate rs143384 as the lead variant, with the rs143383 association with DDH being two 

orders of magnitude weaker. Subsequent fine-mapping of the GDF5 locus using Roadmap Epigenome 

annotations with imputation using 1000 Genomes and UK10K Project data also identified rs143384 as 

the likely causal variant. Chen et al,24 have shown that the GDF5 locus contains many separate 

regulatory elements that control expression of the gene at different joint sites, and that these flanking 

regions are large. Interrogation of the GTEx database indicates that rs143384 is an expression 
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quantitative trait locus (eQTLs) for multiple genes across various tissues (supplementary table 9).25, 26 

This annotated function provides novel opportunities for investigation of the role of GDF5 as a 

candidate target for DDH prevention.  

Gene-based enrichment analysis can boost power to identify contributing loci by combining information 

across multiple SNPs co-localised at the gene level. Here, we found associations with the GDF5, 

UQCC1, MMP24, RETSAT and PDRG1 genes. UQCC1 gene encodes a trans-membrane protein 

ubiquinol-cytochrome c reductase complex chaperone, which is structurally similar to the mouse basic 

fibroblast growth factor repressed ZIC-binding protein.27 In humans, polymorphisms in this gene have 

been associated with DDH,10 bone size,28 height,29 and hip axis length.30 MMP24 encodes a member of 

the peptidase M10 family of matrix metalloproteinases (MMPs) involved in the breakdown of 

extracellular matrix in normal physiological processes, such as embryonic development and tissue 

remodelling.31 Polymorphisms within MMP24 have also been associated with height variation in 

childhood.32, 33 RETSAT codes for retinol saturase, an enzyme centrally involved in the metabolism of 

vitamin A.34 Retinoic acid signalling is essential for normal limb bud development, including bone and 

cartilage formation,35 and provides a further candidate target in DDH pathogenesis. 

This study has limitations. The patients recruited in the discovery cohort were adults who had undergone 

a hip replacement for progressive symptoms related to an underlying diagnosis of hip dysplasia, as 

identified through the NJR. To mitigate against misclassification bias in case-ascertainment we 

employed a stepwise filtration approach that subsequently validated with high concordance against 

examination of plain radiographic images. The female-to-male case ratio in our final NJR DDH cohort 

was similar to that expected in the general DDH population in the UK,2 and contrasts with that found 

in idiopathic OA of the hip.36 Previous studies have also demonstrated the contribution of DDH as a 

risk factor for secondary OA,11, 12, 37 and that OA susceptibility genes influence the association between 

hip morphology and OA.15, 38, 39 We therefore examined whether we were simply detecting OA-

associated loci in our DDH discovery cohort, as case identification required NJR registration for a hip 

replacement. Polygenic risk scores derived using independent hip OA cohorts predicted only a small 

amount of the genetic variability in the DDH discovery population, suggesting only limited common 
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genetic aetiology between the diseases. Finally, our replication cohorts mainly comprised independent 

populations of children recruited prospectively with a firm diagnosis of DDH, and in whom the odds-

ratio of association for the primary variant signal was similar to that found in the NJR-discovery sample.  

In summary, the results of this largest study of DDH to date provide a comprehensive picture of its 

complex genetic architecture, the contribution of common variants to its heritability, and establishes the 

first robust DDH genetic locus. We also demonstrate the utility of national clinical audit-based case 

ascertainment and recruitment for genetics and genomics studies using a strategy that is transferrable to 

other complex diseases in which large-scale datasets are held. 
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Figure 1: Recruitment flowchart 
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Figure 2: Manhattan and quantile-quantile plot of the DDH genome-wide association scan. 
Panel A is a Manhattan plot showing the -log10 p values for each variant (y axis) plotted against their 
respective chromosomal position (x axis). The dashed line indicates the genome-wide significance 
threshold (p=5.0×10-8). Green dots represent variants for which p values reached the genome-wide 
significance threshold where red dots illustrate the other two replicating signals. Panel B is a quantile-
quantile plot. The x-axis indicates the expected −log10 p values and the y-axis the observed ones. The 
red line represents the null hypothesis of no association at any locus.   
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Figure 3: Region association plots of the three replicating signals.  Regional association plot of 
rs143384 (20:34025756, panel A), rs4740554 (9:13688437, panel B) and rs4919218 (10:100111392, 
panel C). Each filled circle represents the p value of analysed variants (as -log10 values) plotted against 
their physical position (NCBI Build 37). The p value at the discovery stage and combined discovery 
and replication cohorts is represented by a purple circle and diamond, respectively. The rest variants 
in the region are coloured depending on their degree of correlation (r2) with the index variant 
according to a scale from r2=0(blue) to r2=1(red). Underneath, gene annotations from the UCSC 
genome browser.    
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SNP ID 
(chromosome:position) 

Effect 
Allele/Other 

Allele 

Effect 
Allele 

Frequency
(discovery 

stage)

Discovery 
Odds Ratio 
(95% CI) 

Discovery  
p value 

Replication 
Odds Ratio 
(95% CI) 

Replication 
p value 

Meta-
analysis 

Odds Ratio 
(95% CI) 

Meta-
analysis 
 p value 

rs143384 (20:34025756) A/G 0.60 1.57  
(1.4-1.77)

1.72E-14 1.37  
(1.24-1.51)

1.33E-10 1.44  
(1.34-1.56)

3.55E-22 

rs4740554  (9:13688437) C/A 0.10 1.44  
(1.22-1.71)

4.09E-05 1.20  
(1.03-1.39)

0.01 1.30  
(1.16-1.45)

4.44E-6 

rs4919218 
(10:100111392)

C/T 0.69 1.27  
(1.13-1.43)

6.48E-05 1.14  
(1.03-1.25)

0.0089 1.19  
(1.10-1.28)

4.38E-6 

Table 1: Replicating variants associated with DDH. 
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