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Abstract

Binding of peptides to Major Histocompatibility Complex (MHC) proteins is a critical step in immune

response. Peptides bound to MHCs are recognized by CD8+ (MHC Class I) and CD4+ (MHC Class II)

T-cells. Successful prediction of which peptides will bind to specific MHC alleles would benefit many

cancer immunotherapy appications. Currently, supervised machine learning is the leading computational

approach to predict peptide-MHC binding, and a number of methods, trained using results of binding

assays, have been published. Many clinical researchers are dissatisfied with the sensitivity and specificity

of currently available methods and the limited number of alleles for which they can be applied. We

evaluated several recent methods to predict peptide-MHC Class I binding affinities and a new method

of our own design (MHCnuggets). We used a high-quality benchmark set of 51 alleles, which has been

applied previously. The neural network methods NetMHC, NetMHCpan, MHCflurry, and MHCnuggets

achieved similar best-in-class prediction performance in our testing, and of these methods MHCnuggets

was significantly faster. MHCnuggets is a gated recurrent neural network, and the only method to

our knowledge which can handle peptides of any length, without artificial lengthening and shortening.

Seventeen alleles were problematic for all tested methods. Prediction difficulties could be explained by

deficiencies in the training and testing examples in the benchmark, suggesting that biological differences

in allele-specific binding properties are not as important as previously claimed. Advances in accuracy and

speed of computational methods to predict peptide-MHC affinity are urgently needed. These methods

will be at the core of pipelines to identify patients who will benefit from immunotherapy, based on

tumor-derived somatic mutations. Machine learning methods, such as MHCnuggets, which efficiently

handle peptides of any length will be increasingly important for the challenges of predicting immunogenic

response for MHC Class II alleles.

Author Summary

Machine learning methods are a popular approach for predicting whether a peptide will bind to Major

Histocompatibility Complex (MHC) proteins, a critical step in activation of cytotoxic T-cells. The input

to these methods is a peptide sequence and an MHC allele of interest, and the output is the predicted

binding affinity. MHC Class I and II proteins bind peptides of 8-11 amino acids and 16-26 amino acids

respectively. This has been an obstacle for machine learning, because the methods used to date can only
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handle fixed-length inputs. We show that a recently developed technique known as gated recurrent neural

networks can handle peptides of variable length and predict peptide-MHC binding as well or better than

existing methods, at substantially faster speeds. Our results have implications for the hundreds of MHC

alleles that cannot be predicted with current methods.

Introduction

The presentation of peptides bound to major histocompatbiity complex (MHC) proteins on the surface of

antigen-presenting cells and subsequent recognition by T-cell receptors is fundamental to the mammalian

adaptive immune system. Recent advances in cancer immunotherapy have highlighted the need for

improved understanding of which peptides will bind to MHC proteins and generate an immune response

[1], [2], [3], [4]. In particular, peptides that harbor somatic mutations specific to a patient’s tumor, known

as neoantigens, can inform treatment [5] [6]. Because experimental characterization of peptide-MHC

binding is costly and time-consuming, computational researchers have been working for decades on in

silico tools to predict peptide-MHC affinities [7]. Approaches have included sequence-based profiles [8] [9],

structure-based predictions [10], generative probabilistic models [11], and machine learning [12] [13] [14].

Neural network supervised machine learning methods are the most widely-used technique and have

been shown to outperform other methods in multiple studies [15] [16] [17]. However, many researchers

remain dissatisfied with the available in silico peptide-MHC binding predictors for purposes of neoantigen

discovery, particularly in a clinical setting [18] [19].

Neural networks were originally modeled on the human brain. They consist of connected units,

organized into layers. Theoretically, given enough layers and units, they can act as universal function

approximators [20]. However, as the number of units increases, they become prone to overfitting (reviewed

in [21]). Most recently, deep learning research has introduced innovative network architectures and

regularization techniques, allowing for training of very deep and wide networks to approximate complex

functions, with reduced risk of overfitting. Given sufficient training data, deep architectures outperform

other methods in many domains [22]. They are now widely used in robotics, self-driving vehicles, sentiment

classification, machine translation, and user-based recommendation systems [23] [24] [25] [26] [27].

In this work, we rigorously assessed the performance of the most widely-used and several recently

published machine learning methods to predict peptide-MHC binding: NetMHC [28], NetMHCpan [29],
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MHCflurry [30], SMMPMBEC [15], HLA-CNN [13], and a new method designed by us called MHCnuggets.

The methods include standard neural networks, a Bayesian matrix method, and deep learning methods.

Evaluation was done on a carefully designed and previously published benchmark set of immuno-fluorescent

binding experiments for diverse peptide-MHC I allele pairs [16], derived from the IEDB database [31].

The benchmark set was cleaned for redundancy, using a protocol designed by the MHCflurry team.

Our results indicate that four methods: NetMHC, NetMHCpan, MHCflurry, and our new method

MHCnuggets have best-in-class prediction performance, and of these methods MHCnuggets was substan-

tially faster. MHCnuggets is a gated recurrent neural network, which can handle peptides of any length.

This is a methodologically important advance, because current machine learning methods must either

artificially shorten or lengthen peptides, or train a separate classifier for each peptide length. These

strategies will become intractable as the field expands to the important problem of handling MHC Class

II alleles [32], which bind peptides of highly variable lengths.

MHC proteins are highly polymorphic, and there are thousands of MHC Class I alleles, each with a

different peptide binding surface. While there are tens of thousands of experimentally characterized binding

affinities in the benchmark set, they are distributed unevenly across the alleles. For the most common

alleles, particularly those associated with European ancestry, there are as many as 9000 characterized

peptides, while for others there may be as few as 100. When we stratified prediction performance by

individual alleles, performance was seen to vary widely by allele. Most of the variance in prediction

performance could be explained by data-driven differences between alleles in the benchmark set: the

number of training examples, imbalance between binders and non-binders in training and test sets, and

sequence diversity of the experimentally characterized peptides in the training set. This result contradicts

the previously published hypothesis that differences in prediction performance are primarily due to

biochemical differences between allele-specific peptide binding properties [33].

Results/Discussion

Prediction of peptide-MHC Class I binding affinities

We compared five previously published prediction methods and a new method of our own design. Predictors

were rigorously assessed by measuring their performance on experimental IC50 measurements for peptide-

MHC pairs, covering 51 alleles [16]. We selected the 51-allele benchmark because it is more informative
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K-Tau F1 AUC
MHCnuggets 0.589 0.810 0.931
NetMHC 0.588 0.808 0.932
MHCflurry 0.587 0.785 0.933
NetMHCpan 0.584 0.803 0.933
SMMPMBEC 0.578 0.791 0.921
HLA-CNN 0.480 0.750 0.874

Table 1: Prediction performance of the six tested methods. Three metrics were applied.
Continuous-valued predictions of peptide-MHC binding affinity were assessed wih Kendall-Tau cor-
relation (K-Tau). Classifications of peptides as binders or non-binders (at IC50 threshold of 500nM) were
assessed with F1 score and AUC (Methods and Materials). The best-peforming method according to each
metric is highlighted in bold.

than one based on fewer MHC alleles. Machine learning methods must be evaluated by their ability to

make correct predictions on new data, which requires that examples are separated into non-overlapping

training and test sets. The predictors were trained on a set of peptide-MHC pairs with no overlap to

the test set. To the best of our ability, the predictors were trained on the same peptide-MHC pairs, but

NetMHC and NetMHCpan do not make their training software available, so we used their self-reported

results. These methods have been previously reported to augment their training sets with additional

proprietary data, beyond what is in the benchmark training set used in this work [16, 30], so their

self-reported performance estimates may be overly optimistic.

We found that MHCnuggets, NetMHC, MHCflurry, and NetMHCpan had the best overall prediction

performance (Table 1). Three metrics were applied. Continuous-valued predictions were assessed with

the Kendall-Tau coefficient, which measures correlation of predicted and experimental IC50 values. The

continuous values were thresholded to produce a classification for each peptide (binder or non-binder).

We used an IC50 threshold of 500nM (binder ≤ 500nM), for which there is strong biological support [34].

The classifications were assesed with the F1 score and area under the ROC curve (AUC). The F1 score

measured precision and recall at the IC50 500nM threshold, giving equal weight to each. The AUC metric

was more forgiving, because it considered all possible thresholds, and a predictor can have good AUC

based on its classification at biologically uninformative thresholds. By considering all three metrics, we

produced a more comprehensive assessment than by using only one. However, Kendall-Tau and F1 scores

provide more stringent assessments of prediction performance than AUC.

To further compare the predictions of the tested methods, we produced a list of peptide-MHC pairs,

ranked by each method’s predicted binding affinities. The ranked predictions were strikingly correlated
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Figure 1: Spearman rank correlation of predicted peptide-MHC binding affinities by six
methods

(Spearman rank correlation ≥ 0.9 for all method pairings, with the exception of HLA-CNN) (Figure 1).

Given that the methods used different training algorithms and network architectures, the high rank

correlation on the level of individual predictions was surprising. This result means that ranking of

peptide-MHC affinities is similar among the best methods identified by us. If predictors are used only to

rank peptides, any of these methods will produce equivalent results. However, the methods’ classification

of peptides as binders or non-binders will not necessarily yield equivalent results.

Convolutional neural networks (CNNs), a popular deep learning technique did not do well in our

assessment. HLA-CNN had the lowest predictive performance and the lowest Spearman rank correlation

with other methods. In addition, CNNs developed by our group did not perform as well as other neural

network architectures (Supplementary Information). Peptide-MHC binding is highly position-sensitive

[35], while CNNs were designed to handle tasks where position invariance is important. For example,

they excel at object detection, where the same object might be present at different locations in an image.

In contrast, a valine amino acid residue at position six of a peptide may have very different impact on

binding than one at postion nine. Our results suggest that CNNs are not well suited to the problem of

peptide-MHC binding.

Finally, we assessed the speed of each method at the same prediction task. We computed the runtime

for each method to predict the binding affinities of all peptide-MHC pairs in the test set (163,898), with

respect to a single MHC allele (HLA-A*02:01). Each run was repeated five times and averaged. Runtimes

varied substantially (Table 2). SMMPMBEC had the best runtime, followed by HLA-CNN. MHCnuggets

was substantially faster than MHCflurry, NetMHC, and NetMHCpan, and NetMHCpan was the slowest

method by a large margin. Timing was done on a single compute node containing 2 Intel Xeon E5-2680v3

(Haswell) processors running at 2.5GHz, with 12 cores and 128 GB RAM.

We estimated how these runtime differences would scale to an application in which a cohort of cancer

patients was evaluated for predicted neoantigens, based on somatic mutations called from whole-exome

sequencing. As an example, we considered, the head and neck cancer (HNSC) samples in the Cancer

Genome Atlas [36] (495 samples as of June 15, 2017). For each sample, there are on average 4128 candidate
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Method Test set runtime [sec] Estimated TCGA HNSC runtime [min]
SMMPMBEC 1.25±0.14 1.56
HLA-CNN 9.82±0.083 12.24
MHCnuggets 22.76±0.50 23.38
MHCflurry 49.12±1.33 61.24
NetMHC 80.89±10.3 100.85
NetMHCpan 282.58±18.64 352.29

Table 2: Runtime analysis. Average runtime for each predictor on peptides in the test set and estimated
of the runtime on the Cancer Genome Atlas head and neck cancer samples.

Figure 2: Prediction performance for 51 MHC Class I alleles. Hierarchically clustered heat map
of methods and alleles shows performance by Kendall-Tau correlation (high=red, low=blue). The alleles
separate into a group for which all methods except HLA-CNN perform well (top two-thirds of the rows)
and those for which none peform well (bottom one-third of the rows). Raw Kendall-Tau correlations are
in Data S1.

peptides (considering all possible 8-11 length windows around each somatic missense mutation) and six

potential MHC Class I alleles (3 loci, possibly all heterozygous).

We did not include two recent methods (sNebula [37], PSSMHCpan [38]), because they have not made

their training software available or published self-reported results on the benchmark test set.

Allele-specific differences in in silico prediction performance are largely data-

driven

Prediction performance varied substantially by MHC allele. Kendall-Tau correlations for the HLA-A*25:01,

HLA-A*80:01, HLA-B*18:01, and HLA-B*45:01 alleles were particularly low, while those for H2-Db,

HLA-A*02:03, HLA-B*15:01, HLA-A*02:02, HLA-A*29:02, HLA-A*02:01, HLA-A*68:02, HLA-A*03:01,

and HLA-A*11:01 were high (Figure 2, Data S1). There were a few examples where one of the methods

had superior performance for a particular allele (NetMHCpan F1 score for HLA-A*25:01, MHCnuggets F1

score for HLA-B*08:02). More strikingly, in Figure 2, the alleles could be divided into two groups, 34

for which all the methods performed well (except for HLA-CNN) (top two-thirds of the rows) and 17 for

which none performed well (bottom one-third of the rows).

We considered whether properties of the data used to train and test the methods could explain the

variation in prediction performance for different MHC Class I alleles. ANOVA comparison of nested
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linear regression models was used to assess the variance in prediction performance. Given the lack of

correlation between HLA-CNN and the other methods coupled with its weak prediction performance, it

was not included in the analysis. Using Kendall-Tau correlation or F1 score as the response variable, we

identified several significant covariates (p<0.05). These were the number of training examples (peptides

with measured binding affinities) for each allele; imbalance between binder and non-binder examples in

the training or test sets; and peptide sequence diversity in the training examples (measured by network

modularity). Details are in Materials and Methods.

Our results suggest that properties of the training and test data explain a large proportion of the

variance among performance of methods across different MHC Class I alleles. For performance measured

by Kendall-Tau correlation, 69.2% of the variation across alleles was explained by test examples imbalance

(65.4%, p=4.8e-59) and number of training examples (+3.8%, p=6.8e-08). For performance measured

by F1 score, 60.9% of the performance variation was explained by training example imbalance (40.1%,

p=2.1e-29), number of training examples (+9.3%, p=1.17e-10), binder peptide sequence diversity in the

training examples (+9.3%, p=1.6e-06), sequence diversity of all peptides in the training examples (+4.5%,

p=4.53e-05), and test examples imbalance (+4%, p=1.03e-6). Choice of prediction method did not explain

any additional variance in performance.

It has been previously suggested that allele-specific biochemical properties of peptide-MHC complexes

were responsible for alleles whose peptide affinities are not well predicted [33]. Given the ANOVA results

presented here, it is more likely that differences in prediction performance are data-driven. We consider

this to be an optimistic conclusion, because it suggests that as larger and more diverse sets of peptides

are experimentally characterized, with respect to more MHC alleles, prediction methods will substantially

improve.

Materials and methods

Data collection

The Immune Epitope Database (IEDB) [31] provides a large public set of experimentally characterized

peptides and peptide-MHC binding affinities. Database entries were curated from published literature,

and the majority of affinities were calculated based on immunofluorescent assays. These affinities are

represented as an IC50 value, the half-maximal inhibitory concentration in nano-molar (nM) units of
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peptide to MHC molecules. A total of approximately 250,000 examples from immunofluorescent assays

was available as of May 2017, spanning multiple mammalian and avian species, and 740 MHC alleles, of

which 459 are MHC Class I.

For purposes of benchmarking in silico peptide-MHC Class I binding predictors, Kim et al. generated

a new dataset from IEDB, partitioned into training and test sets [16]. The dataset was further pro-

cessed by a shell script [30] and available at https://github.com/hammerlab/mhcflurry/tree/master/

downloads-generation/data_kim2014, that removed any peptide in the test set with identical length

and ≥ 80% sequence identity to a peptide in the training set. The resulting benchmark contains 106 unique

MHC alleles and 137,654 IC50 measurements, published prior to 2009 (training set) and 51 unique MHC

alleles with 26,888 IC50 measurements, published from 2009-2013 (test set). Two alleles (HLA-B*46:01,

HLA-B*27:03) did not contain any peptides defined as binders in this work (IC50<500nM) and were

dropped from the analysis. All peptides in the benchmark set consist of 8-11 amino acid residues.

MHCnuggets

MHCnuggets uses a gated recurrent unit neural network architecture (GRU) [39] and is trained on

IC50 values from immuno-fluorescent binding experiments for peptide-MHC Class I pairs. Peptides are

represented to the network as a series of amino acids; each amino acid is represented as a 21-dimensional

smoothed, one-hot encoded vector (0.9 and 0.005 replace 1 and 0). The GRU accepts inputs of any length,

so no cutting or padding of peptides is needed.

A separate network was trained for each MHC allele, and a transfer learning protocol (Figure S1)

was applied. First, we trained a network for the allele with the largest number of training examples

(HLA-A*02:01). This trained network contained approximately 21,000 weight parameters. The weights

were used to initialize and train the networks for all other MHC alleles. Next, we assessed the prediction

performance of each network on the training examples for each of the alleles. For each allele, if the network

that performed best was not the HLA-A*02:01 network, we did a second round of training, with the best

performing network’s weights used in the intialization step (Figure S2). The prediction performance for

alleles in the benchmark test set consistently improved when transfer learning was applied (Figure S3).

All networks were implemented with the Keras python package (TensorFlow back-end) [40] [41]. Each

network has a fully connected layer of 64 hidden units and a final output layer of a single sigmoid unit,

related to the predicted binding affinity as y = max(0, 1 − log50KIC50). Networks were trained for 200
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epochs, using backpropagation with the Adam optimizer [42], and a learning rate of 0.001. Regularization

was performed with dropout and recurrent dropout [43] probabilities of 0.2. The number of hidden units,

dropout rate [44], and number of training epochs was estimated by three-fold cross-validation on the HLA

allele with the largest number of entries (HLA-A*02:01).

MHCnuggets software is available at https://github.com/KarchinLab/mhcnuggets.

Comparison metrics

Kendall-Tau correlation

The Kendall-Tau correlation is defined as

τ =
nc − nd

(n0 − n1)(n0 − n2)
(1)

where nc is the number of concordant pairs, nd is the number of discordant pairs, and n0, n1, and n2 are

given by Equations 2, 3, 4.

n0 = n(n− 1)/2 (2)

n1 =
∑
i

ti(ti − 1)/2 (3)

n2 =
∑
j

uj(uj − 1)/2 (4)

where n is the total number of experimental and predicted binding affinity pairs, ti is the number of tied

values in the ith group of tied experimental affinities, and uj is the number of tied values in the jth group

of tied predicted affinities.

F1 score

The F1 score is defined as

F1 =
2 ∗ (precision ∗ recall)

(precision+ recall)
(5)

where precision = number of correctly predicted binders
total true binders and recall = number of correctly predicted binders

total peptides scored .
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Area under the receiver operating characteristic curve

The true positive rate (precision) and false positive rate (number of non-binders predicted as binder
number of true non-binders ) is computed

at each possible score threshold, and the final metric is the area under the resulting curve.

Allele-specific performance covariates

For each of the 51 MHC Class I alleles in the benchmark test set, we calculated the following covariates: the

number of training examples n, the imbalance between binders and non-binders in the training examples

nb

nnb
where nb is the number of binder training examples ≤ 500nM and nnb is the number non-binders >

500nM (in practice we use abs(ln( nb

nnb
)) to handle cases where nb > nnb), the sequence diversity of the

training example peptides (calculated as network modularity as described below), the number of test

examples, and the imbalance between binders and non-binders in the test examples. The ANOVA R

package was utilized to measure the variance in prediction performance of the tested methods explained by

each covariate, using nested linear regression models and with either F1 score or Kendall-Tau correlation

as the response variable. Covariates were added to each model with a greedy maximization of variance

algorithm, in which the covariate that increased the variance the most at each iteration was added to the

model, if it had a p-value < 0.05. HLA-CNN was not included in the analysis (as described in Results).

Network analysis of peptide diversity

We constructed a network for each of the 51 MHC Class I alleles in the benchmark test set. The nodes

of these networks were the peptide sequences found in the training set of each allele. Two nodes were

connected by an edge if the sequence identity between the peptides was > 0 (i.e., they shared at least one

identical amino acid residue at the same position). Edges were weighted by sequence identity (normalized

by peptide length). Peptides were trivially aligned by cutting and padding them to length nine, as

described in (MHCnuggets). Community detection was performed with the fast unfolding algorithm

[45], as implemented by the community_multilevel function in igraph. Once nodes were assigned to

communities, the weighted modularity of the community assignment was calculated as:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj) (6)
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where Aij is the weight of the edge between i and j, ki =
∑

j Aij is the sum of the weights of the edges

associated with vertex i, ci is the community to which vertex i is assigned, δ is an indicator function such

that δ(u, v) = 1 if u = v and is 0 otherwise, and m = 1
2

∑
ij Aij .
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Figure 1: Spearman rank correlation of predicted peptide-MHC binding affinities by six
methods
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Figure 2: Prediction performance for 51 MHC Class I alleles. Hierarchically clustered heat map
of methods and alleles shows performance by Kendall-Tau correlation (high=red, low=blue). The alleles
separate into a group for which all methods except HLA-CNN perform well (top two-thirds of the rows)
and those for which none peform well (bottom one-third of the rows). Raw Kendall-Tau correlations are
in Data S1.
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Supplementary Information

Tested methods to predict peptide-MHC Class I binding affinities

NetMHC/NetMHCpan

NetMHC [28] is a single-layer fully connected neural network that encodes nine amino acid residue peptides

with a 378-length input vector, which incorporates both a smoothed one-hot encoding (0.9 and 0.05

replace 1 and 0) and a BLOSUM-62 encoding of each amino acid. To accommodate peptides that are

shorter or longer than nine residues, contiguous padding or cutting operations are applied at every possible

position. When padded or cut versions of the same peptide receive different predicted binding affinities,

the strongest affinity is selected. Separate networks are trained for each MHC allele.

NetMHCpan [29] is also a single-layer fully connected neural network that encodes both peptide and

polymorphic residues of the relevant MHC allele. It uses the same smoothed one-hot plus BLOSUM-62

encoding and padding/cutting protocol as NetMHC. A single network is trained for all MHC alleles.

NetMHC and NetMHCpan are currently the most widely used in silico peptide-MHC I binding tools.

Both methods use artificially generated non-binding peptides, by applying the NetChop algorithm [46]

to the entire human proteome.

MHCflurry

MHCflurry [30] is a neural network, which jointly discovers informative amino-acid residue encodings

and predicts peptide-MHC I binding affinities. Each amino acid residue type is assigned an integer, and

peptides are encoded as 9-length vectors of integers. An initial embedding layer maps input peptides to

a 32-dimensional space, which then feeds into a fully connected layer. Padding and cutting of peptides

that are shorter or longer than 9 residues is done identically to the protocol of NetMHC/NetMHCpan.

The final predicted binding affinity is the geometric mean of all padded and cut versions of the same

peptide. MHCflurry augments its training data with peptides randomly generated in silico from a uniform

distribution.
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SMMPMBEC

SMMPMBEC [15] is a Bayesian framework for regularized least-squares regression. Peptides to be used

for training are represented with one-hot encoding and stacked to form a single NxL matrix, where N is

the number of peptides and L is the peptides’ length x 20. A scoring matrix is trained to minimize the

error between N experimental binding affinities and the matrix product of the peptide matrix and the

scoring matrix. The optimization is constrained by a pre-trained 20x20 pairwise substitution matrix for

the amino acids, based on the covariance of their contributions to peptide-MHC I binding free energy in

different contexts. A scoring matrix is computed for each MHC allele and each peptide length. To predict

the affinity for a peptide of interest, its one-hot representation is multiplied by the scoring matrix.

HLA-CNN

HLA-CNN [13] is a deep learning convolutional neural network, consisting of an embedding layer, two 1D

convolutional layers, and a fully connected layer. The input to the embedding layer is an Lx15 matrix,

which is initialized with a learned peptide representation based on the natural language processing (NLP)

skip-gram model [47]. Skip-gram is an unsupervised technique to discover word embeddings. Sentences are

encoded as vectors of integers and projected into a lower dimensional space. HLA-CNN treats peptides as

sentences and amino acid residues as words. The initial embedding is learned from the set of all peptides

across all MHC alleles in the training set. The convolutional layers consist of 32 filters, with kernel size of

7, stride=1, and are initialized with Glorot normal distribution [48]. A network is trained for each MHC

allele and each peptide length.

Additional neural network methods developed for this paper

While developing MHCnuggets, we experimented with long short-term memory network (LSTM) [49],

convolutional neural network (CNN) [50], and standard neural network architectures. The LSTM had

slightly worse prediction performance than the GRU architecture (Kendall-Tau 0.587, F1 score 0.806,

AUC 0.931) and was slightly slower (test set runtime 23.91 sec ±0.37). It also accepts variable length

inputs. We consider the LSTM to be a viable alternative for future work. The CNNs had the worst

prediction performance of the tested methods. This network architecture is designed to fit weights using

multiple sliding windows (kernels) across each peptide. First, we tried kernels that covered two or three
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amino acid residues (Kendall-Tau 0.447, F1 score 0.64, AUC 0.845). We also tried adding a kernel that

covered the full length of the peptide, which improved performance (Kendall-Tau 0.563, F1 score 0.795,

AUC 0.918), but did not match the performance of the GRU or LSTM. CNNs require a fixed length input.

Based on our observation that peptide cutting and shortening protocols substantially slowed runtime,

we applied a simplified protocol in which any peptides that were longer or shorter than 9 residues were

cut or padded once. To ensure that padding and cutting were sensitive to primary and secondary anchor

residue positions, cutting and padding were restricted to positions 6 or 7. With this protocol, the CNNs

were among the fastest methods tested (9.78 ±0.116 sec for the two kernel CNN and 7.13 ±0.073 sec for

the three kernel CNN on the benchmark test set). Finally, we tried a network similar to NetMHC, a

fully-connected single-layer network that required fixed-length inputs, and applied the same simplified

cutting and padding procedure used by the CNNs. The standard neural network performed well, with the

best F1 score of any method but a lower Kendall-Tau than the GRU and LSTM architectures (Kendall-Tau

0.581, F1 score 0.814, AUC 0.931). It was also among the fastest methods (7.32 ±0.053 sec on the test

set). However, in contrast to the recurrent neural networks, it does not offer any methodological advances

over the other tested methods.
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Figure S1: Transfer learning directed graph. The graph shows transfer of information between MHC
Class I alleles in our network training protocol. Nodes represent MHC class I allele-specific neural networks
and directed edges show how trained network weights are transfered from one network to another. The
first network trained is for HLA-A*02:01 binding peptides, and the trained weights are used to initalize
the networks for all other alleles, yielding 50 additional allele-specific networks. These networks are tested
for their prediction performance on the training data for each of the 50 alleles. The network weights for
the best performing networks are transferred to the corresponding alleles. This three-step protocol is
shown in Figure S2.
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Figure S2: Three steps of the transfer learning protocol. A. Network weights of HLA-A*02:01
are used to initialize 50 networks for all other alleles in the benchmark. B. The training examples for
each allele are tested for performance using all the networks trained in A. Example for a single allele
HLA-A*25:01 is shown. The network with the highest AUC (originally trained on HLA-A*26:01) is
selected (red highlight). C. The network weights for the best networks found in the previous step (e.g.,
HLA-A*26:01) are used to initialize and retrain the network for each allele of interest.
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Figure S3: Transfer learning improves prediction peformance. A. Kendall-Tau correlation. B.
F1. C. AUC. Comparison is between MHCnuggets trained with and without the transfer learning protocol.
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