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Abstract 
 

Healthy ageing is accompanied by a constellation of changes in cognitive processes and 

alterations in functional brain networks. The relationships between brain networks and 

cognition during ageing in later life are moderated by demographic and environmental factors, 

such as prior education, in a poorly understood manner. Using multivariate analyses, we 

identify three latent patterns (or modes) linking resting-state functional connectivity to 

demographic and cognitive measures in 101 cognitively-normal elders. The first mode 

(p=0.00043) captures an opposing association between age and core cognitive processes such 

as attention and processing speed on functional connectivity patterns. The functional 

subnetwork expressed by this mode links bilateral sensorimotor and visual regions through key 

areas such as the parietal operculum. A strong, independent association between years of 

education and functional connectivity loads onto a second mode (p=0.012), characterised by 

the involvement of key hub-regions. A third mode (p=0.041) captures weak, residual brain-

behaviour relations. Our findings suggest that circuits supporting lower-level cognitive 

processes are most sensitive to the influence of age in healthy older adults. Education, and to a 

lesser extent, executive functions, load independently onto functional networks - suggesting 

that the moderating effect of education acts upon networks distinct from those vulnerable with 

ageing. This has important implications in understanding the contribution of education to 

cognitive reserve during healthy ageing. 
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Introduction 

Healthy ageing in the later decades of life is associated with progressive changes in 

cognition which impact upon on function and inter-personal relationships (Stuck, et al., 1999; 

Willis, et al., 2006). Fluid-based cognitive functions such as processing speed, executive 

function and working memory are particularly sensitive to changes that arise from age-related 

neurobiological processes (Grady, 2012; Park and Reuter-Lorenz, 2009). More rapid 

morphological changes (indexed by volumetric size and thickness) in pre-frontal, hippocampal, 

and parietal cortices is thought to underpin progressive age-related cognitive changes (Dennis 

and Cabeza, 2008; Park and Reuter-Lorenz, 2009; Raz, et al., 2005). However, investigations 

that have reported morphometric changes associated with age-related variability in cognitive 

performance are somewhat inconsistent or even contradictory (Rodrigue and Kennedy, 2011). 

It is crucial to disambiguate the trajectory of normal age-related changes in later life from the 

pathology of neurodegenerative disorders such as Alzheimer’s disease (AD) (Dennis and 

Thompson, 2014). 

Univariate alterations in morphological brain structures only partially capture the 

complexity of neurobiological changes associated with ageing (Rodrigue and Kennedy, 2011). 

Recent network conceptualizations propose that human brain function is shaped by interactions 

(connections) between its constituent elements (brain regions) through neural networks that 

possess a complex topological organization (Bassett and Bullmore, 2006; Bullmore and 

Sporns, 2012; Sporns, 2013). Brain networks delicately balance the opposing requirements for 

functional integration and segregation, giving rise to complex cognitive and perceptual 

functions (Friston, et al., 1995; Sporns, et al., 2000; Tononi, et al., 1994). Networks of whole-

brain functional connectivity patterns can be constructed from the temporal correlations of 

spontaneous fluctuations in neurophysiological signals between brain regions, and analysed 
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with graph-theoretical approaches (Biswal, et al., 1995; Fornito, et al., 2013; Fox and Raichle, 

2007). 

Fluid cognitive functions require patterns of integrated and coordinated neural 

interactions, suggesting age-related variability in performance may be attributable to 

corresponding changes in large-scale connectivity (Andrews-Hanna, et al., 2007). 

Investigations into intrinsic resting-state networks (RSN) (Damoiseaux, et al., 2006; Fox, et 

al., 2005) have consistently revealed reduced functional connectivity in core cognitive systems 

such as the Default-Mode Network (DMN) over the lifespan (Damoiseaux, 2017; Damoiseaux, 

et al., 2008). On the other hand, connectivity between-networks has been found to increase - 

indicative of decreased functional specialisation with age (Betzel, et al., 2014; Chan, et al., 

2014; Ferreira, et al., 2015; Geerligs, et al., 2015; Grady, et al., 2016; Ng, et al., 2016). Such 

changes appear partially associated with poorer cognitive performance (Andrews-Hanna, et al., 

2007; Chan, et al., 2014; Fjell, et al., 2015; Ng, et al., 2016; Salami, et al., 2014). However, the 

complete picture of whole-brain network activity and age-related changes in cognition across 

multiple domains is lacking. 

The application of network measures to connectivity patterns has also revealed changes 

to the intrinsic functional architecture with age, namely a decreased modularity and segregation 

of RSN’s (Betzel, et al., 2014; Chan, et al., 2014; Geerligs, et al., 2015; Grady, et al., 2016). 

There also appears to be age-related decreases in connectivity for specific subnetworks of 

connections - particularly those involving long-range communication (Cao, et al., 2014; 

Marques, et al., 2015; Sala-Llonch, et al., 2014): These may reflect the decreased integration 

of large functional brain networks with age (Sala-Llonch, et al., 2014), consistent with the 

corresponding changes in structural networks (Perry, et al., 2015; Zhao, et al., 2015). Hitherto, 

only few investigations of intrinsic functional organisation in healthy elderly populations have 

been undertaken (Madhyastha and Grabowski, 2014; Marques, et al., 2015; Ng, et al., 2016; 
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Sala-Llonch, et al., 2014). Although studies of age across the whole lifespan are illuminating 

and important, they typically contain relatively modest numbers of healthy older participants. 

Moreover, the association between cognitive performance and brain structural integrity is not 

uniform from adulthood to elderly years (Burzynska, et al., 2012; Razlighi, et al., 2016; Turner 

and Spreng, 2012). The later decades of life are also characterised by progressive changes in 

the performance of everyday functions (Ball, et al., 2007). There is hence a need to study the 

influence of age on functional connectivity patterns within a healthy elderly cohort. 

Higher levels of educational attainment, intelligence, occupational status and other 

positive lifestyle factors contribute protective effects against age-related cognitive changes as 

well as the onset of AD (Deary, et al., 2009; Stern, 2012; Valenzuela and Sachdev, 2006). 

Expressions of these factors are postulated to contribute to an individual’s capacity to mitigate 

the influence of age, which has been broadly grouped together into the rubric term “cognitive 

reserve” (CR) (Stern, 2009; Stern, 2012). The proxies of CR are associated with a relative 

preservation of brain structure and more efficient neural activity during cognitive demands 

(Bartrés-Faz and Arenaza-Urquijo, 2011). Increased educational attainment is also associated 

with increased resting-state functional connectivity in distributed cortical networks (Marques, 

et al., 2016; Marques, et al., 2015). However, the influence of moderating factors such as 

education on the cognitive networks sensitive to age-related changes are poorly understood 

(Bartrés-Faz and Arenaza-Urquijo, 2011; Stern, 2009; Stern, et al., 2008). Some aspects of 

brain functions may be optimised with age (Moran, et al., 2014), which speaks to the potential 

adaptive influence of moderating factors on large-scale network interactions in later life. 

Multivariate analyses allow a broad picture of brain-behaviour relationships. Using 

canonical correlation analysis (CCA), Smith and colleagues (Smith, et al., 2015) studied the 

complex inter-relationships between 158 phenotypic measures and whole-brain functional 

connectivity patterns in a large cohort of healthy younger adults (Van Essen, et al., 2013). 
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Intriguingly, the co-variation between a full suite of phenotypic markers and functional 

connectivity loaded onto a single positive-negative axis. Positive personal traits (e.g. life 

satisfaction, education years, and fluid intelligence) shared strong co-variations with 

connectivity patterns, whilst characteristically negative traits (e.g. substance use) load 

negatively onto brain-behaviour associations. Related multivariate approaches such as partial 

least squares (PLS) (McIntosh, et al., 1996) have revealed latent patterns of functional 

activations related to decreased brain variability in older adults (Garrett, et al., 2011; Garrett, 

et al., 2012). Both CCA (Tsvetanov, et al., 2016) and PLS (Ferreira, et al., 2015) approaches 

have also recently revealed lifespan changes in functional connectivity patterns. These findings 

are derived from cohorts that span the whole lifespan and did not address the relative influence 

of age on neurocognitive networks. Some cognitive functions – such as psychomotor abilities 

– are more susceptible to age-related changes in later life than others (Salthouse, 1996). The 

influence of age is likely to act most strongly on networks supporting these functions.   

Multivariate techniques have not yet been employed to investigate these issues, nor the 

relative influence of both age and CR proxies on connectivity patterns. Here we use 

multivariate analysis to examine the associations between age, education, cognitive 

performance (measured across a number of domains) and whole-brain functional connectivity 

patterns in 101 cognitively-normal elders. In particular, we ask whether the single positive-

negative axis of associations between behavioural indicators of cognition and functional brain 

networks seen in young adults (Smith, et al., 2015), persists under the influence of healthy 

ageing. We hypothesise that connectivity patterns associated with cognitive domains most 

susceptible to decline such as processing speed will most be strongly opposed to the influence 

of age. We also ask whether moderating factors such as education confer an influence upon 

age-varying networks, or rather onto independent brain-behaviour modes. 
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Materials and methods 

Participants 

Cognitively-normal individuals were drawn from a longitudinal, population-based  

study (the Sydney Memory and Ageing Study (MAS) (Sachdev, et al., 2010a)). At the baseline 

of this longitudinal study, community-dwelling participants initially between 70-90 years of 

age were randomly recruited from the electoral roll. Imaging and phenotypic data for the 

present paper were acquired during the fourth wave of this study (approximately 6 years 

following study baseline). Subjects were classified as cognitively normal at the current wave 

if their performance on all neuropsychological test measures was higher than a threshold of 1.5 

SDs below normative values. The criteria for the selection of this cohort, and the demographic 

matching that was used to establish a normative reference have been previously published  

(Tsang, et al., 2013). Exclusion criteria for all study participants at baseline included a Mini-

Mental Statement Examination (MMSE) (Folstein, et al., 1975) adjusted (Anderson, et al., 

2007) score below 24, a diagnosis of dementia, developmental disability, a history 

of schizophrenia, bipolar disorder, multiple sclerosis or motor neuron disease, active 

malignancy, or inadequate comprehension of English to complete a basic assessment. 135 

participants with concurrent MRI data met inclusion criteria. The study was approved by the 

Ethics Committee of the University of New South Wales and participants gave written, 

informed consent. 

 

Neuropsychological measures 

A comprehensive neuropsychological battery was administered by trained graduate 

psychologists to cover a broad range of cognitive functions, including attention, processing 

speed, memory, language, visuospatial ability, and executive function.  Twelve tests were 
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grouped into five broad domains - attention/processing speed, memory, language, visuospatial 

ability, and executive function (Table 1). Each domain consisted of a composite of these 

individual tests, with the exception of the visuospatial domain which was represented by a 

single measure. As part of the broader longitudinal study (MAS) (Kochan, et al., 2010; 

Sachdev, et al., 2010b) - the tests were grouped according to the primary cognitive function 

they assess - based upon the extant literature and the widespread practice used by 

neuropsychologists (Lezak, et al., 2004; Strauss, et al., 2006; Weintraub, et al., 2009). The 

groupings align with the domains of established psychometric batteries such as the UDS (ADC) 

(Morris, et al., 2006; Weintraub, et al., 2009), and other large epidemiologic cognitive ageing 

studies (Mayo study (Roberts, et al., 2008); MYHAT study (Ganguli, et al., 2010)). The 

memory domain composite was further subdivided into verbal memory after exclusion of a 

visual retention test (Benton, et al., 1996). We additionally study the relative weighting of each 

individual neuropsychological test onto our primary results.  

To further support the cognitive groupings, we performed reliability estimates which 

measure the scale-item’s homogeneity (SI Table 1). For the full healthy reference cohort (n = 

343; with no missing domain scores), reliability estimates reveal acceptable (rSB > 0.70) to high 

internal consistency of the composite-items - according to psychometric convention (Cortina, 

1993; Tavakol and Dennick, 2011). The only exception was the executive function composite. 

Tasks of executive functions (as with the other domains) posses a multifactorial structure as 

they rely on other cognitive systems/processes for their expression (Piguet, et al., 2005), and 

hence the lower item-homogeneity here is not surprising. For example, the Trail Making Task 

(TMT) B is also associated with lower-order abilities (Sanchez-Cubillo, et al., 2009). 

Performance on the other executive composite, the FAS, also relates to verbal intelligence, 

lexical retrieval and processing speed (Greenaway, et al., 2009). 
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Table I. Neuropsychological tests administered to measure the cognitive grouping scores 

Neuropsychological Test Cognitive Grouping 

• Digit Symbol-Coding (Wechsler, 1997a) 
• Trail Making Test (TMT) A (Strauss, et al., 

2006) 

Attention/Processing Speed 

• Logical Memory Story A delayed recall 
(Wechsler, 1997b) 

• Rey Auditory Verbal Learning Test 
(RAVLT) (Strauss, et al., 2006): 

o RAVLT total learning; sum of trials 
1-5 

o RAVLT short-term delayed recall; 
trial 6 

o RAVLT long-term delayed recall; 
trial 7 

• Benton Visual Retention Test recognition 
(Benton, et al., 1996) 
 

Memory 

• As above, but not including the Benton 
Visual Retention Test. 
 

Verbal Memory 

• Boston Naming Test – 30 items (Kaplan, 
2001) 

• Semantic  Fluency (Animals) (Strauss, et 
al., 2006) 
 

Language 

• Block Design (Wechsler, 1981) Visuospatial Ability 

• Controlled Oral Word Association Test 
(Strauss, et al., 2006) 

• TMT B (Strauss, et al., 2006) 

Executive Function 
 

 

The individual test scores for each subject were transformed into quasi Z-scores based 

upon the mean and standard deviation of tests scores for a healthy, reference group (n = 723) 

phenotyped at study baseline. Domain scores were calculated as the average of the quasi Z-

scores of tests comprising each domain. If necessary, the signs of the z-scores were reversed 

so that higher scores reflect better performance.  

 Clinical measures including the MMSE and the Bayer-Activities of Daily Living 

Scale (B-ADL) (Erzigkeit, et al., 2001; Hindmarch, et al., 1998) were also administered. The 
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B-ADL consists of 25 informant-rated items - scored on a scale of 1-10 - according to the 

frequency of participant’s impairments in everyday activities. Higher scores on the B-ADL 

relate to more severe deficits in functioning. The mean values for each participant were 

defined by the average score across the B-ADL questionnaire items. These clinical ratings 

were used in the present study for further characterization of the current samples cognitive 

and functional status. The B-ADL scores for 17 study participants were however missing. 

The National Adult Reading Test (NART IQ) (Nelson and Willison, 1991) was 

administered to a subset of the current population at study baseline. The NART estimates 

premorbid intelligence levels (Bright, et al., 2002). 	

 

Acquisition and pre-processing of MRI data 

Eyes-closed resting-state fMRI (rs-fMRI) data consisting of 208 time-points were 

acquired with a T2* weighted echo-planar imaging sequence (TE = 30 ms, TR = 2000 ms, 1.87 

x 1.87 x 4.50 mm3  voxels)  on a Philips 3T Achieva Quasar Dual MRI scanner (Amsterdam, 

the Netherlands). Structural T1-weighted MRI were also acquired (TR = 6.39 ms, TE = 2.9 

ms, 1mm3 isotropic voxels). FSLView (Smith, et al., 2004) was used to visualise every MRI 

scan for artifact inspection. Subjects were removed if their data contained excessive artefact, 

including the presence of complete orbitofrontal signal dropout (Weiskopf, et al., 2007), 

motion effects on T1-images (i.e. ringing), or severe geometric warping. A full description of 

the steps involved for the acquisition and pre-processing of these data are provided in 

Supplementary Information (SI) 1.1 and 1.2.  

Data pre-processing was performed using the Data Processing Assistant for Resting-

State fMRI (DPARSF, v3.2 advanced edition) software package (Yan and Zang, 2010), which 

calls functions from SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). Basic pre-processing steps 
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included slice-timing, realignment to mean functional image, co-registration of the structural 

image, linear detrending, and nuisance regression of head motion  (24 parameters) (Friston, et 

al., 1996) and segmented WM/CSF signals (Ashburner and Friston, 2005). Native functional 

images were transformed into an average population-based T1 template (i.e. DARTEL) 

(Ashburner, 2007)  and then Montreal Neurological Institute (MNI) space (3mm3 voxels). 

fMRI images were smoothed (at 8mm) and temporal band-pass filtering applied (0.01–

0.08 Hz). Global signal regression was not performed.  

 Of the initial subject population (n = 135), fifteen were removed due to severe signal 

loss (thirteen within fMRI scans), ten had incomplete cognitive information, whilst nine failed 

adequate co-registration between their T1-weighted and mean functional image. Data from 

one-hundred and one subjects were hence included in the primary analysis (Table II).  

 

Construction of functional brain networks 

In brief, the Pearson’s correlation coefficient of the mean BOLD signals between all 

pairs of 512 uniformly-sized regions (SI 2) (Perry, et al., 2015; Zalesky, et al., 2010) was 

calculated to construct the functional connectivity matrix M. Fisher’s transformation was 

applied to M, and subsequent upper-triangle values were concatenated across all subjects, 

forming a matrix N1. Full description of the steps involved for the construction and 

normalization of functional brain networks are provided in SI 1.3 and 1.4. 

 

Normalization, demeanining and head-motion regression of connectivity matrices  

The connectivity matrices N1 were normalized and demeaned according to the 

procedure of (Smith, et al., 2015) (also available online at 

http://fsl.fmrib.ox.ac.uk/analysis/HCP-CCA/hcp_cca.m), resulting in a matrix N2 for 
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subsequent analyses.  The mean frame-wise displacement (FD) (Power, et al., 2012) was 

calculated and potential confounding effects of head motion were regressed from N2 to yield 

N3. Notably, there was no significant relationship between age and FD (p>0.39, r = -0.09). 

 

Table II. Basic demographic, cognitive and clinical information for included participants 	

Cohort All subjects (n = 101) 

NESB (n) 10 

M/F (n) 44/57 

 Mean (+- SD) 

Age (years) 82.7 (3.8) 

Education (years) 12.7 (3.6) 

MMSE 29.5 (0.9) 

B-ADL* 1.41 (0.54) 

NESB, Non-English Speaking Background; M, Male; F, Female; B-ADL, Bayer-Activities of Daily Living 
Scale 
* n = 19 participants were missing data 
 

Functional connectivity decomposition 

Principal Components Analysis (PCA) was implemented via the FSLNets toolbox 

(Smith, et al., 2014) to reduce the dimensionality of the functional connectivity edges (N3) to 

eight eigenvectors. Given that eight non-imaging measures were selected in the CCA (see 

below), the data was reduced to this resolution to keep the methodological steps similar to 

Smith et al. (2015); In their study, the greatest fit (correlation) between the connectivity and 

non-imaging weights was obtained by the CCA which used the same number of brain and 

phenotypic components. However, no gold standard exists for component number selection 
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(Abdi and Williams, 2010). We note that the first eight functional components explain 20.3% 

of the total proportion of variance (SI Fig 1, red bars).  

 

Canonical Correlation Analysis (CCA)  

Eight subject measures were chosen for inclusion in the CCA: Age, education years, 

and the composite scores for language, executive function, visuo-spatial ability, memory, 

verbal memory and attention/processing speed. NART IQ scores were administered only to a  

subset of the current cohort (n = 91) at wave 1. 

 CCA was then applied to these non-imaging measures and functional eigenvectors, 

yielding eight modes which constitute weighted linear combinations of orthogonalized subject 

measures and functional connectivity patterns: Each mode represents canonical correlations 

which correspond to the maximum residual co-variation between the two variate sets in 

decreasing rank order. The vectors Um and Vm, represent the individual subject weights for 

subject measures and connectivity matrices within mode m respectively: 

- Um is the extent to which each subject is (positively or negatively) correlated to 

population variation in subject measures within mode m 

- Vm is the extent to which each subject is correlated to population variation in brain 

connectivity within mode m  

The correlation of Um and Vm yields rm, the strength of the population co-variation in mode m 

shared between brain connectivity and subject measures. 

 

 To assess the reliability of the loading of cognitive and demographic measures onto 

each mode m, a bootstrapping procedure (sampling with replacement) was performed over 

5000 subsamples. The phenotypic loadings within each mode m were considered reliable if the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 25, 2017. ; https://doi.org/10.1101/154898doi: bioRxiv preprint 

https://doi.org/10.1101/154898
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dr	Alistair	Perry	
	

14	
	

95% confidence bounds of the bootstrapped distribution of correlations did not overlap with 

zero (Ferreira, et al., 2015; McIntosh, et al., 2004).   

 

Association of connectivity edges within each mode 

 We next assessed which connectivity edges were most strongly expressed by 

population variations in connectivity captured within mode m. First, to obtain the relative 

weight (and directional signs) of each edges association with the connectivity patterns within 

mode m, we correlated Vm with the original connectivity estimates in N3, resulting in a vector 

AFm. The connectivity edges identified most strongly associated with either positive or negative 

co-variations between Um and Vm, were chosen as the top 250 strongest connections 

(representing 0.002% of all network edges) with positive and negative signs within AFm 

respectively.  

 

Publicly-available code  

 The MatLab codes implemented for the normalization and PCA of the connectivity 

edges - as well as the steps involved in the CCA - are stored in a publicly-available repository 

(https://github.com/AlistairPerry/CCA). The repository additionally contains further 

information for the brain parcellation templates used in functional network construction. 

    

Statistical Analyses 
 
 To determine the significance of interdependence between the variates sets within 

each mode m, Wilk's Lambda was first calculated and transformed into Rao's Approximation 

F-statistic (Rao, 1952). Shared variances captured between the respective variate sets of mode 

m were determined as significant if p<0.05, thus rejecting the null hypothesis (H0) that subject 

measures and functional components are independent of each other within mode m.  
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Results 

Our cohort of 101 cognitively-normal healthy elders span the later decades of life. Raw 

performance on the neuropsychological tests and cognitive grouping scores are provided in SI 

Table II and SI Table III, respectively. The clinical rating scores of the current population are 

within the range of values for previously published data of healthy older adults (Table II) 

(Erzigkeit, et al., 2001; Reppermund, et al., 2011; Roalf, et al., 2013). A clear association 

between age and cognitive performance is demonstrated, particularly for attention/processing 

speed scores (Fig 1A, top-left panel; p<0.001, FDR-corrected). In the full sample, we also 

assessed the complex relationships between age, sex (males coded as 1), education and six 

cognitive groupings: verbal memory, memory, visuospatial ability, executive function, 

language and attention/processing speed. Performance across these cognitive groupings is 

highly correlated (Fig 1B). Performance in visuospatial, executive function and language 

domains is positively correlated with years of education (p<0.05; FDR-corrected). As expected, 

memory and verbal memory (being largely redundant) correlate very strongly. Memory 

performance is significantly correlated with female sex (Fig 1B; p<0.001, FDR-corrected), 

whilst males demonstrate greater visuospatial abilities (p<0.05, FDR-corrected). For the subset 

who received NART IQ assessment at study baseline, we also examined relations with IQ (SI 

Fig 2). There are no significant differences (p<0.05, two-tailed, FDR-corrected) between the 

full study cohort and this subset population across the phenotypic variables (SI Table III). 

We next used CCA to examine the primary modes that relate these (correlated) 

demographic and cognitive variables to functional connectivity patterns. CCA identified three 

significant canonical modes (p<0.05) of interdependence between these non-imaging 

measures and functional connectivity (Table III). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 25, 2017. ; https://doi.org/10.1101/154898doi: bioRxiv preprint 

https://doi.org/10.1101/154898
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dr	Alistair	Perry	
	

16	
	

Table III. Significant (p<0.05) CCA modes in the primary analysis  

CCA Mode One Two Three 

df1 64 49 36 

df2 496.76 441.03 384.80 

F 1.77 1.55 1.48 

λ 0.30 0.45 0.57 

r2 0.32 0.21 0.20 

RI 0.072 0.030 0.023 

p 0.00043 0.012 0.041 

λ	=	Wilk’s	lambda;	RI	=	redundancy 

Each CCA mode consists of a set of weights that reflect the loading of the cognitive 

and demographic variables onto the corresponding functional connectivity patterns (Fig 2). The 

first mode (p<0.00043) is characterised by a split between all cognitive domains (particularly 

memory and attention/processing speed) which load along a positive axis, and age which loads 

strongly and negatively (Fig 2A, left panel). Language and education have close to zero loading 

and are not reliably represented within this mode (i.e. the confidence bounds of the 

bootstrapped distributions cross zero; Fig 2A, grey text).  The opposing pull of attention and 

processing speed versus age can be seen by plotting the subject specific measure weights versus 

the corresponding connectivity weights, coloured according to age (Fig 2D) or 

attention/processing speed (Fig 2E). Younger subjects (Fig 2D, blue circles) cluster in the top 

right corner of the panel, indicating how they weigh positively with the corresponding 

connectivity-behaviour relations. Likewise, fast and attentive performers (Fig 2E, green to dark 

red) also load positively on the first CCA mode. These plots show that faster, attentive, younger 
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performers weight positively with functional connectivity patterns within this mode, whereas 

poorer, older performers contribute to negative associations.  

Fig 1. Associations between the phenotypic information of the healthy older adults. (A) 
Cognitive functioning across the groupings as a function of age. Solid red lines show the best-
fitting linear regression of age, whilst dashed red lines indicate the 95% confidence intervals 
for the linear fit.  (B) Strength and direction of associations between all phenotypic measures. 
a, FDR-corrected * p < 0.05, ** p < 0.01, *** p < 0.001; FDR-corrected 

N.B: Males coded as 1 

 

In contrast, the second mode (p<0.012) is characterised by an independent positive 

association of education years with connectivity patterns (Fig 2B, 2F). Although executive 
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function loads moderately on this mode, all other variables load very weakly (in both 

directions). While age and memory load negatively, their contributions are weak. There also 

Fig 2.  Weighting of cognitive and demographic measures captured by the CCA modes. 
(A-C) Correlation between subject measures and functional connectivity captured by the 
mode (Vm), with the strength and direction indicated by the vertical position and font size. 
Grey text depicts phenotypic loadings where the confidence intervals of bootstrapped 
distributions overlap with zero.  (D-F) Scatter plots showing for each subject (data points) 
their weighting towards non-imaging measures (Um, x-axis) and functional connectivity 
patterns (Vm, y-axis), captured for the first (D-E) and second modes (F). Colour is scaled 
according to subjects age (D), Attention/Processing Speed performance (E), and education 
level (F).  
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exists a weakly significant third mode (p<0.041). This mode splits cognitive measures into 

moderately positive visuospatial and memory weights versus weakly negative attention and 

processing speed (Fig 2C). Age and education weigh close to zero.  

Each of the three CCA modes also load onto patterns of functional brain connectivity. 

To study these, we calculated the 250 edges most strongly associated with each mode in both 

the positive and negative directions. The functional connectivity edges most strongly expressed 

by positive associations in the first mode (mean r = 0.64, SD = 0.02) primarily involve bi-

lateral connections between occipital, temporal (inferior and medial portions), superior 

parietal, and pre/post central gyral regions (Fig 3A). Functional connections between occipital 

areas and pre/post-central regions within the right hemisphere are also evident. Of note is the 

convergence of connections upon bi-lateral parietal operculum/posterior insular areas.  To 

disentangle the functional basis of this network of strongly associated connections, we assigned 

regions in our parcellation to broader functional network clusters; default-mode, cognitive-

control, somatomotor, dorsal attention, salience ventral attention, visual, and limbic networks 

(Yeo, et al., 2011). This demonstrates positive edges in the first mode are predominately 

clustered among visual, somatomotor, and to a lesser extent, dorsal attention networks (Fig 3A 

and 3B).  

We then identified the functional connectivity edges most negatively expressed by the 

first mode (mean = -0.27, SD = 0.03). These connections form two distinct clusters: The first 

cluster inter-connects pre-motor, pre/post central gyri and superior medial frontal areas 

(supplementary motor area, pre-supplementary, superior frontal gyri) (Fig 3C). A second 

cluster involves inter-hemispheric connections between inferior parietal areas, and additional 

connections between these areas and left superior parietal regions. On a coarser scale these 

edges connect DMN and cognitive-control network areas to regions affiliated with all other 
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networks except for limbic areas, particularly default-mode connectivity with both the 

somatomotor and dorsal attention networks (Fig 3D). 

Fig 3. Connectivity edges most positively and negatively expressed by the first CCA mode.  
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(A) and (C) Connectivity edges exhibiting the strongest positive and negative associations with 
functional connectivity patterns (V1), respectively.  Line width indexes strength of correlation. 
Circle size is scaled to the number of connections each region shares within the network; Node  
colour denotes functional network affiliation (Yeo, et al., 2011). The brain meshes are 
presented from axial (bottom middle panel), coronal (bottom left), and customised perspectives 
of the left (top right; elevation = 0, azimuth = -120) and right-hemisphere (top left; azimuth = 
-240). Connectivity edges and surface meshes were visualised using BrainNet Viewer (Xia, et 
al., 2013). (B) and (D) Connectivity distributions across the functional clusters for the edges 
most positively and negatively expressed. Warmer colours indicate greater number of 
connections 

 

 The edges most strongly expressed within the second mode are quite distinct from those 

demonstrating positive associations with the first mode, mirroring the divergent loading of 

phenotypic measures. The edges exhibiting the strongest positive associations (mean = 0.73, 

SD = 0.01) with the second mode stretch between visual cortices and dorsolateral prefrontal 

areas, whilst connections from superior parietal (dorsal attention) and pre/post-central gyri 

(somatomotor) converge at both dorsolateral and ventrolateral regions, within default and 

control networks (Fig 4A). Assigning regions to their respective functional affiliation shows 

that edges from the default and control networks inter-connect preferentially with visual, 

somatomotor, and dorsal attention networks (Fig 4B).  

The edges exhibiting the strongest positive associations (mean = 0.64, SD = 0.02) with 

the third mode also comprise networks that are distinct from the other two modes. Functional 

connections predominately cluster around ventrolateral and orbitofrontal divisions of left 

prefrontal nodes encompassing default-mode, cognitive control, and limbic areas (SI Fig 4A). 

Edges stretch between these areas and bi-lateral frontomedial regions (anterior cingulate and 

superior portions), the left cingulate (middle and posterior portions), and left inferior parietal 

lobe. Assigning these networks to functional subdivisions of the brain shows they are 

predominately distributed within-and-between default-mode and control network areas, with 

additional connections between all other networks (except for visual) (SI Fig 4B).   
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Fig 4. Connectivity edges most positively expressed by the second CCA mode. 	

(A) Connectivity edges exhibiting strongest positive associations with functional connectivity 
patterns (V2), hence representing connections expressed by the increased education level.  
Line width indexes strength of correlation. Circle size is scaled to the number of connections 
each region shares within the network, whilst coloured to their functional network affiliation. 
The brain meshes are presented from axial (bottom middle panel), posterior (bottom left), and 
angular perspectives of the left (top right) and right-hemisphere (top-left). (B) Connectivity 
distribution across the functional networks, with warmer colours indicating greater number of 
connections.	

 

The influence of sex and intelligence 

Given the strong correlations between sex and cognitive performance across specific 

domains (Fig 1), we undertook an additional CCA with sex (males coded as 1) included (hence 

now with nine functional components).  Two significant CCA modes were identified (p < 0.05, 

SI Table IV), showing subtle differences to the principal modes explored above (SI Fig 5). In 

the first mode (SI Fig 5A), cognitive domains are again spread along the positive axis, with 
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(male) sex loading most strongly on the negative axis followed by age and education years. 

The strong independent association of education with connectivity remains in the second mode 

(SI Fig 5B), where sex and the cognitive domains demonstrate weak to moderate associations. 

The functional connections most strongly expressed by the first mode when including sex in 

the CCA are spatially consistent with those identified within the primary analysis (Fig 5A-B; 

red lines indicate edges that are strongly expressed regardless of whether sex is included in, or 

excluded from the CCA model). Analysis of the second mode, however, reveals edges that are 

predominantly expressed only when including sex within the model (Fig 5C; grey lines).	

Education and intelligence (as estimated by NART IQ scores) are highly-correlated (SI 

Fig 2), and both considered central to cognitive reserve (Stern, 2009).  The positive co-variation 

between years of education and increased connectivity captured by the second mode in the 

main analyses thus raises an interesting question regarding the contribution of intelligence. We 

thus performed CCA (again with nine functional components) using the full cohort of subjects 

whom received NART IQ assessment at study baseline (n = 91). This analysis yielded two 

significant modes (p<0.05; SI Table V). The modes capture latent relations that are similar to 

the primary analysis, although interesting differences between education and intelligence 

emerge (Fig 6A-B). Within the first mode, NART IQ loads positively and of similar magnitude 

to memory and visuospatial ability. Although NART IQ scores also bear a moderate positive 

association with connectivity captured by the second mode, the strength of this loading is 

weaker than education.  Thus NART IQ splits across modes, with some weighting in opposition 

to age and some loading independently with education. 

The strong influence of education when also including IQ in the CCA model, also 

raises an interesting question regarding the functional connectivity patterns that are captured 

here. The edges exhibiting the strongest positive associations (mean = 0.74, SD = 0.015) are 

distributed throughout the cortex (Fig 7). Several key features are evident: Connections  
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Fig 5. Connectivity edges most strongly expressed by the significant modes when 
including sex in the CCA model.  

(A) and (B) Connectivity edges exhibiting the strongest positive and negative associations with 
the functional connectivity patterns of the first mode (V1), respectively. (C) Connectivity edges 
exhibiting the strongest positive associations with the second mode (V2). Red lines indicate 
edges which are strongly expressed by CCA models with and without sex included, whilst grey 
lines are those uniquely expressed by the CCA with sex included.  Line width indexes strength 
of correlation. Node size is scaled to the number of connections each region shares within the 
network; Node colour denotes their functional network affiliation. The images are presented 
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from axial (left panel), and angular perspectives of the left (right) and right-hemisphere 
(middle).  

 

Fig 6. Weighting of cognitive and demographic measures captured by the CCA modes 
including intelligence scores.  

(A-B) Correlation between subject measures and functional connectivity variation (Vm), with 
the strength and direction indicated by vertical position and font size. (C-D) Scatter plots 
showing for each subject (data points) their weighting towards non-imaging measures (U2, x-
axis) and functional connectivity patterns (V2, y-axis), captured for the second modes. Colour 
is scaled according to subject’s education level (C) and NART IQ scores (D).  
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converge (larger circles) upon parietal default-mode areas including right -and medial 

(precuneus) portions, as well as superior (dorsal attention), and paracentral areas 

(somatomotor). Edges connect these areas to DMN and dorso- and ventrolateral prefrontal 

areas as well as lateral pre- and postcentral gyri. Only a small proportion of function 

connections (24/250 edges = 9.6%) also occur within the corresponding mode of the primary 

analysis (SI Fig 12). Visualising this network with a connectivity heat map (Fig 7B) and edge 

bundling connectogram (Fig 7C) (https://cran.r-

project.org/web/packages/edgebundleR/index.html) which acts to cluster hierarchical 

relationships, shows that edges predominately cluster between default-mode (red circles) and 

control-network (orange) areas to all other networks except for limbic regions. Notably, the 

edges cluster around key DMN and control-network regions (larger circles).   

	

Auxiliary analyses: Removing verbal memory, head motion confounds, functional 

eigenvectors, parcellation scheme, smoothing kernel 

The construct of memory in the primary analysis includes verbal memory and is hence 

partly redundant (and thus strongly correlated) when verbal memory is also coded separately. 

However, two significant CCA modes (SI Table VI) were also identified with the removal of 

verbal memory scores with almost identical loading distributions to those in the original 

analysis (SI Fig 6). 

The potential confounds of head motion were already regressed from the analysis. 

Nonetheless, further validations were also performed. Subject motion (i.e. mean FD) shows no  
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Fig 7. Connectivity edges most positively expressed by the second CCA mode including 
intelligence scores.  

(A) Connectivity edges exhibiting strongest positive associations with functional connectivity 
patterns (V2).  Line width indexes strength of correlation. The brain meshes are presented from 
axial (bottom-left panel), posterior (middle-left), and customised superior (top-middle; 
elevation = 55, azimuth = 18) and lateral (top-right; elevation = 40, azimuth = -100) 
perspectives. (B) Connectivity distribution across the functional clusters, with warmer colours 
indicating greater number of connections. (C) Edge-bundling connectogram which clusters the 
hierachial relationships between these set of connections. Positions of regions are according to 
their network affiliation. Edges are coloured by their respective affiliation if they link to either 
default-mode or control-network regions. All other possible interactions are coloured grey. For 
both (A) and (C), circle size is scaled to the number of connections each region shares within 
the network; Circle is coloured to their functional network affiliation. 
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significant association with functional connectivity variation (i.e. Vm) captured across all three 

modes (p>0.95, FDR-corrected; SI Fig 7A-C), nor does it influence brain-behaviour relations 

(SI Fig 7D-F).  

To determine that the captured brain-behaviour relations are not dependant on the 

amount of functional connectivity information which is fed into the CCA, we re-performed the 

analysis with four functional components; A shoulder in the variance contribution is apparent 

close to the fourth eigenvector (SI Fig 1) – which according to the subjective scree/elbow test 

(Abdi and Williams, 2010; Cattell, 1966) - represents sufficient variation captured from the 

connectivity data: Two significant CCA modes were identified (SI Table VII), with almost 

identical loadings (SI Fig 8) to the primary analysis. The additional significant mode when 

using the eight modes likely captures some residual covariance adjusting the main two modes 

to the residual variance.     

To check the dependence of our findings on the parcellation scheme employed, the 

analysis was repeated, using a coarser brain template of 200 regions (including cerebellar and 

brain stem areas) derived by spatial-clustering of functional connectivity patterns in an 

independent data set (Craddock, et al., 2012). The positive-negative split of cognitive domains 

and age remains present within the first modes albeit the significance is slightly reduced (SI 

Table IX, SI Fig 9A). The independent loading of education on the second mode also remained, 

although this was again slightly reduced (SI Fig 9B). Visual inspection of the connectivity 

edges that are most strongly expressed with implementation of a coarser template reveals a 

spatial distribution that is consistent to that identified within the fine-grained parcellation (SI 

Fig 10). Two significant modes were also identified when a 6mm smoothing kernel was applied 

to our rs-fMRI data (SI Table X, SI Fig 11). 
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Discussion 

We used a multivariate approach to reveal the complex relationships between 

demographic factors, cognitive performance and functional brain networks in a cohort of 

cognitively-normal older adults. Whereas a single mode was previously reported to link 

cognitive and behavioural traits to functional connectivity patterns within healthy adults 

(Smith, et al., 2015), we identified three modes capturing significant interdependencies 

between phenotypic measures, age and functional connectivity in our older cohort. The first 

mode comprises an opposition between cognitive performance and age on connectivity 

patterns. The second mode accounts for an independent and positive association of education 

with functional connectivity, whilst the third mode captures weak relations. Including age in a 

multivariate model of brain-behaviour relations in a healthy elder cohort thus appears to split 

the single mode expressed in younger adults into three separate modes, with age and education 

loading orthogonally.  

 All cognitive domains in the first mode load along a positive axis, mirroring positive 

traits within healthy adults (Smith, et al., 2015). Age, on the other hand, is positioned on the 

negative pole. This mode thus captures the opposing pull between cognitive performance and 

age in their co-variation with connectivity patterns. The influence of age-related changes most 

strongly opposes the connectivity patterns associated with greater attention and processing 

speed scores. The spread of other cognitive domains captured by this mode converges with the 

previous ageing literature: Across the lifespan, tasks assessing attention and processing speed 

are the most sensitive to age-related reductions in performance. Furthermore, age-related 

changes in lower-level abilities (i.e. perceptual speed, psychomotor abilities) are proposed to 

account for the reduced performance in other abilities such as memory and executive 

functioning (Baltes and Lindenberger, 1997; Lee, et al., 2012; Park and Reuter-Lorenz, 2009; 

Salthouse, 1996). The sensitivity of such sensorimotor processes is  consistent with the 
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observable slowing of daily activities in older individuals, as exemplified by mobility and 

driving abilities (Ball, et al., 2007). Indeed, the functional connections most positively 

expressed by this mode are lower-order systems linking visual and somatosensory cortices, 

with additional involvement of parietal association areas. These regions are connected by bi-

lateral insular (posterior) and operculum (parietal) areas - whose functions are not only 

associated with simple sensorimotor tasks, but also the functional integration of sensorimotor 

areas (Sepulcre, 2014; Sepulcre, et al., 2012).  Age-related changes observed here also build 

upon previously reported reductions in resting-state connectivity with age within sensorimotor 

systems (Betzel, et al., 2014; Chan, et al., 2014; Geerligs, et al., 2015), as well as for 

connectivity of the parietal operculum itself (Cao, et al., 2014; Tomasi and Volkow, 2012).  

There conversely exists a network of functional connections negatively expressed by 

this mode involving links between pre-motor, pre- and post-central gyri and superior medial 

frontal areas - regions involved in planning and performing motor output (Hu, et al., 2015; 

Nachev, et al., 2008; Tremblay and Gracco, 2010). Whereas motor performance generally 

decreases with age (Ketcham and Stelmach, 2001; Seidler, et al., 2010), paradoxically 

increased functional activations in these areas occur during motor tasks in older subjects 

(Carp, et al., 2011; Heuninckx, et al., 2008; Kleerekooper, et al., 2016; Seidler, et al., 2010). 

Increased activation may act to compensate for changes in neural integrity (Cabeza, et al., 

2002), and the decreased functional specialisation of brain regions (Seidler, et al., 2010), as 

reflected by the increases in between-network connectivity with age (Betzel, et al., 2014; 

Chan, et al., 2014; Ferreira, et al., 2015; Geerligs, et al., 2015; Grady, et al., 2016; Ng, et al., 

2016). Interestingly, a longitudinal study revealed from ages between 65-70 years, an 

increase over time (two-year interval) for functional connectivity between the default-mode 

and executive networks (Ng, et al., 2016). Increases in between-network connectivity over 

time in their study were further associated with reductions in processing speed performance: 
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The functional connections most negatively expressed by the first mode in the present study 

also largely involve the between-network interactions of default-mode and control-related 

areas. Hence, the first mode may capture the dynamic changes to brain connections with age 

(Moran, et al., 2014), whereby patterns of more efficient connectivity (relatively lower 

connectivity) are also associated with better (and younger) performers. 

 Of interest, education loads only weakly on to the networks expressed by the age-

related changes in cognitive performance (i.e. mode one). The circuits supporting sensorimotor 

functions in older adults may thus be resistant to moderating factors such as years of education. 

This is in apparent contradiction to the mitigation of age-related cognitive-changes and relative 

maintenance of volumetric brain structure observed with CR proxies in healthy older 

individuals (Bartrés-Faz and Arenaza-Urquijo, 2011; Stern, 2002; Stern, 2016). Years of 

education is a frequently employed proxy of CR, and correlates highly with independently-

derived measures of brain maintenance and CR (Habeck, et al., 2016; Steffener, et al., 2016). 

In our data, education instead loads upon a second mode, whose functional connections are 

distinct from the first mode. Connections occur between visual, salience, superior parietal, and 

somatomotor regions, and converge upon the lateral prefrontal areas - circuitry (especially 

fronto-parietal links) consistently implicated in cognitive control and other higher-order 

functions (Cocchi, et al., 2013; Hearne, et al., 2015; Koechlin, et al., 2003; Spreng, et al., 2010).  

Indeed, executive function partially loads onto the connectivity patterns expressed by this 

mode, revealing increased education may at least provide partial neuroprotection for tasks 

comprising this domain. We note that executive functions represent heterogeneous cognitive 

processes, as reflected by the additional components that are tapped into by the domain 

composites (i.e. TMT B and FAS tasks). The unique variance captured by the connectivity 

patterns of the first mode presumably reflects the diverse aspects of the functions they assess 

(and hence lower internal-consistency) (Greenaway, et al., 2009; Sanchez-Cubillo, et al., 
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2009). However, the two tasks do project almost identically onto the second mode: As noted, 

the expressed connections of this mode are consistent with those supporting executive/control-

related processes.	

A third mode links relatively weak positive associations between connectivity patterns 

to memory and visuo-spatial abilities. This third mode may capture cognitive correlates 

relatively independent of subject’s age and education. However, this mode was only weakly 

significant in our primary analysis and did not generalize to auxiliary analyses. 

We observed that NART IQ scores loads with other cognitive domains in opposition to 

age on the first mode, while education remains independently captured by the second. This 

divergent loading of intelligence and education on the first mode is interesting given both 

measures represent typical proxies of CR (Xu, et al., 2015), are highly-correlated, and share 

similar co-variation with functional connectivity patterns observed in younger adults (Smith, 

et al., 2015). However, CR proxies have previously been shown to mitigate age-related changes 

independent of each other (Richards and Sacker, 2003b; Stern, et al., 1995; Suo, et al., 2012). 

The functional connections expressed within the second mode of this CCA are predominately 

between default-mode (inferior and medial parietal regions) and control-network hub-areas 

(middle frontal gyrus) to other task-affiliated networks. Previous research has established that 

higher-order cognitive functions are dependent upon by these transmodal hub-areas (Cole and 

Schneider, 2007; Raichle, 2015; Seghier, 2013; Utevsky, et al., 2014). The predominance of 

between-network interactions loading with increased education is salient given that the 

integration of functional subsystems is critical upon cognitively-demanding tasks (Bassett, et 

al., 2011; Braun, et al., 2015; Cocchi, et al., 2013). In our data, intelligence loads moderately 

upon the age-related networks of the first mode, whilst the influence of education is relatively 

strongest for non-specific between-network interactions. Despite these CR proxies being 

highly-interwoven, this divergence could be attributed to intelligence representing innate 
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contributions towards normal ageing (Deary, et al., 2010; Plomin and Deary, 2015), whilst 

educational attainment is perhaps more reflective of modifying factors. Further investigations 

exploring the rich spatiotemporal structure of resting-state (Madhyastha and Grabowski, 2014; 

Zalesky, et al., 2014) and task-based fMRI patterns within this older cohort may disentangle 

the benefits of increased education upon these non-specific between-network interactions.  

We did not include sex in our primary analyses, as we sought to elucidate general age-

related changes across our cohort. Including participants’ sex within the CCA model allows a 

nested investigation of the influence of sex on age-related brain-behaviour correlates. This 

analysis revealed a similar latent structure of phenotypic inter-relations to the first and second 

mode of the original analysis. Within the first mode, sex (males) loaded onto negative 

associations with functional connectivity patterns, hence with age and in opposition to better 

cognitive performance. Here, males demonstrate poorer performance on memory-based tasks, 

which is consistent with the cognitive styles of males from both young and older adult 

populations (Gur, et al., 2012; Hoogendam, et al., 2014; Kimura, 2004). Sexual dimorphisms 

in brain connectivity and structure are also consistently observed across both young and older 

adults (Feis, et al., 2013; Ingalhalikar, et al., 2014; Joel, et al., 2015; Perry, et al., 2015). The 

inclusion of sex within the CCA has only minimal impact spatially on the functional edges 

most strongly expressed by both positive and negative associations within the first mode. Our 

data thus suggest that sexual dimorphisms in later life load on top of background age-related 

changes, particularly for the circuits supporting memory functions. In contrast, the connections 

most strongly expressed in the second mode are substantially influenced when including sex. 

We note that performance in visuospatial ability, executive functioning, and male sex share 

similar co-variations here with functional connectivity patterns. In the current sample males 

demonstrate greater education years, and hence these uniquely expressed connectivity patterns 
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may reflect the benefits of their educational attainment for such cognitive processes (Gur, et 

al., 2012; Hoogendam, et al., 2014; Kimura, 2004). 

 The relatively large cohort and the multivariate nature of CCA bring new insights into 

the relationship between age, cognition and functional brain networks. However, these findings 

should be interpreted in light of a number of limitations. The cross-sectional and association-

based nature of the study design precludes causal inferences. A formal analysis of the influence 

of age and the relative preservation of age-related changes with greater educational attainment 

would mandate a longitudinal within-subjects design (Stern, 2016). CR itself represents an 

inherently complex construct (Stern, 2016), with an individual’s innate ability and neuroplastic 

experiences contributing to the slowing of age-related changes in similar (Habeck, et al., 2016; 

Steffener, et al., 2016) and independent forms (Richards and Sacker, 2003a; Suo, et al., 2012). 

Nonetheless, education years remains one of the most widely implemented CR proxies 

(Bartrés-Faz and Arenaza-Urquijo, 2011; Xu, et al., 2015), and is also inextricably intertwined 

with the enriching lifestyle choices that individuals pursue (Ross and Wu, 1996; Valenzuela 

and Sachdev, 2007; Xu, et al., 2015).  

The individual tests were partitioned into cognitive groupings as part of the broader 

longitudinal study (MAS): This was done to facilitate the longitudinal assessment of the current 

study participants, and to compare our findings with widely-adopted theoretical constructs. 

While there is no complete consensus regarding which cognitive domain particular tests should 

be allocated to, our choice was guided by a review of the extant literature and accorded with 

the widespread practice used among neuropsychologists (Lezak, Howieson, & Loring, 2004; 

Strauss, Sherman, & Spreen, 2006; Weintraub et al., 2009). We acknowledge 

neuropsychological tests are multifactorial in structure and even though a test may primarily 

focus on one aspect of cognition, domain performance here is indeed highly-correlated, and is 

thus potentially influenced by shared cognitive processes. As noted, this is particularly the case 
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for the executive-composite. The verbal-abilities also assessed by the FAS (Controlled Oral 

Word Association Test) are closely related to those tapped into by the semantic fluency task, 

grouped within the language domain. The extant literature, however, from both healthy and 

clinical populations supports grouping the FAS and semantic fluency tasks into separate 

domains (Henry and Crawford, 2004; Schmidt, et al., 2017). FAS performance requires the 

suppression of semantically or associatively related words (Katzev, et al., 2013; Luo, et al., 

2010; Shao, et al., 2014), and is hence typically thought to involve executive processes such as 

strategy, initiation, and self-monitoring (Henry and Crawford, 2004). Categorical fluency tasks 

(i.e. the FAS) require more cognitively-demanding resources than semantic fluency tasks 

(Schmidt, et al., 2017),  as individuals within the latter can rely on pre-existing (sub-

)categorical links to retrieve responses (Schmidt, et al., 2017). Distinct functional profiles are 

implicated during categorical and semantic fluency tasks (Birn, et al., 2010; Katzev, et al., 

2013), along with differences in their expression with clinical populations and focal brain 

lesions (Henry and Crawford, 2004; Shao, et al., 2014). Semantic and categorical fluency tasks 

do share overlapping cognitive and neurobiological profiles, and hence cannot be considered 

pure assessments of a cognitive process (Henry and Crawford, 2004; Shao, et al., 2014). 

Nonetheless, both the TMT B and FAS primarily serve similar executive functions (Lezak, et 

al., 2004; Strauss, et al., 2006), and are thus grouped together here.  

We additionally report the internal consistency of the domain scale-items, which 

provide support for our a priori groupings. The executive composite reports a relatively-lower 

scale-item homogeneity - which again is not surprising - given the multifactorial structure of 

such processes. We note that the use of consistency measures for two-item scales is highly 

contested, as they underestimate the reliability of scale-items (Eisinga, et al., 2013; Tavakol 

and Dennick, 2011). The alternative approach to allocating tests to domains would be to use 

factor analysis to form empirically-based domains based on study data. We chose not to take 
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this approach since factors formed this way are more idiosyncratic to the cohort studied and 

the range of tests put into the factor analysis.  

 The presence of three modes in our analyses contrasts to the single mode reported in 

the seminal paper by Smith et al (2015). Given the older age of our cohort and the inclusion of 

age as a factor in our CCA, we propose that this difference reflects the influence of age on 

brain-behaviour correlations in later life, such that age acts independent to the potential 

mitigating effect of earlier education. This interpretation needs to be mindful of other 

differences between the studies, such as the very broad range of cognitive, lifestyle and 

behavioural factors in Smith et al. First, the present study inferred significance by parametric 

methods (i.e. Rao’s F), whilst Smith et al. implemented non-parametric permutations. The issue 

of parametric versus non-parametric model testing remains an active area of debate, with the 

former considered more sensitive when valid and the latter more adaptive to data set size and 

the nature of the distribution of the variability (Bzdok and Yeo, 2017). The current sample size 

is considerably smaller than the cohort of HCP participants employed by Smith et al. In our 

opinion, parametric inference was appropriate to ensure stable and robust linear-model fits 

(Bzdok and Yeo, 2017; Ghahramani, 2015). In some cases, parametric models may be more 

sensitive and stable than their non-parametric counterparts (Eklund, et al., 2016; Friston, 2012). 

It is worth noting that non-parametric models have an increasing role in multivariate fMRI 

analyses (Nichols and Holmes, 2002). Such models are data-driven, and unlike parametric 

inferences, can flexibly adapt to large data sets (Bzdok and Yeo, 2017; Ghahramani, 2015; 

Miller, et al., 2016).  

 Other study differences in Smith et al. include the use of high-temporal resolution rs-

fMRI data and a high dimensional ICA-based approach for de-noising and cortical parcellation. 

The availability of a more modestly size cohort in our study as well as differences in the 

characterization of our cohort precluded the application of an identical pipeline. However, the 
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connectivity patterns expressed by the positive individual traits and behaviours of the younger 

population in Smith et al. are those primarily those of default-mode, control-network, and 

sensory-related cortices. The large-scale interactions between these areas are also particularly 

expressed by the higher intelligence and education levels (i.e. the second mode) of the older 

adults in the present study, which hence speaks to the continued contribution of positive 

phenotypic traits to healthy brain functioning.  

 In conclusion, the present study expands upon a recent multivariate analysis of 

behaviour and functional brain networks in young adults through extension into cognitively-

normal elders. When modelling age in our elderly cohort, we find that brain-cognition relations 

spilt into more than one mode, with age and education loading onto separate modes of 

functional connectivity patterns. Age-related changes in later life are most strongly exerted 

upon sensorimotor networks subserving core cognitive processes such as attention and 

processing speed. We find that changes within these lower-level circuits are independent to 

moderating factors such as higher education attainment, which confer their influence 

independent of age-related effects. The influence of age and education here can provide an 

important benchmark for the study of neurodegenerative disease and furthermore has 

implications for behavioural interventions in elderly populations. Whereas effects of education 

and sex are often controlled for within ageing investigations, the present multivariate approach 

further highlights the rich and complex phenotypic inter-influence on functional connectivity 

patterns. 
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Supplementary Information | Tables and Figures 

 

 

SI Fig 1. Percentage of variance explained by each principal component of the functional 
connectivity edges (N3). The percentage of variance explained by the first fifty eigenvector 
decompositions is shown on the y-axis: The first eight eigenvectors explain 30.1% of the variance 
of the first 50 eigenvectors and 20.3% of the total variance. 
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SI Table 1. Internal consistency of cognitive domain scores 

Domain Spearman-Brown Coefficient 

Attention/Processing Speed 0.72 

Memory 0.87 

Verbal Memory 0.92 

Language 0.65 

Visuo-spatial ability N/A* 

Executive function 0.55 

* Domain composed of one neuropsychological test  
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SI Table 2. Raw performance on the individual neuropsychological tests 

Test Mean (+- SD) Skewness Kurtosis 

DSym  49.46 (11.60) 0.82 4.08 

TMT A 43.74 (13.37) 0.63 3.02 

TMT B 112.08 (43.52) 1.21 4.52 

Semantic fluency 16.84 (3.89) 0.43 3.94 

RVLT total 45.81 (9.28) 0.055 2.55 

RVLT6 short-term 9.57 (2.83) -0.35 2.10 

RVLT7 long-term 8.95 (3.23) -0.25 2.39 

LM delayed 11.36 (3.08) 0.36 2.93 

BVRT 12.67 (1.51) -0.39 2.75 

BNT 26.43 (2.53) -0.76 3.40 

FAS 40.46 (12.39) 0.16 2.76 

Block Design 24.64 (7.40) 0.47 2.69 

DSym, Digit-Symbol Coding; TMT, Trail Making Task; RVLT, Rey Auditory Verbal Learning Test; LM 
delayed, Logical Memory Story A delayed recall; BVRT, Benton Visual Retention Test recognition; BNT, 
Boston Naming Test; FAS, Controlled Oral Word Association Test 
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SI Table 3. Phenotypic information for both the full sample and population subset 

Cohort 
All subjects  
 (n = 101) 

With baseline IQ 
 (n = 91) 

p* 

Demographics    

NESB (n) 10 1 0.23 

M/F (n) 44/57 39/52 0.98 

 Mean (+- SD) Mean (+- SD)  

Age (years) 82.65 (3.81) 82.45 (3.73) 0.95 

Education (years) 12.71 (3.64) 12.51 (3.55) 0.95 

Intelligence    

NART IQ N/A 109.98 (9.41) N/A 

Clinical Rating    

MMSE 29.45 (0.90) 29.40 (0.93) 0.95 

Cognitive Performance    

Attention/Processing Speed 0.07 (0.91) 0.11 (0.93) 0.95 

Executive Function 0.37 (0.77) 0.43 (0.71) 0.95 

Visuospatial Ability 0.19 (0.92) 0.23 (0.90) 0.95 

Language 0.34 (0.93) 0.35 (0.91) 0.99 

Memory 0.57 (0.90) 0.61 (0.90) 0.95 

Verbal Memory 0.50 (0.93) 0.55 (0.93) 0.95 

NESB, Non-English speaking background; NART; National Adult Reading Test; MMSE, Mini-mental status 
examination 

* FDR-corrected 
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SI Fig 2. Strength and direction of relations between demographic and cognitive measures for 
those receiving (n = 91) NART IQ assessment at study baseline. 
* p < 0.05, ** p < 0.01, *** p < 0.001; FDR-corrected 
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SI Fig 3.  Projection of the individual neuropsychological tests onto the population co-variance 
captured by the original CCA. (A-C) Correlation between the individual test scores that comprise 
the cognitive groupings, and the functional connectivity variation (Vm) captured by the original CCA. 
The strength and direction of the relations are indicated by vertical position and font size. 

DSym, Digit-Symbol Coding; TMT, Trail Making Task; RVLT, Rey Auditory Verbal Learning Test; LM 
delayed, Logical Memory Story A delayed recall; BVRT, Benton Visual Retention Test recognition; BNT, 
Boston Naming Test; FAS, Controlled Oral Word Association Test 
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SI Fig 4.  Connectivity edges most positively expressed by the third CCA mode. (A) Connectivity 
edges exhibiting strongest positive associations with functional connectivity patterns (V3).  Line width 
indexes strength of correlation. Circle size is scaled to the number of connections each region shares 
within the network, whilst coloured to their functional network affiliation. The brain meshes are 
presented from axial (middle panel), posterior (top right), and angular perspectives of the left and 
right-hemisphere. (B) Coarse perspective of connectivity distributions across the functional network 
affiliations, with warmer colours indicating greater number of connections.  
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SI Table 4. CCA modes (p < 0.05) with the inclusion of sex  

CCA Mode One  Two 

df1 81 64 

df2 545.36 490.99 

F 1.64 1.38 

λ 0.24 0.38 

R2 0.36 0.25 

RI 0.067 0.038 

p 0.00075  0.033 

λ = Wilk’s lambda; RI = redundancy index 
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SI Fig 5.  Associations between cognitive and demographic measures captured by the CCA 
modes (p < 0.05) including sex (males coded as 1). (A-B) Correlation between subject measures and 
functional connectivity variation (Vm), with the strength and direction of the relations indicated by 
vertical position and font size. 
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SI Table 5. CCA modes (p < 0.05) with including intelligence 

CCA Mode One Two 

df1 81 64 

df2 480.73 433.31 

F 1.65 1.38 

λ 0.21 0.34 

R2 0.40 0.28 

RI 0.077 0.038 

p 0.0008 0.037 

λ = Wilk’s lambda; RI = redundancy index 
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SI Table 6. CCA modes (p < 0.05) with the removal of verbal-memory scores 

CCA Mode One  Two 

df1 49 36 

df2 446.11 389.20 

F 1.99 1.68 

λ 0.37 0.53 

R2 0.31 0.21 

RI 
0.044 0.030 

p 0.00017  0.0097 

λ = Wilk’s lambda; RI = redundancy index 
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SI Fig 6. Associations between cognitive and demographic measures captured by the CCA 
modes (p < 0.05) with the removal of verbal-memory scores. (A-B) Correlation between subject 
measures and functional connectivity variation (Vm), with the strength and direction of the relations 
indicated by vertical position and font size. 
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SI Fig 7. Association between subject motion and connectivity patterns across the three modes. 
(A-C) Scatter plots of functional connectivity patterns (Vm, y-axis) as a function of mean framewise 
displacement (FD), showing a very weak relationship for the first (A), second (B), and third modes 
(C). (D-F) Each subjects weighting towards non-imaging measures (Um, x-axis) and functional 
connectivity patterns with the colour scaled according to subjects mean FD (cool to warm colours).  
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SI Table 7. CCA modes (p < 0.05) with four functional eigenvectors  

CCA Mode One  Two 
df1 32 21 

df2 329.81 258.98 

F 2.29 1.80 

λ 0.48 0.68 

R2 0.30 0.21 

RI 0.049 0.026 

p 0.00015  0.019 

λ = Wilk’s lambda; RI = redundancy index 
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SI Fig 8. Associations between cognitive and demographic measures captured by the CCA 
modes(p < 0.05) with four functional components fed into the analysis. (A-B) Correlation between 
subject measures and functional connectivity variation (Vm) of each mode, with the strength and 
direction of the relations indicated by vertical position and font size. 
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SI Table 9. CCA modes (p < 0.05) with a coarser parcellation scheme 

CCA Mode One  Two 

df1 64 49 

df2 496.76 441.03 

F 1.74 1.45 

λ 0.31 0.47 

R2 0.33 0.22 

RI 0.075 0.039 

p 0.00067 0.021 

λ = Wilk’s lambda; RI = redundancy index 
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SI Fig 9.  Associations between cognitive and demographic measures captured by the CCA 
modes (p < 0.05) utilizing a coarser parcellation scheme. (A-B) Correlation between subject 
measures and functional connectivity variation (Vm), with the strength and direction of the relations 
indicated by vertical position and font size. 
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SI Fig 10. Connectivity edges most strongly expressed by the CCA modes (p < 0.05) with brain 
networks constructed by a coarser parcellation template. Connectivity edges exhibiting the 
strongest positive (A) and negative associations (B) with the functional connectivity patterns of the 
first mode (V1). (C) Connectivity edges exhibiting the strongest positive associations (B) with the 
second mode (V2).  Line width indexes strength of correlation. Node size is scaled to the number of 
connections each region shares within the network and colour indicates their functional network 
affiliation. The brain meshes are presented from axial (left panel), and angular perspectives of the left 
(right) and right-hemisphere (middle).  
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SI Table 10. CCA modes (p < 0.05) with a smoothing kernel of 6mm  

CCA Mode One  Two 

df1 64 49 

df2 496.76 441.03 

F 1.75 1.52 

λ 0.30 0.45 

R2 0.32 0.22 

RI 0.071 0.032 

p 0.00055  0.017 

λ = Wilk’s lambda; RI = redundancy index 
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SI Fig 11. Associations between cognitive and demographic measures captured by the CCA 
modes (p < 0.05) with a smoothing kernel of 6mm applied. (A-B) Correlation between subject 
measures and functional connectivity variation (Vm) for each mode, with the strength and direction of 
the relations indicated by vertical position and font size. 
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SI Fig 12.  Functional connections strongly expressed for both with and without including 
intelligence in the second CCA mode. Circle size is scaled to the number of connections each region 
shares within the network, whilst coloured to their functional network specialisation. The brain 
meshes are presented from axial (top right panel), and angular perspectives of the left (top left) and 
right-hemisphere (bottom left) 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 25, 2017. ; https://doi.org/10.1101/154898doi: bioRxiv preprint 

https://doi.org/10.1101/154898
http://creativecommons.org/licenses/by-nc-nd/4.0/

