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Abstract5

We evaluate the performance of three metagenome assemblers, IDBA,6

MetaSPAdes, and MEGAHIT, on short-read sequencing of a defined7

“mock” community containing 64 genomes (Shakya et al. (2013)). We8

update the reference metagenome for this mock community and detect9

several additional genomes in the read data set. We show that strain10

confusion results in significant loss in assembly of reference genomes11

that are otherwise completely present in the read data set. In agree-12

ment with previous studies, we find that MEGAHIT performs best13

computationally; we also show that MEGAHIT tends to recover larger14

portions of the strain variants than the other assemblers.15
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Introduction16

Metagenomics refers to sequencing of DNA from a mixture of organisms,17

often from an environmental or uncultured sample. Unlike whole genome18

sequencing, metagenomics targets a mixture of genomes, which introduces19

metagenome-specific challenges in analysis [1]. Most approaches to analyz-20

ing metagenomic data rely on mapping or comparing sequencing reads to21

reference sequence collections. However, reference databases contain only22

a small subset of microbial diversity [2], and much of the remaining diver-23

sity is evolutionarily distant and reference-based search techniques may not24

recover it [3].25

As sequencing capacity increases and sequence data is generated from26

many more environmental samples, metagenomics is increasingly using de27

novo assembly techniques to generate new reference genomes and metagenomes28

[4]. There are a number of metagenome assemblers that are widely used -29

see [5] for an overview of the available software, and [1] for a review of the30

different assembler methodologies. However, evaluating the results of these31

assemblers is challenging due to the general lack of good quality reference32

metagenomes.33

Moya et al. in [6] evaluated metagenome assembly using two simulated34

454 viral metagenome and six assemblers. The assemblies were evaluated35

based on several metrics including N50, percentages of reads assembled,36

accuracy when compared to the reference genome. In addition to these met-37

rics, the authors evaluated chimeras per contigs and the effect of assembly38

on taxonomic and functional annotations.39

Mavromatis et al. in [7] provided a benchmark study to evaluate the40

fidelity of metagenome processing methods. The study used simulated41

metagenomic data sets constructed at different complexity levels. The datasets42

were assembled using Phrap v3.57, Arachne v.2 [8] and JAZZ [9]. This study43

evaluates assembly, gene prediction, and binning methods. However, the44

study did not evaluate the assembly quality against a reference genome.45

Rangwala et al. in [10] presented an evaluation study of metagenome46

assembly. The study used a de Bruijn graph based assembler ABYSS [11] to47

assemble simulated metagenome reads of 36 bp. The data set is classified at48

different complexity levels. The study compared the quality of the assembly49

of the data sets in terms of contig length and assembly accuracy. The50

study also took into consideration the effect of kmer size and the degree of51

chimericity. However, the study evaluated the assembly based on only one52

assembler. Also, these previous studies used simulated data, which may lack53
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confounders of assembly such as sequencing artifacts and GC bias.54

In a landmark study, Shakya et al. (2013) constructed a synthetic com-55

munity of organisms by mixing DNA isolated from individual cultures of 6456

bacteria and archaea, including a variety of strains across a range of average57

nucleotide distances [12]. In addition to performing 16s amplicon analy-58

sis and doing 454 sequencing, the authors shotgun-sequenced the mixture59

with Illumina. While the authors concluded that this metagenomic sequenc-60

ing generally outperformed amplicon sequencing, they did not conduct an61

assembly based analysis. This data set was also used in several other eval-62

uation studies, including gbtools for binning [13] and benchmarking of the63

MEGAHIT assembler [14].64

More recently, several benchmark studies systematically evaluated metagenome65

assembly of short reads. The Critical Assessment of Metagenome Interpre-66

tation (CAMI) collaboration benchmarked a number of metagenome assem-67

blers on several data sets of varying complexity, evaluating recovery of novel68

genomes and multiple strain variants [3]. Notably, CAMI concluded that69

“The resolution of strain-level diversity represents a substantial challenge70

to all evaluated programs.” Another recent study evaluated eight assem-71

blers on nine environmental metagenomes and three simulated data sets72

and provided a workflow for choosing a metagenome assembler based on73

the biological goal and computational resources available [15]. [5] explored74

metagenome assembler performance on a pair of real data sets, again con-75

cluding that the biological goal and computational resources defined the76

choice of assembler. Also see [16] for an analysis of a previously generated77

HMP benchmark data set; however, the Illumina reads used for this study78

are much shorter than current sequencing and are arguably not relevant to79

future studies.80

In this study, we extend previous work by delving into questions of81

chimeric misassembly and strain recovery in the Shakya et al. (2013) data82

set. First, we update the list of reference genomes for Shakya et al. to in-83

clude the latest GenBank assemblies along with plasmids. We then compare84

IDBA [17], MetaSPAdes [18], and MEGAHIT [19] performance on assem-85

bling this short-read data set, and explore concordance in recovery between86

the three assemblers. We describe the effects of “strain confusion” between87

multiple strains. We also detect and analyze several previously unreported88

strains and genomes in the Shakya et al. data set. We find that in the ab-89

sence of closely related genomes, all three metagenome assemblers recover90

95% or more of known reference genomes. However, in the presence of91

closely related genomes, these three metagenome assemblers vary widely in92
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their performance and, in extreme cases, can fail to recover the majority of93

some genomes even when they are completely present in the reads. Our re-94

port provides strong guidance on choice of assemblers and extends previous95

analyses of this low-complexity metagenome benchmarking data set.96

Datasets97

We used a diverse mock community data set constructed by pooling DNA98

from 64 species of bacteria and archaea and sequencing them with Illumina99

HiSeq. The raw data set consisted of 109,629,496 reads from Illumina HiSeq100

101 bp paired-end sequencing (2x101) with an untrimmed total length of101

11.07 Gbp and an estimated fragment size of 380 bp [12].102

The original reads are available through the NCBI Sequence Read Archive103

at Accession SRX200676. We updated the 64 reference genomes sets from104

NCBI GenBank using the latest available assemblies with plasmid content105

(June 2017); the accession numbers are available as accession-list-ref.txt106

in the Zenodo repository, DOI: 10.5281/zenodo.821919. For convenience, the107

updated reference genome collection is available for download at the archival108

URL https://osf.io/vbhy5/.109

Methods110

The analysis code and run scripts for this paper are written in Python and111

bash, and are available at https://github.com/dib-lab/2016-metagenome-112

assembly-eval/ (archived at Zenodo DOI: 10.5281/zenodo.821919). The113

scripts and overall pipeline were examined by the first and senior authors for114

correctness. In addition, the bespoke reference-based analysis scripts were115

tested by running them on a single-colony E. coli MG1655 data set with a116

high quality reference genome [20].117

Quality Filtering118

We removed adapters with Trimmomatic v0.30 in paired-end mode with119

the TruSeq adapters [21], using light quality score trimming (LEADING:2120

TRAILING:2 SLIDINGWINDOW:4:2 MINLEN:25) as recommended in MacManes,121

2014 [22].122
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Reference Coverage Profile123

To evaluate how much of the reference metagenome was contained in the124

read data, we used bwa aln (v0.7.7.r441) to map reads to the reference125

genome [23]. We then calculated how many reference bases were covered by126

mapped reads (custom script coverage-profile.py).127

Measuring k-mer inclusion and Jaccard similarity128

We used MinHashing as implemented in sourmash to estimate k-mer inclu-129

sion and Jaccard similarity between data sets [24]. MinHash signatures were130

prepared with sourmash compute using --scaled 10000. K-mer inclusion131

was computed by taking the ratio of the number of intersecting hashes with132

the query over the total number of hashes in the subject MinHash. Jac-133

card similarity was computed as in [25] by taking the ratio of the number134

of intersecting hashes between the query and subject over the number of135

hashes in the union. K-mer sizes for comparison were chosen at 21, 31, or136

51, depending on the level of taxonomic specificity desired - genus, species,137

or strain, respectively, as described in [26].138

Where specified, high-abundance k-mers were selected for counting by139

using the script trim-low-abund.py script with -C 5 from khmer v2 [27,140

28].141

Assemblers142

We assembled the quality-filtered reads using three different assemblers:143

IDBA-UD [17], MetaSPAdes [18], and MEGAHIT [19]. For IDBA-UD v1.1.3144

[17], we used --pre correction to perform pre-correction before assembly145

and -r for the pe files. IDBA could not ingest orphan sequences so singleton146

reads were omitted from this assembly.147

For MetaSPAdes v3.10.1 [18], we used --meta --pe1-12 --pe1-s where148

--meta is used for metagenomic data sets, --pe1-12 specifies the interlaced149

reads for the first paired-end library, and --pe1-s provides the orphan reads150

remaining from quality trimming.151

For MEGAHIT v1.1.1-2-g02102e1 [19], we used -l 101 -m 3e9 --cpu-only152

where -l is for maximum read length, -m is for max memory in bytes to153

be used in constructing the graph, and --cpu-only uses only the CPU154

and no GPUs. We also used --presets meta-large for large and complex155

metagenomes, and --12 and -r to specify the interleaved-paired-end and156
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single-end files respectively. MEGAHIT allows the specification of a memory157

limit and we used -M 1e+10 for 10 GB.158

All three assemblies were executed on the same XSEDE Jetstream in-159

stance (S1.Xxlarge) at Indiana University, running Ubuntu 16.04 (install160

6/21/17, Ubuntu 16.04 LTS Development + GUI support + Docker; based161

on Ubuntu cloud image for 16.04 LTS with basic dev tools, GUI/Xfce162

added). Assemblers were limited to 16 threads. We recorded RAM and CPU163

time for each assembly using /usr/bin/time -v. Install and execute details164

as well as output timings and logs are available in the pipeline/runstats165

directory of the Zenodo archive.166

Unless otherwise mentioned, we eliminated all contigs less than 500 bp167

from each assembly prior to further analysis.168

Mapping169

We aligned all quality-filtered reads to the reference metagenome with bwa170

aln (v0.7.7.r441) [23]. We aligned paired-end and orphaned reads separately.171

We then used samtools (v0.1.19) [29] to convert SAM files to BAM files for172

both paired-end and orphaned reads. To count the unaligned reads, we173

included only those records with the “4” flag in the SAM files [29].174

Assembly analysis using NUCmer175

We used the NUCmer tool from MUMmer3.23 [30] to align assemblies to the176

reference genome with options -coords -p. Then we parsed the generated177

“.coords” file using a custom script analyze assembly.py, and calculated178

several analysis metrics across all three assemblies at a 99% alignment iden-179

tity.180

Reference-based analysis of the assemblies181

We conducted reference-based analysis of the assemblies under two condi-182

tions. “Loose” alignment conditions used all available alignments, including183

redundant and overlapping alignments. “Strict” alignment conditions took184

only the longest alignment for any given contig, eliminating all other align-185

ments.186

The script summarize-coords2.py was used to calculate aligned cov-187

erage from the loose alignment conditions: each base in the reference was188

marked as “covered” if it was included in at least one alignment. The script189
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analyze ng50.py was used to calculate NGA 50 for each individual refer-190

ence genome.191

Analysis of chimeric misassemblies192

We analyzed each assembly for chimeric misassemblies by counting the num-193

ber of contigs that contained matches to two distinct reference genomes. In194

order to remove secondary alignments from consideration, we included only195

the longest non-overlapping NUCmer alignments for each contig at a mini-196

mum alignment identity of 99%. We then used the script analyze chimeric2.py197

to find individual contigs that matched more than one distinct reference198

genome. As a negative control on our analysis, we verified that this ap-199

proach yielded no positive results when applied to the alignments of the200

reference metagenome against itself.201

Analysis of unmapped reads202

We conducted assembly and analysis of unmapped reads with MEGAHIT,203

NUCmer, and sourmash as above. The new GenBank genomes are listed in204

the Zenodo archive at the file accession-list-unmapped.txt and for con-205

venience are available for download at the archival URL https://osf.io/34ef8/.206

Results207

The raw data is high quality.208

The reads contain 11,072,579,096 bp (11.07 Gbp) in 109,629,496 reads with209

101.0 average length (2x101bp Illumina HiSeq).210

Trimming removed 686,735 reads (0.63%). After trimming, we retained211

108,422,358 paired reads containing 10.94 Gbp with an average length of212

100.9 bases. A total of 46.56 Mbp remained in 520,403 orphan reads with213

an average length of 89.5 bases. In total, the quality trimmed data contained214

10.98 Gbp in 108,942,761 reads. This quality trimmed (“QC”) data set was215

used as the basis for all further analyses.216
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Figure 1: Cumulative coverage profile for the reference metagenome, based
on read mapping.

Table 1: Jaccard containment of the reference in the reads
k-mer size % reference in reads

21 96.8%

31 95.9%

41 94.9%

51 94.1%

The reference metagenome is not completely present in the217

reads.218

We next evaluated the fraction of the reference genome covered by at least219

one read (see Methods for details). Quality filtered reads cover 203,058,414220

(98.76%) bases of the reference metagenome (205,603,715 bp total size). Fig-221

ure 1 shows the cumulative coverage profile of the reference metagenome,222

and the percentage of bases with that coverage. Most of the reference223

metagenome was covered at least minimally; only 3.33% of the reference224

metagenome had mapping coverage <5, and 1.24% of the bases in the ref-225

erence were not covered by any reads in the QC data set.226

In order to evaluate reconstructability with De Bruijn graph assemblers,227

we next examined k-mer containment of the reference in the reads for k of228

21, 31, 41, and 51 (Table 1). The k-mer overlap decreases from 96.8% to229

94.1% as the k-mer size increases. This could be caused by low coverage of230

some portions of the reference and/or variation between the reads and the231

reference.232
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Some individual reference genomes are poorly represented in233

the reads.234

Table 2: Top uncovered genomes
Genome Read coverage

Desulfovibrio vulgaris DP4 93.2%

Thermus thermophilus HB27 91.1%

Enterococcus faecalis V583 74.6%

Fusobacterium nucleatum 47.6%

To see if specific reference genomes exhibited low coverage, we analyzed235

read mapping coverage for individual genomes. Of the 64 reference genomes236

used in the metagenome, 60 had a per-base mapping coverage above 95%.237

The remaining four varied significantly (Table 2), with F. nucleatum the238

lowest – only 47.6% of the bases in the reference genome are covered by one239

or more mapped reads.240

We next did a 51-mer containment analysis of each reference genome in241

the reads; k=51 was chosen so as to be specific to strain content [26]. 99%242

or more of the constituent 51-mers for 51 of the 64 reference genomes were243

present in the reads, suggesting that each of the 51 genomes was entirely244

present at some minimal coverage.245

We excluded the remaining 13 genomes (see Table 3) from any fur-246

ther reference-based analysis because interpreting recovery and misassembly247

statistics for these genomes would be confounding; also see the discussion of248

strain variants, below.249

MEGAHIT is the fastest and lowest-memory assembler eval-250

uated251

We ran three commonly used metagenome assemblers on the QC data set:252

IDBA-UD, MetaSPAdes, and MEGAHIT. We recorded the time and mem-253

ory usage of each (Table 4). In computational requirements, MEGAHIT254

outperformed both MetaSPAdes and IDBA-UD, , producing an assembly in255

1.5 hours (“wall time”) – 1.6 times faster than IDBA and 2.6 times faster256

than MetaSPAdes. MEGAHIT used only 10 GB of RAM as requested –257

about 60% of the memory used by IDBA and a third of the memory used by258

MetaSPAdes. CPU time measurements (which include processing on multi-259

ple CPU cores) show that all three assemblers use multiple cores effectively.260
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Table 3: Genomes removed from reference for low 51-mer presence
51-mers in reads Genome

98.7 Leptothrix cholodnii

98.7 Haloferax volcanii DS2

98.6 Salinispora tropica CNB-440

97.4 Deinococcus radiodurans

97.2 Zymomonas mobilis

97.1 Ruegeria pomeroyi

96.8 Shewanella baltica OS223

95.5 B. bronchiseptica D989

94.5 Burkholderia xenovorans

72.0 Desulfovibrio vulgaris DP4

65.0 Thermus thermophilus HB27

53.4 Enterococcus faecalis

4.7 Fusobacterium nucleatum ATCC 25586

Table 4: Running Time and Memory Utilization
Assembler CPU time Wall time RAM (Max RSS)

MEGAHIT 1191m 1h 33m 10 GB

IDBA-UD 1904m 2h 27m 17 GB

MetaSPAdes 2554m 4h 7m 28 GB

The assemblies contain most of the raw data261

Table 5: Read and high-abundance (> 5) k-mer exclusion from assemblies
Assembly Unmapped Reads 51-mers omitted

IDBA 3,328,674 (3.05%) 2.4%

MetaSPAdes 3,844,123 (3.52%) 3.2%

MEGAHIT 2,737,640 (2.51%) 2.8%

We assessed read inclusion in assemblies by mapping the QC reads to262

the length-filtered assemblies and counting the remaining unmapped reads.263

Depending on the assembly, between 2.7 million and 3.9 million reads (2.5-264

3.5%) did not map to the assemblies (Table 5). All of the assemblies included265

the large majority of high-abundance 51-mers (more than 96.8% in all cases).266
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Much of the reference is covered by the assemblies.267

Table 6: Contig coverage of reference with loose alignment conditions.
Assembly bases aligned duplication 51-mers

MEGAHIT 94.8% 1.0% 96.7%

MetaSPAdes 93.1% 1.1% 96.2%

IDBA 93.6% 0.98% 97.2%

We next evaluated the extent to which the assembled contigs recovered268

the “known/true” metagenome sequence by aligning each assembly to the269

adjusted reference (Table 6). Each of the three assemblers generates contigs270

that cover more than 93.1% of the reference metagenome at high identity271

(99%) with little duplication (approximately 1%). All three assemblies con-272

tain between 96.2% and 97.2% of the 51-mers in the reference.273

At 99% identity with the loose mapping approach, approximately 2.5% of274

the reference is missed by all three assemblers, while 1.7% is uniquely covered275

by MEGAHIT, 0.74% is uniquely covered by MetaSPAdes, and 0.64% is276

uniquely covered by IDBA.277

The generated contigs are broadly accurate.278

Table 7: Contig accuracy measured by reference coverage with strict align-
ment.

Assembly % covered

MEGAHIT 89.3%

IDBA 87.7%

MetaSPAdes 83.4%

When counting only the best (longest) alignment per contig at a 99%279

identity threshold, each of the three assemblies recovers more than 87.3% of280

the reference, with MEGAHIT recovering the most – 89.3% of the reference281

(Table 7).282
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Herpetosiphon aurantiacus ATCC 23779

Wolinella succinogenes DSM 1740
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Archaeoglobus fulgidus DSM 4304

Nostoc sp. PCC 7120
Pelodictyon phaeoclathratiforme BU-1

Bacteroides vulgatus ATCC 8482
Methanocaldococcus jannaschii DSM 2661

Desulfovibrio piger ATCC 29098
Pyrobaculum aerophilum str. IM2

Clostridium thermocellum ATCC 27405
Pyrococcus furiosus DSM 3638

Sulfolobus tokodaii
Thermoanaerobacter pseudethanolicus

Chloroflexus aurantiacus
Thermotoga neapolitana ∗

Nitrosomonas europaea ATCC 19718
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Thermotoga petrophila ∗
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Figure 2: NGA50 and genome fraction covered, by genome and assembler.
A ’*’ after the name indicates the presence of at least one other genome with
> 2% Jaccard similarity at k=31 in the community. Where NGA50 cannot
be calculated due to poor coverage, a marker is placed at 1kb.

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/155358doi: bioRxiv preprint 

https://doi.org/10.1101/155358
http://creativecommons.org/licenses/by/4.0/


Individual genome statistics vary widely in the assemblies.283

We computed the NGA50 for each individual genome and assembly in order284

to compare assembler performance on genome recovery (see left panel of Fig-285

ure 2). The NGA50 statistics for individual genomes vary widely, but there286

are consistent assembler-specific trends: IDBA yields the lowest NGA50 for287

28 of the 51 genomes, while MetaSPAdes yields the highest NGA50 for 32288

of the 51 genomes.289

We also evaluated aligned coverage per genome for each of the three290

assemblies (right panel, Figure 2). We found that 13 of the 51 genomes were291

missing 5% or more of bases in at least one assembly, despite all 51 genomes292

having 99% or higher read- and 51-mer coverage.293

There are 12 genomes with k=31 Jaccard similarity greater than 2%294

to other genomes in the community, and these (denoted by ’*’ after the295

name) typically had lower NGA50 and aligned coverage numbers than other296

genomes. In particular, these constituted 12 of the 13 genomes missing 5%297

or more of their content, and the lowest eight NGA50 numbers.298

Longer contigs are less likely to be chimeric.299

Table 8: Chimeric contigs by contig length.
Assembly > 50kb > 5kb > 500 bp

IDBA 0 1 7 (0.06%)
MEGAHIT 1 4 14 (0.13%)
MetaSPAdes 0 3 30 (0.48%)

Chimerism is the formation of contigs that include sequence from multi-300

ple genomes. We evaluated the rate of chimerism in contigs at three different301

contig length cutoffs: 500bp, 5kb, and 50kb (Table 8). We found that the302

percentage of contigs that match to the genomes of two or more different303

species drop as the minimum contig size increases, to the point where only304

the MEGAHIT assembly had a single chimeric contig longer than 50kb.305

Overall, chimeric misassemblies were rare, with no assembler generating306

more than 30 chimeric contigs out of thousands of total contigs.307

The unmapped reads contain strain variants of reference genomes.308

Approximately 4.8 million reads (4.4%) from the QC data set did not map309

anywhere in the reference provided by the authors of [12]. We extracted310
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Table 9: GenBank genomes detected in assembly of unmapped reads
match GenBank genome

44.1% Fusobacterium sp. OBRC1

23.0% P. ruminis strain ML2

18.2% Thermus thermophilus HB8

7.7% P. ruminis strain CGMCC

8.2% Enterococcus faecalis M7

7.3% F. nucleatum 13 3C

3.7% F. nucleatum subsp. polymorphum

2.9% Fusobacterium hwasookii

1.0% E. coli isolate YS

1.7% F. nucleatum subsp. polymorphum, alt.

1.9% F. nucleatum subsp. vincentii

and assembled these reads in isolation using MEGAHIT, yielding 6.5 Mbp311

of assembly in 1711 contigs > 500bp in length. We then did a k-mer in-312

clusion analysis of this assembly against all of the GenBank genomes at313

k=31, and estimated the fraction of the k-mers that belonged to different314

species (Table 9). We find that 51.1% of the k-mer content of these contigs315

positively match to a genome present in GenBank but not in the reference316

metagenome.317

To verify these assignments, we aligned the MEGAHIT assembly of un-318

mapped reads to the GenBank genomes in Table 9 with NUCmer using319

“loose” alignment criteria. We found that 1.78 Mbp of the contigs aligned320

at 99% identity or better to these GenBank genomes. We also confirmed321

that, as expected, there are no matches in this assembly to the full updated322

reference metagenome.323

We note that all but the two P. ruminis matches and the E. coli isolate324

YS are strain variants of species that are part of the defined community325

but are not completely present in the reads (see Table 2). For Proteiniclas-326

ticum ruminis, there is no closely related species in the mock community327

design, and very little of the MEGAHIT assembly aligns to known P. ru-328

minis genomes at 99%. However, there are many alignments to P. ruminis329

at 94% or higher, for approximately 2.73 Mbp total. This suggests that the330

unmapped reads contain at least some data from a novel species of Proteini-331

clasticum; this matches the observation in [12] of a contaminating genome332

from an unknown Clostridium spp., as at the time there was no P. ruminis333

genome.334
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Discussion335

Assembly recovers basic content sensitively and accurately.336

All three assemblers performed well in assembling contigs from the con-337

tent that was fully present in reads and k-mers. After length filtering,338

all three assemblies contained more than 95% of the reference (Table 6);339

even with removal of secondary alignments, more than 87% was recovered340

by each assembler (Table 7). About half the constituent genomes had an341

NGA50 of 50kb or higher (Figure 2), which, while low for current Illumina342

single-genome sequencing, is sufficient to recover operon-level relationships343

for many genes.344

The presence of multiple closely related genomes confounds345

assembly.346

In agreement with CAMI, we also find that the presence of closely related347

genomes in the metagenome causes loss of assembly [3]. This is clearly shown348

by Figure 2, where 12 of the bottom 14 genomes by NGA50 (left panel)349

also exhibit poor genome recovery by assembly (right panel). Interestingly,350

different assemblers handle this quite differently, with e.g. MetaSPAdes351

failing to recover essentially any of Thermotoga petrophila, while MEGAHIT352

recovers 73%. The presence of nearby genomes is an almost perfect predictor353

that one or more assembler will fail to recover 5% or more - of the 13/51354

genomes for which less than 95% is recovered, 12 of them have close genomes355

in the community. Interestingly, very little similarity is needed - all genomes356

with Jaccard similarity of 2% or higher at k=31 exhibit these problems.357

The Shewanella baltica OS185 genome is a good example: there are two358

strain variants, OS185 and OS223, present in the defined community. Both359

are present at more than 99% in the reads, and more than 98% in 51-mers,360

but only 75% of S. baltica OS185 and 50% of S. baltica OS223 are recovered361

by assemblers. This is a clear case of “strain confusion” where the assemblers362

simply fail to output contigs for a substantial portion of the two genomes.363

Another interest of this study was to examine cross-species chimeric as-364

sembly, in which a single contig is formed from multiple genomes. In Table 8,365

we show that there is relatively little cross-species chimerism. Surprisingly,366

what little is present is length-dependent: longer contigs are less likely to367

be chimeric. This might well be due to the same “strain confusion” effect368

as above, where contigs that share paths in the assembly graphs are broken369

in twain.370
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MEGAHIT performs best by several metrics.371

MEGAHIT is clearly the most efficient computationally, outperforming both372

MetaSPAdes and IDBA in memory and time (Table 4). The MEGAHIT373

assembly also included more of the reads than either IDBA or MetaSPAdes,374

and omitted only 0.4% more of the unique 51-mers from the reads than375

IDBA. MEGAHIT covered more of the reference genome with both loose376

and strict alignments (Table 6 and Table 7), with little duplication. This is377

clearly because of MEGAHIT’s generally superior performance in recovering378

the genomes of closely related strains (Figure 2, right panel). The sum379

“fraction of genome recovered” is arguably the most important measure of380

a metagenome assembler (see [5] in particular) and here MEGAHIT excels381

for individual genomes even in the presence of strain variation.382

In general other studies have found that MEGAHIT excels in recovery of383

sequence through assembly [3, 16] and is considerably more computationally384

efficient than most other assemblers [3, 15]. However, studies have also385

shown that MEGAHIT produces more misassemblies than other assemblers386

[3] and performs poorly on high coverage portions of the data set [5] Thus387

while we can recommend MEGAHIT as a good first assembler, we can also388

not unambiguously recommend it as the only assembler to use.389

When comparing details of sequence recovery between the assemblers,390

the assembly content differs by only a small amount when loose alignments391

are allowed: all three assemblers miss more content (approximately 2.5% of392

the reference) than they generate uniquely (1.7% or less). In addition to393

preferring no one assembler over any other, this suggests that combining as-394

semblies may have little value in terms of recovering additional metagenome395

content. The genome alignment statistics in Figure 2 suggest that much of396

this differential assembly content is due to the impact of strains.397

The missing reference may be present in strain variants of the398

intended species.399

Several individual genomes are missing in measurable portion from the QC400

reads (Table 2), and many QC reads (4.4% of 108m) did not map to the full401

reference metagenome. These appear to be related issues: upon analysis of402

the unmapped reads against GenBank, we find that many of the contigs as-403

sembled from the unmapped reads can be assigned to strain variants of the404

species in the mock community (Table 9) and align closely to the identified405

genomes. This suggests that the constructors of the mock community may406

have unintentionally included strain variants of Fusobacterium nucleatum,407
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Thermus thermophilus HB27, and Enterococcus faecalis; note that the mi-408

crobes used were sourced from the community rather than the ATCC (M.409

Podar, pers. communication). In addition, we detect what may be por-410

tions of a novel member of the Proteiniclasticum genus in the assembly of411

these reads - this is likely the Clostridium spp. detected through amplicon412

sequencing in [12].413

Without returning to the original DNA samples, it is impossible to con-414

clusively confirm that unintended strains were used in the construction of the415

mock community. In particular, our analysis is dependent on the genomes in416

GenBank: the genomes we detect in the contigs are clearly closely related to417

GenBank genomes not in the reference metagenome, based on k-mer anal-418

ysis and contig alignment. However, GenBank is unlikely to contain the419

exact genomes of the actually included strain variants, rendering conclusive420

identification impossible.421

Conclusions422

Overall, assembly of this mock community works well, with good recovery423

of known genomic sequence for the majority of genomes. All three assem-424

blers that we evaluated recover similar amounts of most genomic sequence,425

but (recapitulating several other studies [3, 5, 15]) MEGAHIT is compu-426

tationally the most efficient of the three. We note that assembly resolves427

substantial portions of several previously undetected strain variants, as well428

as recovering a substantial portion of a novel Proteiniclasticum spp. that429

was detected via amplicon analysis in [12], suggesting that assembly is a430

useful complement to amplicon or reference-based analyses.431

The presence of closely related strains is a major confounder of metagenome432

assembly, and causes assemblers to drop considerable portions of genomes433

that (based on read mapping and k-mer inclusion) are clearly present. In this434

relatively simple community, this strain confusion is present but does not435

dominate the assembly. However, real microbial communities are likely to436

have many closely related strains and any resulting loss of assembly would437

be hard to detect in the absence of good reference genomes. While high438

polymorphism rates in e.g. animal genomes are known to cause duplication439

or loss of assembly, some solutions have emerged that make use of assump-440

tions of uniform coverage and diploidy [31]. These solutions cannot however441

be transferred directly to metagenomes, which have unknown abundance442

distributions and strain content.443
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An additional concern is that metagenome assemblies are often per-444

formed after pooling data sets to increase coverage (e.g. [4, 32]); this pooled445

data is more likely to contain multiple strains, which would then in turn446

adversely affect assembly of strains. This may not be resolvable within the447

current paradigm of assembly, which focuses on outputting linear assem-448

blies that cannot properly represent strain variation. The human genomics449

community is moving towards using reference graphs, which can represent450

multiple incompatible variants in a single data structure [33]; this approach,451

however, requires high-quality isolate reference genomes, which are generally452

unavailable for environmental microbes.453

Long read sequencing (and related technologies) will undoubtedly help454

resolve strain variation in the future, but even with highly accurate long-455

read sequencing, current sequencing depth is still too low to resolve deep456

environmental metagenomes [34, 35]. It is unclear how well long error-457

prone reads (such as those output by Pacific Biosciences SMRT [36] and458

Oxford Nanopore instruments [37]) will perform on complex metagenomes:459

with high error rates, deep coverage of each individual genome is required460

to achieve accurate assembly, and this may not be easily obtainable for461

complex communities. Single-molecule barcoding (e.g. 10X Genomics [38])462

and HiC approaches [39] show promise but these remain untested on well-463

defined complex communities and are still challenged by the complexity of464

complex environmental metagenomes; see [40, 41, 42].465

Much of our analysis above depends on having a high-quality “mock”466

metagenome. While computationally constructed synthetic communities467

and computational “spike-ins” to real data sets can provide valuable controls468

(e.g. see [15] and [43]) we strongly believe that standardized communities469

constructed in vitro and sequenced with the latest technologies are critical470

to the evaluation of both canonical and emerging tools, e.g. efforts such as471

[44]. From the perspective of tool evaluation, we disagree somewhat with472

Vollmers et al. [5]: good metagenome tool evaluation necessarily depends473

on mock communities that are as realistic as we can make them. Likewise,474

from the perspective of bench biologists, actually sequencing real DNA is475

critical because it can evaluate confounding effects such as kit contamina-476

tion [45]. Large-scale studies of computational approaches systematically477

applied to mock communities such as CAMI [3] can then provide fair com-478

parisons of entire toolchains (wet and dry combined) applied to these mock479

communities.480

We omitted two important questions in this study: binning and choice481

of parameters. We chose not to evaluate genome binning because most bin-482
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ning strategies either operate post-assembly (see e.g. [46]), in which case483

the challenges with assembly discussed above will apply; or require multi-484

ple samples (e.g. [47]), which we do not have. We also chose to use only485

default parameters with all three assemblers, for two reasons. First, we486

are not aware of any effective automated approaches for determining the487

“best” set of parameters or evaluating the output for metagenome assem-488

blers, other than those integrated into the assemblers themselves (e.g. the489

choice of k-mer sizes by MEGAHIT and MetaSPAdes), and absent such490

guidance we do not feel comfortable blessing any particular set of parame-491

ters; here the choice of default parameters is parsimonious (and also see [48]492

for the dangers of poorly chosen objective functions). Second, any param-493

eter exploration pipeline would not only need to be automated but would494

need to run multiple assemblies, whose time and resource usage should be495

measured; in this case, any comparison based on runtime of the parameter496

choice pipeline should naturally favor MEGAHIT because of its advantage497

in computational efficiency.498
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Markus Göker, Charles T. Parker, Rudolf Amann, Brian J. Beck, Patrick S. G.517

Chain, Jongsik Chun, Rita R. Colwell, Antoine Danchin, Peter Dawyndt, Tom518

Dedeurwaerdere, Edward F. DeLong, John C. Detter, Paul De Vos, Timothy J.519

Donohue, Xiu-Zhu Dong, Dusko S. Ehrlich, Claire Fraser, Richard Gibbs, Jack520
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