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Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a 

high-throughput manner at low cost, but unbiased isolation of intact single cells from 
complex tissues, such as adult mammalian brains, is challenging. Here, we integrate 

sucrose-gradient assisted nuclear purification with droplet microfluidics to develop a 
highly scalable single-nucleus RNA-Seq approach (sNucDrop-Seq), which is free of 

enzymatic dissociation and nucleus sorting. By profiling ~11,000 nuclei isolated from adult 

mouse cerebral cortex, we demonstrate that sNucDrop-Seq not only accurately reveals 
neuronal and non-neuronal subtype composition with high sensitivity, but also enables 

analysis of long non-coding RNAs and transient states such as neuronal activity-dependent 
transcription at single-cell resolution in vivo.  

 

A fundamental challenge in deciphering cellular composition and cells’ functional states in 

complex mammalian tissues manifests in the extraordinary diversity of cell morphology, size and 

local microenvironment. While current high-throughput single-cell RNA-Seq approaches have 

proved to be powerful tools for interrogating cell types, dynamic states and functional processes 

in vivo 1, these methods require the preparation of intact, single-cell suspensions from freshly 

isolated tissues, which is only practical for easily-dissociated embryonic and young postnatal 

tissues. This requirement poses an even greater challenge for cells with complex morphology 

such as mature neurons. Harsh enzymatic treatment not only favors recovery of easily 

dissociated cell types, but also introduces aberrant transcriptional changes during the dissociation 

process 2. In addition, skeletal and cardiac muscle cells are frequently multinucleated and are 

large in size. For instance, each adult mouse skeletal muscle cell contains hundreds of nuclei and 

is ~5,000 μm in length and 10-50 μm in width 3. Thus, existing high-throughput single-cell 

capture and library preparation methods, including isolation of cells by fluorescence activated 

cell sorting (FACS) into multi-well plates, sub-nanoliter wells, or droplet microfluidic 

encapsulation, are not optimized to accommodate these unusually large cells. Isolating individual 

nuclei for transcriptome analysis is a promising strategy, as single-nucleus RNA-Seq methods 

avoid strong biases against cells of complex morphology and large size 2, 4-6, and can be 

potentially standardized to accommodate the study of various tissues. However, current single-

nucleus RNA-Seq methods rely on fluorescence-activated nuclei sorting (FANS) 4, 5 or Fluidigm 
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C1 6 to capture nuclei, and thus cannot easily be scaled up to generate a comprehensive atlas of 

cell types in a given tissue, much less a whole organism.  

 

An ideal solution to increase the throughput of single-nucleus RNA-Seq is to integrate nucleus 

purification with massively parallel single-cell RNA-Seq methods such as Drop-Seq 7, InDrop 8, 

or equivalent commercial platforms (e.g. 10x Genomics 9). However, single-nucleus RNA-Seq is 

currently not supported on these droplet microfluidics platforms. Inhibitory effects due to 

cellular debris contamination and/or inefficient lysis of nuclear membranes might contribute to 

this failure. Historically, nuclei of high purity can be isolated from solid tissues or from cell lines 

with fragile nuclei by centrifugation through a dense sucrose cushion to protect nucleus integrity 

and strip away cytoplasmic contaminants. The sucrose gradient ultracentrifugation approach has 

been adapted to isolate neuronal nuclei for profiling histone modifications 10, nuclear RNA 11, 

and DNA methylation 11, 12 at genome-scale. To test whether this nuclei purification method 

supports single-nucleus RNA-Seq analysis, we isolated nuclei from cultured cells, as well as 

freshly isolated or frozen adult mouse brain tissues through douncing homogenization followed 

by sucrose gradient ultracentrifugation (Fig. 1a and Supplementary Fig. 1). After quality 

assessment and nuclei counting, we performed emulsion droplet barcoding of the nuclei and 

library preparation with both Drop-Seq and 10x Genomics platforms. While the10x Genomics 

single-cell 3’ solution workflow supports cDNA amplification only from whole cells (possibly 

due to inefficient lysis of nuclear membrane), the Drop-Seq platform yielded high quality cDNA 

and sequencing libraries from both whole cells and nuclei (freshly isolated or frozen samples) 

(Supplementary Fig. 2). These results suggest that nucleus purification and nuclear membrane 

lysis are critical factors for efficient library preparation in single-nucleus RNA-Seq.  

 

We next validated the specificity of sucrose gradient-assisted single-nucleus Drop-Seq 

(sNucDrop-Seq) with species-mixing experiments, using nuclei isolated from in vitro cultured 

mouse and human cells. This analysis indicates that the rate of co-encapsulation of multiple 

nuclei per droplet (~2.6%) is comparable to standard Drop-Seq (Supplementary Fig. 3a).  To 

assess the sensitivity of sNucDrop-Seq, we performed shallow sequencing of cultured mouse 

3T3 cells at either single-cell  (with Drop-Seq: detecting on average 3,325 genes with ~25,000 

reads per cell for 1,160 cells with >800 genes detected) or single-nucleus (with sNucDrop-Seq: 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/154476doi: bioRxiv preprint 

https://doi.org/10.1101/154476


       4 

detecting on average 2,665 genes with ~23,000 reads per nucleus for 1,984 nuclei with >800 

genes detected) resolution (Fig. 1b). With standard Drop-Seq microfluidics devices and flow 

parameters, the throughput of sNucDrop-Seq (1.9%, 1,829 / 95,000 barcoded beads) is 

comparable to that of Drop-Seq (1.5%, 1,160 / 77,000 barcoded beads). Comparative analysis of 

Drop-Seq and sNucDrop-Seq reveals that mitochondria-derived RNAs (e.g. mt-Nd1, mt-Nd2) 

and nucleus-enriched long-noncoding RNAs (e.g. Malat1) were enriched in cytoplasmic and 

nuclear compartments, respectively (Supplementary Fig. 3b). Thus, integrating sucrose gradient 

centrifugation-based nuclei purification with the current Drop-Seq microfluidics device and 

workflow may support massively parallel single-nucleus RNA-Seq. 

 

To demonstrate the utility of sNucDrop-Seq in studying complex adult tissues, we analyzed 

nuclei isolated from adult mouse cerebral cortex. The average expression profiles of single nuclei 

from two biologically independent replicates were well correlated (r=0.993; Supplementary 

Fig. 3c). Out of reads uniquely mapped to the genome (78.0% of all reads), 76.3% of reads were 

aligned to the expected strand of genic regions (25.3% exonic and 51.0% intronic), and the 

remaining 23.7% to intergenic regions or to the opposite strand of annotated genic regions. The 

relatively high proportion of intronic reads is similar to previous single-nucleus RNA-Seq study 

of human cortex (~48.7%) 5, reflecting the enrichment of nascent, pre-processed transcripts in the 

nucleus. Because most exonic (91.4%) and intronic (86.0%) reads were mapped to the expected 

strand of annotated transcripts, we retained both exonic and intronic reads for downstream 

analyses. After quality filtering, we retained 10,996 nuclei (~20,000 uniquely mapped reads per 

nucleus) from 13 animals, detecting, on average, 4,273 transcripts (unique molecular identifiers 

[UMIs]), and 1,831 genes per nucleus (Fig. 1b). After correcting for batch effects, we identified 

highly variable genes, and determined significant principal components (PC) with these variable 

genes. We then performed graph-based clustering and visualized distinct groups of cells using 

non-linear dimensionality reduction with spectral t-distributed stochastic neighbor embedding 

(tSNE) (Methods).  This initial analysis segregated nuclei into 19 distinct clusters (Fig. 1c). 

Each cluster contains nuclei from multiple animals, indicating the transcriptional identities of 

these cell-type-specific clusters are reproducible across biological replicates (Supplementary 

Fig. S4a).  
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On the basis of known markers for major cell types, we identified 10 excitatory neuronal clusters 

(Ex 1-10; Slc17a7+), four inhibitory neuronal clusters (Inh 1-4; Gad1+), and five non-neuronal 

clusters (astrocytes [Astro; Gja1+], oligodendrocyte precursor cells [OPC; Pdgfra+], 

oligodendrocytes [oligo; Mog+], microglia [MG; Ctss+], and endothelial cells [EC; Flt1+]) (Fig. 
1c-d and Supplementary Fig. 4b). We readily uncovered all major subtypes of GABAergic 

inhibitory neurons expressing known canonical markers: Sst (somatostatin; cluster Inh1), Pvalb 

(parvalbumin; cluster Inh2), Vip (vasoactive intestinal peptide; cluster Inh3) and Ndnf (neuron-

derived neurotrophic factor; cluster Inh4) (Supplementary Fig. 5a). For glutamatergic 

excitatory neurons, hierarchical clustering grouped the ten clusters into two major groups (Fig. 
1e), largely corresponding to their cortical layer positions, from superficial (cluster Ex1-5: L2/3 

and L4) to deep (cluster Ex6-10: L5a/b and L6a/b) layers (Fig. 1d and Supplementary Fig. 5). 

Consistent with previous studies 5, 13, 14, we readily annotated anatomical location of each 

excitatory neuronal cluster post-hoc by its expression of known layer-specific marker genes 

(Supplementary Fig. 6a-b). In addition to protein-coding marker genes, we have also identified 

a list of long non-coding RNAs that are specifically expressed in distinct cell clusters (Fig. 1e 
and Supplementary Fig. 5b). For instance, 1700016P03Rik is specifically detected in cluster 

Ex5, and this non-coding transcript acts mainly as a primary transcript encoding two neuronal 

activity-regulated microRNAs (Mir212 and Mir132) 15, 16 (Supplementary Fig. 7), which is 

consistent with the enrichment of other activity-dependent genes (Fos, Arc, Npas4) in this 

excitatory neuronal cluster (Supplementary Fig. 6a), and raises the possibility that Ex5 is 

enriched of activated neurons (see below). The identification of both protein-coding and non-

coding transcripts as cell-type-specific markers highlights the potential of sNucDrop-Seq in 

exploring the emerging role of non-coding RNAs at single-cell resolution in vivo. 

 

Cortical interneurons are highly diverse in terms of morphology, connectivity and physiological 

properties 17. To further annotate these inhibitory neuronal subtypes, we performed sub- 

clustering on the 876 inhibitory neuronal nuclei in our dataset, identifying eight sub-clusters 

(cluster A-H in Fig. 2a). Unlike previous single-cell RNA-Seq analysis that employed pre-

enrichment of cortical inhibitory neurons from transgenic mouse lines 18, sNucDrop-Seq samples 

the nuclei in proportion to cells’ abundance in their native environment, which provides a more 

accurate description of the cellular composition at the transcriptomic level.  This analysis 
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identified Pvalb-expressing subtypes (cluster D and E; n=359/876 nuclei, 41.0%) and Sst-

expressing subtypes (cluster F, G, H; n=304/876 nuclei, 34.7%) as two major groups of cortical 

interneurons (Fig. 2b-d), in accordance with previous observations derived from in situ 

hybridization (ISH)- or immunostaining-based methods that Pvalb- and Sst-positive groups 

account for ~40% and ~30% of interneurons, respectively, in the neocortex 19. Beyond the major 

interneuron subtypes, we identified one Ndnf-expressing subtype (cluster A; n=84/876 nuclei), 

one Vip-expressing subtype (cluster B; n=74/876 nuclei), and one synuclein gamma (Sncg)-

expressing subtype (cluster C; n=55/876 nuclei) (Fig. 2b-d and Supplementary Fig. 8a). On the 

basis of combinatorial expression of known marker genes associated with specific cortical layer 

and developmental origin, interneuron subtypes identified by sNucDrop-Seq parallel those 

identified from previous studies of mouse or human cortex 5, 18, revealing inhibitory neuronal 

heterogeneity in both cortical layer distribution (Supplementary Fig. 8a-b) and the 

developmental origin from subcortical regions of the medial or caudal ganglionic eminences 

(MGE or CGE) (Fig. 2e). Therefore, sNucDrop-Seq is able to resolve cellular heterogeneity and 

quantify cell-type composition at transcriptomic level with high sensitivity, including rare 

interneuron subtypes.  

 

For glutamatergic neurons, unsupervised graph-based sub-clustering of two groups of excitatory 

neurons (upper layers versus lower layers) identified a total of 18 subtypes (Upper Ex 1-11 and 

Lower Ex 1-7; Fig. 3a). We associated each excitatory neuronal sub-cluster with a distinct 

combination of known markers indicative of their superficial-to-deep layer distribution 

(Supplementary Fig. 9a), capturing finer distinctions between closely related subtypes in each 

cortical layer, which is in high concordance with subtypes previously identified in human 5 and 

mouse 14, 18 cortices (Fig. 3b and Supplementary Fig. 9b). Beyond excitatory neuronal subtypes 

defined by cortical layer-specific markers, our analysis also resolved heterogeneity in neuronal 

activation states. In response to an activity-inducing experience, cortical excitatory neurons 

express a complex program of activity-dependent genes 20. Both upper-Ex3 (n=209; 3.1% of 

6,770 nuclei in upper layer sub-clusters) and lower-Ex5 (n=213; 8.1% of 2,642 nuclei in lower 

layer sub-clusters) neurons are specifically associated with high-level expression of activity-

dependent genes (Fig. 3b and Supplementary Fig. 9c), including immediately early genes 

(IEGs) such as Fos, Arc, and Egr1 as well as other activity-regulated transcription factors (e.g. 
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Npas4), genes encoding proteins that function at synapses (e.g. Homer1), and non-coding RNAs 

(e.g. 1700016P03Rik that encodes Mir132). We determined the genes specifically enriched in 

upper-Ex3 (n=160 genes, as compared to other upper-Ex sub-clusters) or lower-Ex5 (n=134 

genes, as compared to other lower-Ex sub-clusters) neurons (Fig. 3c).  Transcriptional signatures 

identified in these two sub-populations are enriched for genes involved in the MAPK signaling 

pathway (e.g. Dusp1; adjusted P=2.67x10-2 for upper-Ex3 sub-cluster), as previously reported in 

low-throughput single-nucleus RNA-Seq analysis of Fos-positive nuclei isolated from the 

hippocampus of adult mice exposed to a novel environment 2.  Together, these results 

demonstrate the utility of sNucDrop-Seq in the identification of transient transcriptional states, 

such as neuronal activation.   

 

In conclusion, sNucDrop-Seq is a robust approach for massively parallel analysis of nuclear 

RNAs at single-cell resolution. Because intact nuclei isolation can potentially be accomplished 

by mechanical douncing and sucrose gradient ultracentrifugation in almost any primary tissue, 

including frozen archived human tissues, sNucDrop-Seq and similar approaches pave the way to 

systematically identify cell-types, reveal subtype composition, and dissect transient functional 

states such as activity-dependent transcription in complex mammalian tissues. 

 

 

 

 

 

 

  

 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/154476doi: bioRxiv preprint 

https://doi.org/10.1101/154476


       8 

ACKNOWLEDGEMENTS 

Z.Z is supported by NIH grant R56MH111719. H.W. is supported by the National Human 

Genome Research Institute (R00HG007982).  

 

AUTHOR CONTRIBUTIONS 

H.W. and Z.Z. conceived the project. H.W., P.H. and E.F. performed experiments and carried out 

data analysis. H.W. wrote the manuscript.  

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/154476doi: bioRxiv preprint 

https://doi.org/10.1101/154476


       9 

References 
  
1. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to 

mechanism. Nature 541, 331-338 (2017). 
2. Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of 

activation. Nat Commun 7, 11022 (2016). 
3. White, R.B., Bierinx, A.S., Gnocchi, V.F. & Zammit, P.S. Dynamics of muscle fibre 

growth during postnatal mouse development. BMC Dev Biol 10, 21 (2010). 
4. Habib, N. et al. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult 

newborn neurons. Science 353, 925-928 (2016). 
5. Lake, B.B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA 

sequencing of the human brain. Science 352, 1586-1590 (2016). 
6. Zeng, W. et al. Single-nucleus RNA-seq of differentiating human myoblasts reveals the 

extent of fate heterogeneity. Nucleic Acids Res 44, e158 (2016). 
7. Macosko, E.Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual 

Cells Using Nanoliter Droplets. Cell 161, 1202-1214 (2015). 
8. Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic 

stem cells. Cell 161, 1187-1201 (2015). 
9. Zheng, G.X. et al. Massively parallel digital transcriptional profiling of single cells. Nat 

Commun 8, 14049 (2017). 
10. Jiang, Y., Matevossian, A., Huang, H.S., Straubhaar, J. & Akbarian, S. Isolation of 

neuronal chromatin from brain tissue. BMC Neurosci 9, 42 (2008). 
11. Mo, A. et al. Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain. 

Neuron 86, 1369-1384 (2015). 
12. Lister, R. et al. Global epigenomic reconfiguration during Mammalian brain 

development. Science 341, 1237905 (2013). 
13. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and 

effectors with high specificity and performance. Neuron 85, 942-958 (2015). 
14. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed 

by single-cell RNA-seq. Science 347, 1138-1142 (2015). 
15. Nudelman, A.S. et al. Neuronal activity rapidly induces transcription of the CREB-

regulated microRNA-132, in vivo. Hippocampus 20, 492-498 (2010). 
16. Aten, S., Hansen, K.F., Hoyt, K.R. & Obrietan, K. The miR-132/212 locus: a complex 

regulator of neuronal plasticity, gene expression and cognition. RNA Dis 3 (2016). 
17. Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 318-326 

(2014). 
18. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell 

transcriptomics. Nat Neurosci 19, 335-346 (2016). 
19. Rudy, B., Fishell, G., Lee, S. & Hjerling-Leffler, J. Three groups of interneurons account 

for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 71, 45-61 (2011). 
20. Ebert, D.H. & Greenberg, M.E. Activity-dependent neuronal signalling and autism 

spectrum disorder. Nature 493, 327-337 (2013). 
 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/154476doi: bioRxiv preprint 

https://doi.org/10.1101/154476


       10 

Figure Legends 

Figure 1. sNucDrop-Seq: a massively parallel single-nucleus RNA-Seq method.  

(a) Overview of sNucDrop-Seq. Step 1, dounce homogenization in lysis buffer is used to disrupt 

cellular membranes; Step2, nuclei are purified from cellular debris through sucrose gradient 

ultracentrifugation; Step3, quality and yield of nuclei is determined by hemocytometer count; 

Step4, nuclei and barcoded beads are co-encapsulated by an emulsion-droplet microfluidic 

device. Red arrows indicate representative nuclei before or after sucrose gradient 

centrifugation.  

(b) Violin plots illustrating number of transcripts (UMIs) detected by sNucDrop-Seq of nuclei 

isolated from mouse 3T3 cells (~23,000 reads per nucleus) and adult mouse cortex (~20,000 

reads per nucleus) or by Drop-Seq of whole cells from 3T3 cells (~25,000 reads per cell). 

Center line: median; circle: mean; limits: first and third quartile; whiskers, ±1.5 IQR. 

Indicated on top are the number of cells or nuclei (>= 800 genes detected), mean number of 

UMIs per cells/nuclei, and mean number of genes per cells/nuclei.  

(c) Two-dimensional spectral t-stochastic neighborhood embedding (tSNE) plot of 11,283 nuclei 

isolated from adult mouse cortex, colored per density clustering and annotated according to 

known cell types. Ex, excitatory neurons; Inh, inhibitory neurons; Astro, astrocytes; OPC, 

oligodendrocyte precursor cells; Oligo, oligodendrocytes; MG, microglia; EC, endothelial 

cells.  

(d) Marker gene expression shown by re-coloring the tSNE plot. Shown is the same plot as Fig. 

1c but with nuclei colored by the expression level of known cell type (e.g. Ex, Inh, Astro, 

Oligo, EC)- or cortical layer (L2/3/4/5/6)-specific marker genes.  

(e) Dendrogram illustrating relatedness of cell clusters, followed by (from left to right) cluster 

identification (ID), cell number per major cell type, UMIs per cluster (mean ± s.e.m.), 

number of genes detected per cluster (mean ± s.e.m.), heatmap showing protein-coding 

marker genes, and heatmap showing long non-coding RNA markers. 

 

Figure 2. sNucDrop-Seq reveals inhibitory neuronal subtypes and composition.  

(a) Spectral tSNE plot of 876 inhibitory neurons, colored according to the results of sub-

clustering (thumbnail: Fig. 1c).  
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(b) Marker gene expression shown by re-coloring tSNE plot. Shown is the same plot as Fig. 2a 

but with nuclei colored by the expression level of known inhibitory neuronal subtype-specific 

marker genes.  

(c) Violin plots showing select marker gene expression for inhibitory neuronal subtypes. Five 

mutually exclusive subtype-specific marker genes are highlighted in red.  

(d) Summary of inhibitory neuronal subtypes identified by sNucDrop-Seq. GABAergic subtypes 

are grouped according to five major classes. Also shown are number of nuclei per subtype 

and representative marker genes for each subtype.  

(e) Heatmap showing select marker genes that distinguish inhibitory neurons originated from 

either CGE or MGE.  

 

Figure 3. Excitatory neuronal subtypes resolve heterogeneity in cortical layer distribution 
and state of neuronal activity.  

(a) Spectral tSNE plots of 6,770 upper and 2,642 lower layer excitatory neurons, colored 

according the results of sub-clustering (thumbnails: Fig. 1c).  

(b) Heatmap for layer-specific markers and neuronal activity-regulated genes showing cortical 

layer identity (L2/3/, L4, L5a/b, L6a/b), excitatory subtypes, and activity-induced gene 

expression.  

(c) Differential expression between activated and inactivated excitatory neurons within upper 

(left) or lower (right) layer sub-clusters. Significant genes (red or blue), genes with p-values 

less than 0.001 and absolute natural log fold changes greater than 0.25. Violin plots showing 

select marker gene expression. #, denotes that the expression of Bdnf is not significantly 

different between active and inactive lower layer excitatory neurons. *, denotes that Epha6 

and Lingo2 were expressed at significantly higher level in inactive lower layer excitatory 

neurons compared to active counterparts.  
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