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Mechanistic modeling is more predictive in engineering than in biology, but

the reason for this discrepancy is poorly understood. The difference extends

beyond randomness and complexity in biological systems. Statistical tools ex-

ist to disentangle such issues in other disciplines, but these assume normally

distributed fluctuations or enormous datasets, which don’t apply to the dis-

crete, positive and non-symmetric distributions that characterize single-cell

and single-molecule dynamics. Our approach captures discrete, non-normal
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effects within finite datasets and enables biologically significant predictions.

Using transcription regulation as an example, we discover quantitatively pre-

cise, reproducible, and predictive understanding of diverse transcription reg-

ulation mechanisms, including gene activation, polymerase initiation, elonga-

tion, mRNA accumulation, transport, and degradation. Our model-data in-

tegration approach extends to any discrete dynamic process with rare events

and realistically limited data.

Introduction. The ultimate goal of modeling is to integrate quantitative data to understand,

predict, or control complex processes. Useful models may be discovered through mechanistic

or statistical approaches, but success is always limited by the quantity and quality of data and

the rigor of comparison between models and experiments. These issues are largely solved in

engineering, where computer analyses routinely enable the design of extraordinarily complex

systems. Many would argue that predictive modeling in biology is far behind this capability due

to limited experimental data, inescapable randomness or noise, and overwhelming biological

complexity. These concerns have driven rapid single-cell experimental and computational ad-

vances, which have enabled measurement and modeling of individual biomolecules (i.e., DNA,

RNA, and protein) in single cells with outstanding spatiotemporal resolution (1–12). Such ex-

periments have allowed the characterization of many intriguing aspects of biological complexity

and variation (13), while capturing these phenomena with stochastic gene regulation models has

improved understanding of mechanisms and their parameters (14–18).

Despite experimental and computational advances, most biological models still underper-

form expectations. While it is tempting to attribute this failure to “poor models” or “insufficient

data,” a more subtle explanation is that combinations of sufficient data and good models may

fail because they haven’t been integrated properly. Many standard engineering techniques exist

to integrate models with continuous-valued data, but unlike most engineered systems, biologi-
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cal fluctuations are dominated by discrete events. A single molecule of DNA, RNA, or protein

can change the fate of an organism (19–22). The resulting positive and discrete distributions

violate the most basic assumption of most model inference approaches (i.e., that measurement

errors are continuous Gaussian random variables). Moreover, this violation is compounded by

the fact that datasets for single-cell imaging and sequencing are usually too small to invoke the

central limit theorem (CLT). Consequently, standard data-model integration procedures can fail

dramatically. We hypothesize that more exact treatment of discrete biological fluctuations could

solve the data-model integration dilemma and enable precise quantitative predictions (Fig. 1).

To test this hypothesis, we aim to quantify and reduce model uncertainty and bias (Fig. 1A).

We examine the evolutionary conserved Stress Activated Protein Kinase (p38 / Hog1 SAPK)

signal transduction pathway (Figs. 1 and S5), and we quantify its control of transcription mech-

anisms including RNA polymerase transcription initiation and elongation on target genes as

well as mature mRNA export and degradation in Saccharomyces cerevisiae during adaptation

to hyper-osmotic shock (Fig. 1B) (23). We quantify the number of individual mRNA primary

transcripts at the site of transcription, in the nucleus, and in the cytoplasm for multiple genes

using single-molecule fluorescence in situ hybridization (smFISH) (Fig. 1C) (1, 2). We collect

high-resolution data from more than 65,000 cells, and we quantify single-cell spatiotemporal

mRNA distributions that are demonstrably non-normal and non-symmetric. For such distri-

butions, huge data sets would be needed to justify application of the CLT (Fig. 1D). We use

computational analyses to integrate these data with a discrete stochastic spatiotemporal model

(Fig. 1E), and we show how different computational analyses of the same experimental data

and same models can yield vastly different parameter biases and uncertainties (Fig. 1F,G).

We discover that standard single-cell modeling approaches, which assume continuous and

normally distributed fluctuations or enough data to invoke the CLT (24), are not always valid to

interpret finite datasets for single-cell transcription responses (Fig. 1D). These approaches can
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yield surprising errors and poor predictions, especially when mRNA expression is very low. In

contrast, we show that improved computational analyses of full single-cell RNA distributions

can yield far more precisely constrained, less biased, and more reproducible models. We also

discover new and valuable information contained in the intracellular spatial locations of RNA,

enabling quantitative predictions for novel dynamics of gene regulation, including transcription

initiation and elongation rates, fractions of actively transcribing cells, and the average num-

ber and distribution of polymerases per active transcription site, which could not otherwise be

measured simultaneously in endogenous cell populations.

Results. Under osmotic stress, the high osmolarity glycerol kinase, Hog1, is phosphorylated

and translocated to the nucleus, where it activates several hundred genes (23). For two of these

genes (STL1, a glycerol proton symporter of the plasma membrane and CTT1, the Cytosolic

catalase T), we quantified transcription at single-molecule and single-cell resolution (Figs. 1C,

S6, and S7), at temporal resolutions of one to five minutes, at two osmotic stress conditions

(0.2M and 0.4M NaCl), and in multiple biological replicas. We built histograms to quantify the

marginal and joint distributions of the nuclear and cytoplasmic mRNA (Figs. 2D and S6-S9).

We extended a bursting gene expression model (2, 14, 25) to account for transcriptional

regulation and spatial localization of mRNA (Fig. 1C,E) (24). We considered four approaches to

fit this model to gene transcription data: First, we used exact analyses of the first moments (i.e.,

population means) of mRNA levels as functions of time. Second, we added exact analyses of

the second moments (i.e.,variances and covariances). Third, we extended the moments analyses

to include the third and fourth moments. Finally, we used the finite state projection (FSP,

(26)) approach to compute the full joint probability distributions for nuclear and cytoplasmic

mRNA. All four approaches provide exact solutions of the same model, but at different levels

of statistical detail (24). We used each analysis to compute the likelihood that the measured

mRNA data would match the model, and we maximized this likelihood (24). As was the case
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for previous studies (17, 27), we note that the moments-based likelihood computations assume

either normally distributed deviations (first and second methods) or sufficiently large sample

sizes such that the moments can be captured by a normal distribution as guaranteed by the CLT

(third method) (24). In contrast, the FSP approach (fourth method) makes no assumptions on

the distribution shape and has no requirement for large sample sizes.

The four likelihood definitions were maximized by different parameter combinations (Ta-

bles S3 and S4), and the fit and prediction results are compared to the measured mean, variance,

ON-fraction (i.e., fraction of cells with more than 3 mRNA / cell), and distributions versus time

for STL1 and CTT1 (Figs. 2, S6, and S7). The different analyses used the same model, and they

were fit to the exact same experimental data, but they yielded dramatically different results.

When identified using the average mRNA dynamics, the model failed to match the variance,

ON-fractions, or distributions of the process (Fig. 2B-D, left). Fitting the response means and

variances simultaneously (Fig. 2A-B, center) failed to predict the ON-fractions or probability

distributions (Fig. 2C-D, center). In contrast, parameter estimation using the full probability dis-

tribution (Fig. 2, right column and Figs. S6 and S7) matched all measured statistics. Importantly,

the parameters identified using the FSP approach agree quite well with previous studies (18),

which indicates strong reproducibility of both experiments and analyses (Tables S3 and S4) and

provides more confident predictions for new transcriptional mechanisms as discussed below. In

contrast, the moment-based analyses overestimated these rates by multiple orders of magnitude.

We considered three explanations for the failure of moment-based parameter estimation ap-

proaches: (i) the model parameters could be unidentifiable from the considered moments; (ii)

the parameters could be too weakly constrained by those moments; or (iii) the moments anal-

yses could have introduced systematic biases due to a failure of the CLT. To eliminate the first

explanation, we computed the Fisher Information Matrix (FIM) defined by the moments-based

analyses (24). Because the computed FIM has full rank, we conclude that the model should
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be identifiable. If the second explanation were true (i.e., if the moments-analyses had produced

weakly constrained models), then changing the parameters to those selected by the FSP analysis

should have only a small effect on the moment-based likelihood. In such a case, the FSP pa-

rameters would lie within large parameter confidence intervals identified by the moments-based

analyses (i.e., as depicted in Fig. 1F as opposed to Fig. 1G). However, using the experimental

STL1 data, we computed that the FSP parameter set was 102,720 less likely to have been dis-

covered using means, 1014,100 less likely to have been discovered using means and variances,

and 10665 less likely to have been discovered using the extended moments analysis (Table S5).

Thus, we conclude that failure of the moments-based analyses to match the distributions in Fig.

2 cannot be explained by uncertainty alone.

To test the third explanation for parameter estimation failure (i.e., systematic bias), we used

the FSP parameters and generated simulated data for the mean (Fig. 3A), standard deviation

(Fig. 3B), and the ON-fraction (Fig. 3C) versus time for STL1 mRNA under an osmotic shock

of 0.2M NaCl. As shown in Fig. 3A,B, the median of the simulated data sets (magenta) matches

the experimental data (red and cyan) at all times, but at later times (>20 minutes) both are con-

sistently less than the theoretical values (black). This mismatch is due to finite sampling from

asymmetric distributions especially at later time points (Fig. 3D,E). The first two moments anal-

yses, which do not account for this asymmetry, specify a tight and nearly-symmetric likelihood

function (Fig. 3E, magenta lines), which is inconsistent with the broad and highly-asymmetric

likelihood function computed using the FSP (Fig. 3E, blue lines). As a result, these likelihood

functions deleteriously overfit the low mRNA expression at late time points, and resulted in an

excessively confident overestimation of the mRNA degradation rate (Table S3). Conversely, the

extended moments analysis, which allows for excessively large third and fourth moments, is too

poorly constrained by the data (Fig. S10).

To confirm the tradeoff between uncertainty and bias, we applied the Metropolis Hastings
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algorithm (MHA) to analyze parameter variation for the different likelihood functions and to es-

timate parameter uncertainty and bias (Fig. 4A-C) (24). Comparing the parameter variations for

the transcription initiation rate, ki3, and the mRNA degradation rate, γ, illustrates that extend-

ing the analysis from the means to means and variances can affect the parameter identification

bias much more than the parameter uncertainty (Fig. 4A). Moreover, this effect is not always

advantageous; inclusion of variances in the analysis led to substantially increased parameter

bias (compare red and blues ellipses in Fig. 4A and see Figs. 4C and S13). In contrast, analyses

using the FSP consistently reduced both uncertainty and bias for both STL1 and CTT1 analyses

(Figs. 4A-C, S13, S14, and S15A-C).

Having established that different stochastic fluctuation analyses attain different levels of

uncertainty and bias, we asked if more information could be extracted from spatially-resolved

data. Using a nuclear stain, we quantified the numbers of STL1 and CTT1 mRNA in the nucleus

and cytoplasm (24). We then extended the model and our analyses to consider the joint cyto-

plasmic and nuclear mRNA distributions (Fig. S8 and S9). From these analyses, we observed

that spatial data reduced parameter bias for the models, despite the addition of new parameters

and model complexity (Fig. 4A-C, S13-15).

We next explored how well the identified models could be used to predict the elongation

dynamics of nascent mRNA at individual STL1 or CTT1 transcription sites (TS, Fig. 1C). We

quantified the TS intensity for CTT1, and we used an extended FSP model for CTT1 regulation

to estimate the Polymerase II elongation rate to be 63±14 nt/s (24), a value consistent with

published rates of 14-61 nt/s (28, 29). We assumed an identical rate for the STL1 gene, and

we used the FSP model for STL1 gene regulation to predict the STL1 TS activity (Figs. 4D-H).

The spatial (non-spatial) FSP model predicts an average of 6.8 (9.2) full length STL1 mRNA

per active TS, a value that matches well to our measured value of 4.2-7.5 STL1 mRNA per

active TS. However, predictions using parameters identified from moments-based analyses were
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incorrect by several orders of magnitude (Fig. 4D). In addition to predicting the average number

of nascent mRNA per active TS, the FSP model also accurately predicts the fraction of cells that

have an active STL1 TS versus time (Figs. 4E,F) as well as the distribution of nascent mRNA

per TS (Figs. 4G,H).

Discussion. Integrating stochastic models and single-molecule and single-cell experiments

can provide a wealth of information about gene regulatory dynamics (14). In previous work,

we discussed the importance to choose the right model to match the single-cell fluctuation

information and achieve predictive understanding (18). Here we have shown how important

it is to choose the right computational analysis with which to analyze single-cell data. We

showed how model identification based solely upon average behaviors can lead to substantial

parameter uncertainty and bias, potentially resulting in poor predictive power (Figs. 4, S15).

We showed how single-molecule experiments often yield discrete, asymmetric distributions

that are demonstrably non-Gaussian (Figs. 1D, 3D, S6, and S7), and how model extensions

to include hard-to-measure variances and covariances may exacerbate biases (Fig. 4C) leading

to greatly diminished predictive power (Fig. 4D). We stress that this deleterious effect occurs

even for models for which exact equations are known and solvable for the statistical moment

dynamics. For more complex and nonlinear models, where approximate moment analyses are

required, these effects are likely to be exacerbated further. This issue is expected to be even

more relevant in mammalian systems, which exhibit greater bursting (1, 2, 21) and for which

data collection may be limited to smaller sizes (e.g., by increased image processing difficulties

for complex cell shapes or by small numbers of cells, as available from an organ, a tissue from

a biopsy, or for a rare cell type population).

Because most single-cell modeling investigations to date have used only means or means

and variances from finite data sets to constrain models, it is not surprising that many biologi-

cal models fail to realize predictive capabilities. Conversely, full consideration of the single-
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molecule distributions enabled discovery of a comprehensive model that quantitatively captures

transcription regulation with biologically realistic rates and interpretation for transcription ini-

tiation, transcription elongation, and mRNA export and nuclear and cytoplasmic mRNA degra-

dation (Fig. 4I). We argue that the solution is not to collect increasingly massive amounts of

data, but instead to develop computational tools that utilize the full, unbiased spatiotemporal

distributions of single-cell fluctuations. By addressing the limitations of current approaches

and relaxing requirements for normal distributions or large sample sizes, our approach should

have general implications to improve mechanistic model identification for any discipline that is

confronted with non-symmetric datasets and finite sample sizes.

References and Notes

1. A. M. Femino, F. S. Fay, K. Fogarty, R. H. Singer, Science 280, 585 (1998).

2. A. Raj, P. van den Bogaard, S. A. Rifkin, A. van Oudenaarden, S. Tyagi, Nature Methods

5, 877 (2008).

3. S. C. Bendall, et al., Science 332, 687 (2011).

4. P. Hammar, et al., Nature genetics 46, 405 (2014).

5. J. T. Gaublomme, et al., Cell 163, 1400 (2015).

6. N. Battich, T. Stoeger, L. Pelkmans, Cell 163, 1596 (2015).

7. J. D. Buenrostro, et al., Nature 523, 486 (2015).
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Figure 3: Skewed measurements of summary statistics introduce parameter bias errors.
(A) Mean, (B) standard deviation, (C) ON-fraction, and (D) full distributions of STL1 mRNA
versus time for an osmotic shock of 0.2M NaCl applied at time t = 0. Theoretical values are
in black, representative simulated samples of 200 cells each are in gray, median statistics of the
simulated samples are in magenta; and experimental biological replica data are in red and cyan.
(E) CLT-based approximation (magenta) and FSP-based computation (blue) of the likelihood of
the standard deviation at 35 and 45 minutes (945 and 1348 cells, respectively) using the model
identified by the FSP approach. The star denotes the true likelihood of the measured sample
variance. In contrast the χ2 approximation underestimates the likelihood by many hundreds of
orders of magnitude.
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Figure 4: Stochastic and spatial fluctuation information improve parameter estimation and
yield greater predictive power. (A) Ninety percent confidence ellipses for the degradation rate
(γ) and the maximal transcription initiation rate (ki3) using the means only (µ(t), red), means
and variances (µ(t), σ(t), blue), extended moment analyses (4th, magenta), or the full FSP
distributions (P(t), black). Arrows show the effect of adding spatial information to the analyses.
The dashed black lines show the fit parameters for the spatial FSP STL1 model. (B) Total
parameter uncertainty and (C) bias for the four analyses using non-spatial (blue) and spatial
(yellow) analyses. The red regions show the difference between independent MHA chains. (D)
Predictions and experimental data for the average number of nascent mRNA per active STL1
transcription site using each analysis. (E,F) Predicted (blue) and measured (magenta and green
circles) for the fraction of cells with active STL1 TS versus time at (E) 0.2M NaCl and (F) 0.4M
NaCl osmotic shock. (G,H) Predicted (black) and measured (orange, blue, purple) distributions
of nascent STL1 mRNA per TS. (I) Summarized scope of the final model and experimental data,
including quantitative analysis of MAPK induction and translocation, chromatin reorganization,
polymerase initiation and elongation, and mRNA production, transport and degradation.
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