
Ludicrous Speed Linear Mixed Models for
Genome-Wide Association Studies

Carl Kadie
Microsoft Research

Redmond, WA 98052
carlk@microsoft.com

David Heckerman
Microsoft Research & Human Longevity Inc.

Santa Monica, CA 90402
heckerma@hotmail.com

Abstract

We have developed Ludicrous Speed Linear Mixed Models, a version of FaST-
LMM optimized for the cloud. The approach can perform a genome-wide associa-
tion analysis on a dataset of one million SNPs across one million individuals at a
cost of about 868 CPU days with an elapsed time on the order of two weeks.

Significance: Identifying SNP-phenotype correlations using GWAS is difficult
because effect sizes are so small for common, complex diseases. To address this
issue, institutions are creating extremely large cohorts with sample sizes on the
order of one million. Unfortunately, such cohorts are likely to contain confounding
factors such as population structure and family/cryptic relatedness. The linear
mixed model (LMM) can often correct for such confounding factors, but is too
slow to use even with algebraic speedups known as FaST-LMM. We present a cloud
implementation of FaST-LMM, called Ludicrous Speed LMM, that can process
one million samples and one million test SNPs in a reasonable amount of time and
at a reasonable cost.

Introduction

Identifying SNP-phenotype correlations using genome-wide association studies (GWAS) is difficult
because effect sizes are so small for common, complex diseases. To address this issue, institutions
are creating extremely large cohorts with sample sizes on the order of one million. Unfortunately,
such cohorts are likely to contain confounding factors such as population structure and family/cryptic
relatedness, which leads to inflated type-I errors when analyzed with traditional methods.

The linear mixed model (LMM) can often correct for such confounding factors [1]. Unfortunately,
in its original form, its computational complexity of runtime and memory made it prohibitively
expensive to use. Relatively recently, improvements through algebraic transformations known as
FaST-LMM, have made it possible to scale LMM computations to sample sizes of about 100 thousand
[2,3].

Here, we present a cloud implementation of FaST-LMM, called Ludicrous Speed LMM. Ludicrous
Speed LMM can process one million samples and one million test SNPs in a reasonable amount of
time, at a reasonable cost, and with arbitrarily little memory provided extremes (e.g., testing one SNP
at a time or all SNPs at once) are avoided.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2018. ; https://doi.org/10.1101/154682doi: bioRxiv preprint 

https://doi.org/10.1101/154682


Methods

We begin with a description of linear mixed models and FaST-LMM. The basic idea behind the linear
mixed model is that a single test SNP is regressed on a trait, with K other SNPs acting as covariates.
For reasons that will become clear shortly, we will refer to these covariates as similarity SNPs. Let yi,
si, and Gi = (gi1, . . . , giK) denote the trait, test SNP, and K similarity SNPs for the ith individual,
respectively. Let y = (y1, . . . , yN )T, s = (s1, . . . , sN )T, and G = (GT

1 , . . . ,G
T
N )T denote the

observations of the trait, test SNP, and K similarity SNPs, respectively, across the individuals. Thus,
G is an N × K matrix, where the ijth element corresponds to the jth similarity SNP of the ith
individual. We model the influence of the test SNP and similarity SNPs on the trait as follows:

y ∼ N (1µ+ sβs + Gβ;σ2
eI),

where µ is an offset and 1 is column of ones, βs is the weight relating the test SNP to the trait,
βT = (β1, . . . , βK) are the weights relating the similarity SNPs to the trait, σ2

e is a scalar, andN (.; .)
denotes the multivariate normal distribution.

Taking a Bayesian approach, we assume that each of the βis corresponding to the similarity SNPs are
mutually independent, each having a normal distribution with the same variance

βi ∼ N (0;σ2
g), i = 1, ,K.

Further, we standardize the observations of each similarity SNP across the individuals to have variance
1 (and mean 0) so that, a priori, each SNP has an equal influence on the trait. We similarly standardize
the test SNP.

Averaging over the distributions of the βis, we obtain

y ∼ N (1µ+ sβs;σ2
eI + σ2

gGGT). (1)

The distribution in (1) is a linear mixed model. As we have just shown, it corresponds to a Bayesian
linear regression, also known as L2-regularized linear regression. The distribution also corresponds to
a Gaussian process with a linear covariance or kernel function. The model implies that the correlation
between the traits of two individuals is related to the dot product of the similarity SNPs for those two
individuals, hence the name similarity SNPs. The similarity matrix GGT is known as the Realized
Relationship Matrix (RRM). In general, other similarity measures can be and have been used.

To compute a P value for the test SNPs, the parameters of the model (µ, βs, σe, σg) are first fit with
restricted maximum likelihood (REML). All parameters can be computed in closed form except the
ratio of σ2

g to σ2
e , which is usually (and herein) determined via grid search [2]. Then, an F-test is

used to evaluate the hypothesis βs = 0 [4]. To improve computational efficiency with little effect on
accuracy, rather than fit σ2

g/σ
2
e for each test SNP, we obtain a fit based on distribution (1) with the

test SNP removed, and then use it when fitting the remaining parameters for each test SNP [1].

The expression σ2
g/(σ

2
g + σ2

e) obtained from the REML fit is an estimate of narrow-sense heritability,
a quantity that addresses the important nature-versus-nurture question. When the elements of G are
scaled so that its diagonal sums to N (the expected value of the diagonal), the estimate of narrow-
sense heritability is more accurate [5]. Our implementation of Ludicrous Speed LMM includes this
scaling.

As we mentioned in the introduction, a straightforward implementation of GWAS based on (1) is
computationally inefficient. Namely, P-value computations require manipulations of GGT that scale
cubically with sample size N , yielding an overall runtime complexity of O(MN3) when testing M
SNPs. Thus, the model is infeasible for GWAS with sample sizes greater than 104.

The FaST-LMM algorithm employs algebraic transformations, allowing computations to scale to
sample sizes on the order of 105. FaST-LMM consists of two key transformations. First, if we factor
GGT into the matrix product UDUT, where U is an orthogonal matrix and D is a diagonal matrix
(a procedure known as spectral decomposition), then it can be shown that (1) can be re-written as the
linear regression

UTy ∼ N (µUT1 + βsU
Ts;σ2

eI + σ2
gD). (2)

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2018. ; https://doi.org/10.1101/154682doi: bioRxiv preprint 

https://doi.org/10.1101/154682


That is, the model takes the form of a linear regression after the data is rotated by UT. GWAS based on
(2) can be used to test M SNPs with a runtime complexity of O(MN2). The second transformation
makes use of the fact that when an RRM is used for the similarity matrix, its spectral decomposition
can be replaced by an SVD of G. (With G = UΣVT, GGT = UΣ2UT.) Furthermore, when
the number of similarity SNPs K is less than the sample size N , the SVD of G can be replaced
by a skinny SVD of G (GTG = VΣ2VT yields V and Σ. G = UΣVT yields U by matrix
multiplication.) The resulting model can be used to test M SNPs with a runtime complexity of
O(MNK).

The condition K < N can often be satisfied, because linkage disequilibrium allows us to build G
from a subset of available SNPs while still maintaining control of type-I error. In practice, K should
be chosen so that there is no visible inflation in the resulting quantile-quantile QQ plots of actual
P values versus expected P values under the null hypothesis. A practical approach to identifying a
suitable value for K is to start with a small value, and then increase it until no inflation is observed.
SNPs should be selected such that any two adjacent SNPs are roughly equally correlated.

There is one important remark that should be made before we move to a description of our improve-
ments. From the Bayesian-linear-regression formulation of the linear mixed model, it is clear that the
test and similarity SNPs should be disjoint. Otherwise, we would be conditioning on the SNP we are
trying to test. Moreover, due to linkage disequilibrium, we should avoid the use of similarity SNPs
that are near the test SNP. Doing otherwise has been termed proximal contamination [2]. In practice,
when testing SNPs on a given chromosome, G is typically built with similarity SNPs from all but
that chromosome [2]. We employ this practice here.

Improvements to FaST-LMM: Ludicrous Speed LMM

Here, we describe Ludicrous Speed LMM, a cloud implementation of FaST-LMM including improve-
ments of parallelization, block decomposition, and multithreading. We describe the improvements
across the stages of analysis, partitioned as follows. For concreteness, we assume that we are
analyzing human autosomal chromosomes with test SNPs appearing in each of the 22 chromosomes.

• Stage 0, G: Read G0 (the pre-standardized similarity SNPS), standardize them, regress out
any covariates, and output G.

• Stage 1, GTG: Compute GTG.
• Stage 2, SVD: For each chromosome, remove the entries of GTG corresponding to the

chromosome, and compute the singular value decomposition (SVD) on the remaining
product.
• Stage 3, PostSVD: For each removal, compute the corresponding rotation matrix U, and

identify the optimal ratio of σ2
g to σ2

e .
• Stage 4, TestSNPs: For each test SNP, read its data, standardize the SNP, regress out

covariates, use the appropriate U, and compute the P value for the SNP.

We optimized stage 0 by (1) reading selected SNPs in batches to keep the memory use arbitrarily
small, (2) reading and standardizing SNPs on multiple processes, and (3) computing the sum of
squares across individuals for each similarity SNP. The result of step 3 is a length K vector, used
to scale G in the SVD step (see below). Calculating the vector here, but using it later, allows us to
create just a single G, instead of needing to create 22 G matrices, one for each chromosome removal.
We write G to disk as a two-dimensional array of doubles. It can be accessed via memory mapping
or by streaming in blocks. In later stages, we will see how it can be used without loading all of it in
memory.

We optimized stage 1, the computation of GTG, by (1) distributing the calculation to compute it in
blocks, (2) using a tree copy to put the whole G file on each compute node on a solid-state drive
(SSD), (3) tree scaling, that is allocating compute nodes only when there is a source for them to tree
copy from, and deallocating when there is no more work for a node to do, (4) using sub-blocks for
the computation of each block (allowing arbitrarily little memory to be used), and (5) doing the local
calculations via multithreaded C++ (with one thread reading from the SSD and the others multiplying,
yielding a CPU bounded procedure). Tree scaling reduces our compute costs with only minor effects
on the elapsed compute time.

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2018. ; https://doi.org/10.1101/154682doi: bioRxiv preprint 

https://doi.org/10.1101/154682


Table 1: CPU use per stage.

Stage CPU days
Stage 0, G 1
Stage 1, GTG 12
Stage 2, SVD 9
Stage 3, PostSVD 19
Stage 4, TestSNPs 827
Total 868

We optimized stage 2, the computation of the SVDs, by (1) distributing the computations across 22
compute nodes, one for each chromosome, (2) computing the SVDs using LAPACK’s divide-and-
conquer algorithm, and (3) after computing the SVD, using the sum of squares vector created in stage
0 to adjust the results to match the scaling we would have obtained had we operated on the scaled G
matrix. Regarding step 2, the LAPACK algorithm scales as N2.8, and MKL provides an optimized,
multithreaded version of it. The default MKL version doesn’t work because its integer indexes are
too small, but the MKL ILP64 version works well.

We optimized stage 3 by (1) using tree copy and tree scaling, now to get G on each compute node on
an SSD, (2) accessing G in blocks to make memory use arbitrarily small, and (3) using multithreaded
matrix multiplication for high CPU utilization.

The computations in stage 4 are dominated by the multiplication of the test SNPs by UT. We
optimized this multiplication by (1) dividing the test SNPs into blocks and distributing the work for
each block across compute nodes, (2) keeping each U file in separate cluster storage so that all 22
files can be downloaded to their first compute node with little interference with the others, using tree
copy and tree scaling for each chromosome so that each compute node needs only one of the 22 U
files (each such file is large, on the order of 400 GB), (3) using sub-blocks to avoid large memory use
as before, and (4) doing the local calculations via multithreaded C++ so that the calculations are CPU
bound. Note that each compute node needs only a small portion of the test SNPs and so downloads
only that small portion.

Generation of data for testing

As we did not have access to data from a large cohort for testing, we generated synthetic data. One
million SNPs were generated across one million samples with an allele-frequency distribution taken
from human data. The SNPs were assigned to chromosomes in proportion to human DNA. Traits
were generated at random with mean 2/3 and a standard deviation of 3. Two covariates were generated
at random, each with mean 1.5 and a standard deviation of 2.

Results

We applied Ludicrous Speed LMM on the synthetic data set using up to 115 compute nodes on an
Azure cluster with D15v2 compute nodes (20 processors each). 50,000 similarity SNPs were used.

Total cluster storage was about 10 TB. The largest memory use on a single node was 140 GB. Total
computation time (not counting node startup and monitoring) was 868 CPU days. Table 1 shows
CPU use per stage. Figure 1 shows the CPU use per task. Generally, the cost of each chromosome is
proportional to its size. The exceptions were caused by failures requiring partial restarts. In terms of
elapsed time, the run took 19 days, but would have taken 9 days with no restarts. If 1000 nodes had
been used without restarts, the run would have taken 5 days, and the CPU cost would have increased
only 9% due to copying large files to more machines.

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2018. ; https://doi.org/10.1101/154682doi: bioRxiv preprint 

https://doi.org/10.1101/154682


Figure 1: CPU use per task.

Summary

We have developed Ludicrous Speed LMM, a version of FaST-LMM optimized for the cloud. Using
50,000 similarity SNPs, the approach can analyze a dataset of one million test SNPs across one
million individuals at a cost of about 868 CPU days with an elapsed time on the order of two weeks.

If you are interested in using Ludicrous Speed LMM, please mail genomics@microsoft.com with
“GWAS” in the subject line.

References

[1] Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple
levels of relatedness. Nat. Genet. 38, 203–8 (2006).

[2] Lippert, C. et al. FaST linear mixed models for genome-wide association studies. Nat. Methods 8,
833–5 (2011).

[3] Widmer, C. et al. Further Improvements to Linear Mixed Models for Genome-Wide Association
Studies. Sci. Rep. 4, 6874 (2014).

[4] Kang, H. M. et al. Efficient control of population structure in model organism association mapping.
Genetics 178, 1709–23 (2008).

[5] Lippert, C. Personal communication (2017).

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2018. ; https://doi.org/10.1101/154682doi: bioRxiv preprint 

https://doi.org/10.1101/154682

