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Abstract 

Musicians can perform at different tempos, speakers can control the cadence of their speech,              

and children can flexibly vary their temporal expectations of events. To understand the neural              

basis of such flexible timing, we recorded from the medial frontal cortex of primates trained to                

produce different time intervals with different effectors. The activity of neurons was            

heterogeneous, nonlinear and complex. However, responses were unified under a remarkable           

form of invariance: firing rate profiles were temporally stretched for longer intervals and             

compressed for short ones. At the network level, this phenomenon was evident by flexible              

changes in the speed with which the population activity traced an invariant trajectory. To identify               

the origin of speed control, we recorded from both downstream caudate neurons and thalamic              

neurons projecting to the medial frontal cortex. Speed adjustments were a prominent feature in              

the caudate but not in the thalamus suggesting that this phenomenon originates within cortical              

networks. To understand the underlying mechanisms, we created recurrent neural network           

models at different levels of complexity that could explain flexible timing with speed control.              

Analysis of the models revealed that the key to flexible speed control was the action of an                 

external input upon the nonlinearities of individual neurons whose recurrent interactions set the             

network’s relaxation dynamics. These findings demonstrate a simple and general mechanism           

for conferring temporal flexibility upon sensorimotor and cognitive functions. 
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Mental capacities such as anticipation, motor coordination, deliberation, and imagination lie at            

the core of higher brain function. A fundamental feature of these capacities is that they are not                 

tied to immediate sensory or motor events and unfold at different timescales. To support such               

temporal flexibility, the brain must control the dynamics of ongoing patterns of neural activity.              

However, the mechanisms that control the dynamics are not known. A simple behavior where              

flexible adjustments of dynamics are required is motor timing; i.e., controlling when to initiate a               

movement. To test the neural basis of temporal flexibility in motor timing, we developed a task in                 

which monkeys used different contextual cues to produce either a 800 ms or a 1500 ms interval,                 

responding either by saccade or manual button press (Fig. 1a).  

While monkeys performed the task, we recorded neural activity in the dorsomedial frontal cortex              

(MFC), which has been implicated in the inhibition ​1,2​, initiation ​3–5​, and coordination ​6–12 of               

movements. Consistent with previous work in humans ​13–19​, nonhuman primates (NHPs)​3,20–26           

and rodents ​27–32​, MFC responses were modulated by elapsed time. The activity of a large               

proportion of neurons exhibited an intriguing form of temporal invariance: responses were            

stretched or compressed in accordance with the produced interval. Temporal scaling at the level              

of single neurons is equivalent to an adjustment of speed with which the population activity               

evolves along an invariant trajectory. Two properties made this change of speed noteworthy.             

First, unlike previous work where temporal scaling was reported during adaptation and learning             
33,34​, here, speed control constituted rapid trial-by-trial switches based on contextual cues, which             

cannot be explained by slow plasticity mechanisms. Second, the majority of neurons that             

exhibited temporal scaling had nonlinear and heterogeneous response profiles making the           

scaling phenomenon inconsistent with existing models of timing ​35,36 including pacemaker           

accumulator ​37–40​, oscillations ​41–43 liquid-state machine population clocks ​44–48​. These          

considerations necessitated a new perspective that could explain temporal scaling in neurons            

with highly complex response profiles.  

As a first step toward investigating the relevant neural substrates, we examined temporal             

scaling in the caudate nucleus downstream of MFC and regions of the thalamus projecting to               

MFC that have been implicated in motor timing ​20,22,23,25,49–52​. Results were best explained by the               

hypothesis that speed control originated in the cortex.  

To investigate the potential underlying mechanisms, we analyzed the dynamics of recurrent            

neural network models that were either engineered or trained to produce different time intervals              
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using context-dependent inputs. By setting the models in certain input-output regimes, we            

discovered a simple and novel mechanism that enabled the rapid and flexible adjustment of the               

speed of dynamics in networks of heterogeneous neurons. 

Behavior 

On each trial, the color and shape of the fixation point served as a contextual cue (‘ ​Cue’​)                 

indicating the desired interval and response effector respectively (Fig. 1a). We refer to the four               

trial conditions as EL, ES, HL and HS, where E and H indicate ​Eye and ​Hand​, and S and L                    

indicate ​Short ​(800 ms) and ​Long (1500 ms) intervals. Production intervals (​Tp​) were measured              

from the time of a brief ‘ ​Set​’ flash until the time of movement initiation (‘ ​Saccade​’ or ‘ ​Button                 

press​’). The four conditions were randomly interleaved and animals were able to successfully             

switch between conditions on a trial-by-trial basis (Fig. 1b). They produced accurate ​Tp ​s whose              

variability increased for the ​Long condition compared to ​Short (Fig. 1c). This is consistent with               

the Weber’s law and is a well-known property of timing behavior ​53,54​. The Weber fraction of ​Tp ​s                 

across the two contexts (ratio of standard deviation to mean) was significantly larger for button               

presses compared to saccades (one-tailed paired sample ​t​-test, for monkey A, n = 31 sessions,               

P < ​.05, and for monkey D, n = 35 sessions, ​P < ​.001). 

Causal experiments and single-unit electrophysiology 

We first verified that the regions of interest in MFC (Fig. 2a) were causally involved in this task                  

(Fig. 2b). Reversible inactivation with muscimol (GABA​A agonist) significantly impaired          

performance for both ​Long and ​Short intervals as measured by the distribution of within-session              

increases in root-mean-squared error (RMSE) after the muscimol injection, when compared to            

before (Table 1). The drop in performance in each session comprised of changes in both mean                

and standard deviation (Fig. 2b). However, no significant impairment was measured after saline             

injection (Table 1). Furthermore, muscimol inactivation had no significant effect on reaction            

times during a memory saccade task (Table 1). Based on these results, we concluded that MFC                

played a causal role in the main motor timing task ​3,30,32​. 

Temporal scaling of complex response profiles  

To characterize the post-stimulus-time-histogram (PSTH) of MFC neurons in anticipation of the            

motor response, we binned trials based on production intervals and computed average firing             

rates for each bin from spike counts after aligning trials to the time of the motor response (Fig.                  
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2c). Neurons had complex and heterogeneous response dynamics including linear, nonlinear,           

monotonic, non-monotonic and even multi-peaked activity profiles (Fig. 2d). This diversity could            

not be accounted for by existing models of timing. To quantify this, we tested single-neuron               

PSTHs against predictions of various models of motor timing using a cross-validation procedure             

(Fig. 2e). We considered two variants of the clock-accumulator model, one in which flexible              

timing was achieved by adjusting a threshold over a ramping process, and one in which the                

clock was adjusted. Since clock models can only accommodate neurons with linear ramping             

profiles ​37–40,55 it was not surprising that both clock-accumulator models were unable to explain              

the nonlinear profiles exhibited by much of the population. This result was substantiated by              

fitting polynomials of different degrees to PSTHs using a cross-validation procedure (see            

Methods). This exercise revealed that only 11% (47/416) of neurons could be explained by the               

clock model and the remaining neurons had complex and nonlinear response profiles that             

deviated significantly from linear ramping. This number was robust to changes in the formulation              

of the clock-model. For example, making the clock model more flexible by allowing the starting               

and terminating points of the ramp to vary by up to 200 ms increased the number of neurons                  

explained by this model by only 4%. We also tested two oscillation-based models of interval               

timing, in which the response time is determined by the collective phase of multiple oscillators               

with different frequencies ​41–43​. In one variant, a single sinusoid was fit to the response of each                 

neuron, and in another, multiple sinusoids (up to 4) of different frequencies were used. These               

models were also unable to capture the diversity of MFC responses (Fig. 2e). Finally, we tested                

MFC responses against a relatively unconstrained population-clock model ​44–48​. In this model,            

each neuron is allowed to have a unique PSTH, and the movement is triggered when a decoder                 

detects an interval-dependent pattern of activity across the neurons. Accordingly, we modeled            

each neuron by the best-fitting polynomial that could capture the activity profile in both the ​Short                

and ​Long contexts. This model performed better than both the clock-accumulator and oscillation             

models owing to the higher degrees of freedom associated with polynomial fits. However, MFC              

data did not fit with a key qualitative prediction of the population clock model. In this model,                 

neurons are expected to have identical PSTHs for the ​Short and ​Long conditions for the entire                

duration of the timing interval. However the vast majority of neurons in MFC had PSTHs that                

were distinct for the ​Short ​and ​Long​ conditions(Fig. 2d). 

Our initial inspection of the difference between response dynamics in ​Short and ​Long conditions              

suggested that PSTHs for different bins had a high degree of self similarity when stretched or                
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compressed in accordance with the produced interval (Fig. 2c,d). This was true both for              

fluctuations of produced intervals within each temporal context (i.e., 800 ms or 1500 ms), and               

across the two temporal contexts. To verify this observation quantitatively, we asked whether             

the PSTHs were more accurately captured by a temporally-scaled polynomial function. This            

formulation clearly outperformed all other models in terms of explanatory power (Fig. 2e,             

one-way ANOVA, F​6, 2444 = 156.5, P < 0.001). Note that the clock-accumulator with a flexible                

clock also exhibits temporal scaling but it cannot capture scaling in neurons with complex              

response profiles, which as we reported, comprised 89% of task-modulated MFC neurons.            

These observations highlighted the need for an alternative model that could explain temporal             

scaling across neurons with such heterogeneous response profiles. 

Speed control across the population 

The phenomenon of temporal scaling at the level of single neurons has an intuitive              

interpretation at the population level. When the population activity is plotted within a coordinate              

system in which each axis corresponds to the firing rate of a single neuron, also known as the                  

state space ​56​, response dynamics can be depicted as a point (i.e., neural state) moving along a                 

trajectory. In this representation, temporal scaling corresponds to changing the speed with            

which the neural state traverses a single trajectory in high-dimensional space.  

If all the responses were scaled perfectly, neural trajectories associated with different intervals             

would be identical. However, for many neurons, firing rate modulations did not scale perfectly              

(Fig. 2d). We quantified the degree of scaling by a ​scaling index (SI) that was computed as a                  

coefficient of determination (R​2​) across temporally-scaled PSTHs associated with different          

production interval bins. With this measure, we verified that neurons exhibited variable degrees             

of temporal scaling (Supplementary Fig. 1). The imperfect scaling was also evident by             

visualizing neural trajectories within the space spanned by the first three principal components             

(PCs). Within this space, neural trajectories did not overlap (Fig. 3a) suggesting that neural              

responses had features that did not scale perfectly across intervals.  

We hypothesized that perfect speed control might emerge within a subspace where the             

projection of neural trajectories are invariant; i.e., ​scaling subspace (Fig. 3b). As a first step, we                

examined the degree of scaling in a subset of PCs. Using the same SI metric used for single                  

neurons, we found that the first two PCs that explained nearly 40% of the variance (Fig. 3b,                 

bottom) had a scaling index of 0.91 and 0.97, respectively (Fig. 3a, bottom). The third PC,                
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however, did not exhibit temporal scaling and had a scaling index of 0.20. This provided               

evidence that speed control was present within a subspace whose dimensions explained a large              

percentage of variance (i.e., PC1 and PC2). 

However, the dimensions of scaling do not have to perfectly coincide with PCs. To specifically               

target the dimensions of scaling, we developed a novel procedure to find a subspace in which                

trajectories were invariant and the activity was governed by speed control. Analogous to PCs              

that are ordered with respect to variance explained, we sought components that were ordered              

according to the degree of temporal scaling in the data. We formulated this as a cross-validated                

optimization problem that searched for dimensions in which the distance between neural            

trajectories of different temporal durations was minimized (see Methods). This method furnished            

a set of ​scaling components (SCs) that were ordered according to the degree of scaling in the                 

data (Fig. 3c). Compared to PCs, SCs explained less variance suggesting that the scaling              

dimensions were not identical to PC dimensions, which capture maximum variance by design. 

The SI values were relatively large for the first few SCs indicating that the optimization process                

correctly identified the scaling dimensions. (Fig. 3c, bottom, Supplementary Fig. 2). When            

responses were projected onto the subspace spanned by the first three SCs, they traced a               

nearly identical trajectory with different speeds (Fig. 3c, top), which is precisely what the scaling               

subspace hypothesis predicts. Note that because of cross-validation, the scaling index for SCs             

of the test data does not have to be in decreasing order (Fig 3c., bottom), although it was the                   

case for the dataset which was used to determine the SCs (not shown).  

Next, we asked how much of the variance of neural responses can the scaling subspace               

account for. To address this question, we performed two complementary analyses. First, we             

examined the relationship between the degree of scaling (SI) and the variance explained for              

each SC. SCs with large SIs explained a relatively large percentage of variance (Fig. 3d)               

suggesting that scaling was a prominent feature of neural activity during flexible time interval              

production. Second, we developed a procedure for quantifying the relationship between scaling            

and variance without relying on projections onto specific directions, such as PCs or SCs. We               

used a bootstrap procedure and quantified the relationship between variance explained and SI             

along 200 random projections in the state space. We then constructed a two-dimensional             

probability distribution of the relationship between variance explained and scaling across those            
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random projections (Fig. 2d, inset). This analysis verified that the dimensions with large degrees              

of scaling also explained a large portion of the variance. 

To further validate our conclusions, we examined the sufficiency of SI as a measure of scaling                

asking whether SI can be used as a reliable measure of temporal scaling. We tackled this                

problem by contraposition, asking whether the lack of scaling would result in small scaling              

indices. We used Gaussian processes to create non-scaling surrogate data that matched MFC             

responses in terms of smoothness, starting/terminal firing rates, dimensionality, and the           

correlation between ​Short and ​Long PSTHs (see Methods, and Supplementary Fig. 3). The             

surrogate data, despite being matched to the statistics of MFC responses, had relatively smaller              

SIs than computed for MFC neurons (Fig. 3e). This comparison to the non-scaling surrogate              

data verifies that a significant portion of variance in MFC resides within a scaling subspace in                

which activity evolves along invariant trajectories at different speeds.  

Finally, we quantified the relationship between speed in the scaling subspace and behavior. We              

used a cross-validation procedure in which we derived the scaling subspace from a subset of               

shortest and longest trials, and asked whether the speed of neural trajectories of the remaining               

trials in that subspace could predict production intervals (​Tp​). This analysis provided strong             

evidence for the correspondence between the speed in the scaling subspace and ​Tp ​: longer              

Tp ​s were associated with slower speeds (Fig. 3f and Supplementary Fig. 4), and the average               

speed was inversely proportional to ​Tp (R​2 = 0.87). These results establish speed control in the                

MFC scaling subspace as a key principle that governs behavioral variability within each             

temporal context, and enables the flexible control of motor timing across the two timing              

contexts.  

Speed control across cortico-basal ganglia circuits 

Having established speed control in MFC as a potential mechanism for temporal flexibility, we              

asked whether this property was unique to MFC or whether it was also present in other                

upstream and downstream areas. We focused on various nodes of the cortico-basal ganglia             

circuits that have been implicated in motor timing ​20,22,23,25,49–52​. First, we investigated putative             

targets of MFC in the caudate ​57–59​. We found that the region of interest in the caudate (Fig. 4a)                   

was causally involved in the motor timing task as evidenced by reversible inactivation (Table 1).  
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Electrophysiological recordings (Fig. 4c) indicated that, caudate responses, like those in MFC,            

were complex and heterogeneous, and PSTHs were different between ​Short and ​Long trials.             

We analyzed caudate responses in terms of temporal scaling and speed control. At the level of                

single neurons, the distribution of SIs was similar to MFC (Supplementary Fig. 1) suggesting              

that MFC neurons and their putative targets in the caudate exhibit similar degrees of scaling. At                

the population level, analysis of PCs and SCs verified the presence of a scaling subspace in the                 

caudate (Fig. 3e, Supplementary Fig. 5). Finally, the SI values of PCs as well as an unbiased                 

analysis of responses across random projections in the state space indicated that dimensions             

with strong scaling explained a large part of variance in the data (Fig. 4d). These analyses                

substantiated that neural signals in the caudate share the same key properties with MFC and               

may be part of the circuit involved in subspace speed control.  

In addition to receiving inputs from MFC, the basal ganglia also projects back to MFC through                

the thalamus. The presence of this anatomical substrate raises the possibility that MFC inherits              

temporal scaling from the basal ganglia via transthalamic projections. To test this possibility, we              

examined neural activity in a region of the thalamus where MFC-projecting thalamocortical            

neurons were identified antidromically (Fig. 4e; see Methods). Consistent with previous work ​52​,             

reversible inactivation indicated that this area played a causal role in timing behavior (Table 1).               

However, several observations indicated that the function of thalamocortical signals was           

different from that of the caudate and MFC (Fig. 4g). First, SIs of single thalamic neurons were                 

significantly smaller across the population compared to the other areas (n ​MFC = 416 , n ​Cd = 278,                 

n ​thalamus ​= ​846, one-tailed two sample ​t​-tests, ​P < .001, see Supplementary Fig. 1). Second,               

scaling in the thalamus was significantly smaller than the C+D+E+S surrogate data (one-tailed             

two sample ​t​-test, n = 200 , ​P < .001 comparing to C+D+E+S surrogate model, Fig. 3e). Third,                  

scaling was less prominent in the thalamus as indicated by the relationship between the              

magnitude of scaling and variance explained along random projections in the state space (Fig.              

4h). Fourth, unlike the caudate and MFC, neural trajectories in the thalamus were not invariant               

in the space spanned by the first three SCs (Supplementary Fig. 5). This was also evident in the                  

profile of the second PC whose relationship to different ​Tp ​s was a systematic shift in average                

value – i.e., not scaling. Together, these observations provide strong evidence that thalamic             

neurons exhibit significantly less scaling than the MFC neurons they project to. Since the output               

of the basal ganglia to cortex is routed through the thalamus, the weak scaling in               
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thalamocortical neurons implicates that the scaling subspace is likely to originate within MFC or              

other cortical circuits projecting to MFC. 

A model for flexible subspace speed control 

Since the timescales of MFC response modulations were slower than the intrinsic time             

constants of single neurons, we assumed that the observed dynamics were the result of              

network-level interactions. Motivated by recent advances in understanding the dynamics of           

motor, premotor and prefrontal cortical areas using recurrent network models ​60–62​, we trained a              

recurrent neural network model with random connectivity to flexibly produce different time            

intervals in response to context inputs (Cue) whose magnitude specified the desired interval             

(Fig. 5a). To mimic the task of the monkey, at a random time after the Cue onset, the network                   

was administered a transient pulse (Set), which signaled the start of the time interval. The               

network was trained to generate a single output (a weighted linear sum of its units) that would                 

initiate a “response” when the output breached a fixed threshold ​63,64​. 

The network learned to generate the desired output function (Fig. 5d) and the activity of model                

neurons emulated the key features in MFC: response profiles of individual network units were              

heterogeneous, complex and temporally-scaled (Fig. 5b). Moreover, the speed of population           

dynamics directly determined the produced interval (Fig. 5c). The first set of networks we              

developed were trained to produce a linear output that was scaled according to the desired               

interval. To ensure that the scaling of network units was not merely a consequence of scaling in                 

the output, we trained additional networks to produce temporally non-scaling output functions.            

However, even in the presence of non-scaling output functions, the recurrent model exhibited             

speed control in a scaling subspace and individual units continued to exhibit temporally scaled              

responses (Supplementary Fig. 6). The model was also robust with respect to how the input               

Cue encoded the desired interval. For example, the network exhibited the same scaling             

behavior when the Cue was changed to a brief pulse (Supplementary Fig. 6). The fact that the                 

models captured subspace temporal scaling for various formulations of the input and for both              

scaling and non-scaling outputs demonstrated the generality and robustness of this solution in             

performing a flexible context-dependent timing task, and made the recurrent model suitable for             

uncovering potential underlying mechanisms. 

We investigated how speed control emerges in recurrent neural populations (Fig. 5c) using a              

dynamical systems analysis ​65,66 to study the evolution of activity in relation to neighboring fixed               
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points in the state space. Importantly, we computed these fixed points in the presence of the                

input so that we could characterize the dynamics of the network in action. This analysis               

revealed that the network’s initial and terminal states were governed by a pair of              

input-dependent stable fixed points, F​init and F​terminal ​. At the start of the trial, the Cue initialized                

the state of the network to an input-dependent fixed point, F​init​. Activation of the Set pulse drove                 

the system away from F​init allowing the system to evolve toward F​terminal with a speed that was                 

determined by  the magnitude of the Cue input, which provided context (Fig. 5c,e).  

This analysis revealed the complementary roles of the input drive and recurrent dynamics (Fig.              

5c). The input drive set the position of the initial and terminal fixed points along a direction,                 

which we refer to as the ​input subspace​. Recurrent dynamics on the other hand, established a                

recurrent subspace​, which determined the neural trajectory between the initial and terminal fixed             

points. These two subspaces emerged from different components of the network. The input             

subspace was governed by the direction specified by the input weights. In contrast, the              

recurrent subspace emerged from the constraints imposed by the recurrent weights. The two             

subspaces differed also in terms of their relationship to the scaling phenomenon. Within the              

input subspace, different intervals were associated with a change in the level of activity but did                

not exhibit scaling. This l change in level, in turn, controlled the speed by setting the position of                  

the neural state along the axis of the input subspace. The recurrent space, on the other hand,                 

did not control the speed but was responsible for the emergence of invariant trajectories and               

temporal scaling. The division of labour between these subspaces provides a remarkable and             

previously unsuspected explanation of why scaling and non-scaling signals might coexist within            

the same network. Non-scaling signals reflect the input that sets the speed, and scaling signals               

correspond to the evolution of activity with the desired speed. This organization predicts that              

MFC neurons with weak temporal scaling are likely recipients of relatively strong            

context-dependent input, and neurons with strong temporal scaling are more directly engaged in             

recurrent interactions. Finally, the model-based distinction between these two subspaces          

provides a theoretical basis for analyzing MFC responses within a scaling subspace, which             

corresponds to the recurrent subspace in the model.  

We used the recurrent model to generate specific predictions about how activity in the scaling               

and non-scaling subspaces of MFC might correspond to behavior. Within the scaling subspace             

where neural trajectories were invariant, production intervals should be correlated with the            

speed of the dynamics. We demonstrated this earlier by analyzing production intervals in terms              
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of speed within the space spanned by SCs (Fig. 3f). Within the non-scaling subspace where the                

activity putatively reflects the input, production times should be correlated with the average level              

– not speed – of neural activity. To test this novel model-based prediction, we asked whether                

production intervals could be predicted by the average MFC activity when projected onto the              

least-scaling subspace. We inferred the least-scaling direction from our scaling component           

analysis. SCs specified an orthonormal basis whose axes were ordered according to the level of               

scaling (Supplementary Fig. 7). Therefore, we used the last SC (SC9) as an estimate of the                

least-scaling direction, and compared production times to average level of MFC projected onto             

SC9. As predicted by the model, the average activity of the non-scaling components of MFC               

were indeed predictive of production times (Supplementary Fig. 8). This is a compelling result as               

it bears out a key prediction about an unsuspected relationship between cortical activity and              

behavior made by a model that was constrained only to produce behavior. 

We emphasize that the recurrent model is fundamentally different from the oscillation and             

population-clock models since the former can support temporal scaling whereas the latter            

cannot. At a phenomenological level, the recurrent model superficially resembles the           

clock-accumulator model with a flexible clock since both exhibit temporal scaling. However, the             

two are conceptually and mechanistically different. The clock model can only generate ramping             

activity, and it does so by using the input (i.e., clock) to drive an integrator (e.g., a line attractor).                   

The recurrent model does not perform any integration; instead, it uses an input to set the                

relaxation dynamics in the recurrent subspace toward a terminal fixed point. This difference             

allows the recurrent model to generalize the temporal scaling phenomenon across neurons with             

simple to highly complex response profiles.  

A potential neural mechanisms for speed control 

To investigate the mechanisms that mediated the observed speed control, we analyzed the             

eigenvalues associated with the region in close proximity of the terminal fixed point, F​terminal ​. In               

the vicinity of this fixed point, stronger inputs caused the eigenvalues to decrease systematically              

(Fig. 5f, left). In a linear dynamical system, such contraction in the eigenvalue spectrum              

corresponds to a systematic increase in the network’s effective time constants, (Fig. 5f,              

right). From this, we concluded that the action exerted by the input drive is equivalent to                

adjusting the system’s effective time constant in a flexible input-dependent manner. To gain             

insight into the mechanism that provides such powerful and modular control of time constants,              
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we focused on a simplified recurrent network model composed of only two mutually inhibitory              

neurons that received a common input (Fig. 6a). The reasons for our choice of this model were                 

twofold. First, this two-neuron network represents one of the simplest architectures whose            

behavior can be controlled by the interplay between common input and recurrent interactions             

(Fig. 6c). Second, previous work has demonstrated that adjustments of the common input in this               

model could alter its recurrent dynamics to either relax to a single fixed point with a specific time                  

constant or act as an integrator with exceedingly long time constants ​67–69​. We reasoned that               

exploring the model’s behavior while between these two regimes might lead us to a mechanistic               

understanding of how effective time constant of a network can be flexibly adjusted.  

When the two neurons receive balanced input (Cue), their interaction creates an energy             

landscape that engenders a pair of stable fixed points similar to the recurrent model that are                

separated by an energy barrier i.e., unstable fixed point (Fig. 6b). We analyzed the phase plane                

of the model (Fig. 6c) and verified that the input level can be used to create a continuum of                    

as a function of the common input. This is analogous to the recurrent network model where                

activity along the input subspace served to control the speed. However, the two-neuron model              

helped us understand the underlying mechanisms in simple and intuitive terms: stronger input             

drives neurons toward their saturating nonlinearity where the slopes of activation functions are             

shallower (Fig. 6d). Regimes of shallow slopes reduce the neuron’s responsiveness to changes             

in input and lead to an increase in . In other words, the presence of single-neuron                

nonlinearities enable an input to exploit different slopes along the activation function. The slope              

would in turn determine the energy gradients (Fig. 6b) and set the speed with which responses                

change over time. What this simple network demonstrates is the importance of the action of the                

input on the neuron’s nonlinearities, which is the key factor in adjusting the speed.  

Having established a low-level mechanism in the two-neuron model, we asked whether the             

same mechanism was operative in the recurrent network model, whose units are each equipped              

with a saturating nonlinearity analogous to the those found in the simple network. For the               

recurrent model, we analyzed the operating point of units as a function of the input drive near                 

F​terminal ​. Remarkably, for stronger inputs, units were systematically driven further toward their            

saturating nonlinearity (Fig. 5g,h), which is consistent with the mechanism of speed control in              

the simple network model. These results underscore a simple and powerful mechanism at the              
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level of single neurons for controlling the speed of dynamics independent of the neural              

trajectory.  

Discussion 
We found that motor timing in the MFC and caudate populations was governed by the rate of                 

change of population activity as a function of time, which corresponds to the speed of dynamics.                

This property was evident at the single neuron level but was most pronounced in a scaling                

subspace of the population activity. In this subspace, the random fluctuations of speed predicted              

variability within each temporal context whereas systematic adjustments to the speed predicted            

behavioral flexibility across the two temporal contexts. These observations underline population           

speed within the scaling subspace as a key variable in motor timing behavior.  

To gain insight into the principles of subspace speed control, we reverse-engineered a recurrent              

network model trained to perform a context-dependent timing task. The model demonstrated            

that flexible speed control is achieved through the interaction of two subspaces, an input              

subspace controlled by a context cue, and a recurrent subspace established by recurrent             

synaptic connections. These two subspaces served complementary functions that could be           

readily understood under the framework of dynamical systems. The input set the initial condition              

of the system and the recurrent subspace controlled the dynamics in the vicinity of that initial                

condition. In this framework, behavioral flexibility was conferred by the input’s ability to set the               

initial condition to different regions of the state space with different gradients (i.e., speeds).  

To further understand how the context input is able to flexibly change the speed, we engineered                

a two-neuron model in which the input and recurrent subspaces could be represented as              

one-dimensional directions in the state space ​67–69​. This model highlighted the crucial role of              

single-neuron nonlinearities, revealing that adjustments of speed were governed by the           

interaction of input with these nonlinearities. This finding motivates several hypotheses           

regarding the structure and control of dynamics in the brain. For example, it suggests that many                

circuits and subcircuits might be able to adjust the speed of their dynamics independently and               

operate at different timescales ​70​. It also predicts that neuromodulatory effects and            

pharmacological treatments that interfere with the nonlinear response curve of individual           

neurons could alter the speed of cortical dynamics, as observations from numerous studies of              

interval timing might suggest ​71,72​.  
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Furthermore, our work has important implications for a wide range of behaviors in motor control,               

sensory anticipation and mental tracking where temporal flexibility is critical. The mechanisms            

we have identified provide a simple solution for how cortical circuits could encode behaviorally              

relevant variables in one subspace while using another subspace to adjust the speed of their               

dynamics. This would allow the same behavior to unfold along the same neural trajectory at               

different timescales. This is consistent with a study of the dynamics of sequential activation of               

striatal neurons in mice during a temporal bisection task ​73​, and studies of speed-accuracy              

tradeoff in decision making ​74​. Although these studies differ from ours substantially in terms of               

task demands and neural computations, the similarities in terms of neural dynamics raise the              

intriguing possibility that speed control might be a general principle in neural computations. 

The source of the external input that adjusts the speed of cortical dynamics remains a pertinent                

and unresolved question. Several neural pathways could provide such input. One possibility is             

that the input arises from subpopulations of cortical neurons. This would be consistent with a               

recent study showing that neurons in parietal cortex encode the desired speed in their firing               

rates ​75​. Indeed, we found that MFC neurons that exhibited the least amount of scaling encode                

the speed in their average firing rates. Another possibility is that the input drive is provided by                 

thalamic afferents, which is consistent with our recording from MFC-projecting thalamocortical           

neurons whose activity level varied systematically with produced intervals. Alternatively, a           

number of physiology and pharmacology studies have implicated dopamine in regulating timing            

behavior ​76,77​. Other neuromodulatory systems may also play a role in controlling cortical             

dynamics. Cortical dynamics are also known to depend on cellular properties such as those              

mediated by NMDA receptors, which are thought to facilitate the generation of stable slow              

cortical dynamics ​78​. The exact signalling pathways and underlying biophysical properties           

notwithstanding, the mechanisms that we have identified have the potential to explain how the              

brain flexibly controls cortical dynamics. 
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Methods 

Two adult rhesus monkeys (Macaca mulatta, a 6.5 kg female and 9.0 kg male, both 5 years old)                  

were trained on a two-interval two-effector motor timing task. All surgical, behavioral and             

experimental procedures conformed to the guidelines of National Institutes of Health and were             

approved by the Committee of Animal Care at Massachusetts Institute of Technology.  

Behavior 

The MWorks software package (​http://mworks-project.org ​) running on a Mac Pro was used to             

deliver stimuli and to control behavioral contingencies. Visual stimuli were presented on a ​23              

inch monitor at a refresh rate of 60 Hz. Eye positions were tracked with an infrared camera                 

(Eyelink 1000; SR Research Ltd, Ontario, Canada) and sampled at 1 kHz. A custom-made              

manual button, equipped with a trigger and a force sensor, was used to register button presses.  

Motor timing task​. Each trial began with the appearance of two fixation cues (FCs), a circle at                 

the center of the screen and a square 0.5 deg below the circle. The animal had to shift its gaze                    

to the circle and the square informed the animal to hold its hand gently on the button. On each                   

trial, one FC was colored and the other was white. The colored FC indicated the desired                

response effector (colored circle for saccade and colored square for button press). The color              

indicated the desired interval (red for 800 ms and blue for 1500 ms). We denote these four trial                  

conditions by EL, ES, HL and HS where E and H refer to ​Eye and ​Hand​, and S and L to ​Short                      

(800 ms) and ​Long (1500 ms) intervals. After a delay period (500 - 1500 ms, uniform hazard),                 

the saccade target was briefly presented 8 degrees to the left or right of the FC. For button                  

press trials (colored square), the saccadic target was not relevant but was presented so that               

stimuli were consistent across trials. After another delay (500 - 1500 ms, uniform hazard), a 48                

ms annulus (Set cue) flashed around the FCs cued the animal to start timing. Trials were                

aborted if the animal made premature eye or hand movements (before Set or long before the                

desired time). To receive reward, animals had to initiate a movement with the desired effector               

(cued by the colored FC) within a small window (“acceptance window”) around the desired              

interval (cued by the color of FC). The saccade responses had to land inside a circular window                 

of radius 2.5 deg centered on the location of the extinguished target and had to be made directly                  

(less than 33 ms after exiting the FC window). Button-press responses had to be made with the                 

hand contralateral to the recorded hemifield ​79​. The production interval was measured from the              

endpoint of Set to the moment the saccade was initiated or the button was triggered. The width                 
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of the acceptance window was adjusted dynamically on a trial-by-trial basis and independently             

for the ​Short and ​Long conditions using a one-up one-down staircase procedure. As such,              

animals were rewarded for nearly half of trials (on average, 57% in monkey A and 51% in                 

monkey D) for both temporal contexts. For trials that were rewarded, in addition to reward               

delivery, the color of the stimulus changed to green and an auditory clicking sound was               

simultaneously presented (Fig. 1a). Within the acceptance window, the magnitude of the reward             

scaled with accuracy.  

Electrophysiology 

Animals were comfortably seated in a dark and quiet room. Each session began with an               

approximately 10-minute warmup period to allow animals to recalibrate their timing and exhibit             

stable behavior during electrophysiology recordings. Recordings were made through a          

craniotomy within a recording chamber while the animal’s head was immobilized. Structural MRI             

scans were used to aid in targeting regions of interest. Single- and multi-units responses were               

recorded using a 24-channel laminar probe with 100 µm or 200 µm interelectrode spacing              

(V-probe, Plexon Inc.). Eye position was sampled at 1kHz, and all behavioral and             

electrophysiological data were timestamped at 30 kHz and streamed to a data acquisition             

system (OpenEphys).  

The dataset collected for this study included 1967 single- or multi-units recorded from the MFC,               

caudate and thalamus of two monkeys (Table 1), in which 69% (1351/1967) were tentatively              

single units. Neurons with firing rates less than 2 spikes per second during the timing epoch                

were excluded from subsequent analyses. 

 MFC 
(included/total) 

Caudate 
(included/total) 

Thalamus 
(included/total) 

Monkey A 281/356 101/200 481/534 

Monkey D 135/166 177/309 365/402 

Both animals 416/522 287/509 846/936 

Table 1. ​Number of neurons recorded in each area in each animal 
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Reversible inactivation 

Injections were made with a microinjection pump (UMP3, World Precision Instruments) and a             

Hamilton syringe, which was connected to a custom 30G stainless steel injection cannula via a               

fused silica injection line (365µm OD, 100µm ID, Polymicro Technologies). In each injection             

session, we first established the animal’s baseline behavioral performance. Afterwards, we           

pressure-injected muscimol hydrobromide (5 µg/µL in saline) in the region of interest at a rate of                

0.2 µL/min. In the MFC and caudate, a total of 2 µL was injected per session. In pilot inactivation                   

experiments in the thalamus, we noticed that animals stopped performing the task after 2µL              

muscimol injection. To ensure animals would perform the task, the total volume of muscimol in               

the thalamus was reduced to 1.5 µL. The behavioral task was resumed 10 min after the the                 

injection was completed. As a control, in separate sessions, sterile saline was injected following              

the same procedure. For each injection session, we compared performance between equal            

number of trials before and after the injection.  

Antidromic Stimulation 

We used antidromic stimulation to localize thalamocortical MFC-projecting neurons. Antidromic          

spikes were recorded on a 24-channel electrode (V-probe, Plexon Inc.) in response to a single               

biphasic pulse of duration 0.2 ms (current < 500 uA) delivered to MFC via low impedance                

tungsten microelectrodes (100 - 500KΩ, Microprobes). The guide tube for the tungsten            

electrode was used as the return path for the stimulation current. Antidromic activation evoked              

spikes reliably at a latency ranging from 1.8 to 3 ms, with less than 0.2 ms jitter. The region of                    

interest recorded in the thalamus was within 1 mm of antidromically identified neurons. 

Mathematical notation 

Throughout the manuscript, we have used lowercase for scalars ( ), bold and lowercase for              

vectors ( ), bold and uppercase for matrices ( ). Brackets were used for indexing values              

within vectors and matrices ( and ). Subscripts were used for indexing a set of               

scalars ( ), vectors ( ), or matrices ( ). Subscripts were also used for specifying specific              

indices ( ). Superscripts were used for vectors to show projections onto a specific             

subspaces, for example, , referring to a vector projected onto a the first principal               

components. Curly brackets were used to indicate subset of conditions for which a variable is               

computed. For example, refers to a vector computed for a subset of trials in               
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which both and conditions were satisfied. The symbol is used to indicate data                

combined across a number of variables. For example denotes data collected across a              

union of vectors . The symbol is used to show averaging of a vector across .                  

Point functions were shown as lowercase ( ) regardless of whether they were applied to               

scalars or vectors.  

Data Analysis 

All offline data processing and analyses were performed in MATLAB (MathWorks). Spiking data             

were bandpass filtered between 300 Hz to 7 kHz and spike waveforms were detected at a                

threshold that was typically set to 3 times the RMS noise. Single- and multi-units were sorted                

offline using a custom software, MKsort (https://sites.google.com/site/antimatt/software). The        

majority of the neurons were recorded in separate behavior sessions.  

Estimating firing rates accurately is challenging when rates change dynamically and trials have             

different durations ​31,80​, which was the case in our data. Since our focus was on firing rates                 

leading up to the movement, we aligned trials with respect to movement time (Fig. 2c).               

Additionally, for each condition, we discarded trials with ​Tp ​s that lay more than 3 standard               

deviations further from the mean (1.46% of trials). Firing rates were estimated by: 1) computing               

the peri-event time histogram (PETH) by averaging the spike counts per time bin, 2) using a 40                 

ms Gaussian kernel to compute smooth spiking density functions, and 3) ​z​-scoring to minimize              

sampling bias due to baseline and amplitude differences across neurons.  

To examine the relationship between firing rates and ​Tp ​s, we binned trials according to ​Tp and                

compared average firing rates for each bin. For the 800 ms interval, we used 7 bins centered on                  

740 to 860 ms every 20 ms, and for the 1500 ms, we used 9 bins centered on 1300 to 1620 ms                      

every 40 ms. We denoted the overall average firing rate of a neuron as a function of time by                   

, average firing rate for a specific condition ​c ​(EL, ES, HL HS) by , and average firing                  

rate for a specific condition and a specific ​bin by . For population analyses,               

response vectors of individual neurons were organized into rows of a matrix denoted by              

.  

To test if activity profiles could be described by a linear function (e.g. ramping activity), we                

compared 0 to 8th order polynomial fits to using cross-validation with randomized train and               
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test sets. All neurons that were best explained by a polynomial of order 0 or 1 were considered                  

linear so long as the fit explained at least 50% of variance. We also applied the same procedure                  

allowing up to 200 ms offset from the beginning or end of the timing interval to ensure our                  

results were robust. 

Compare the motor timing models at the level of  single/multi-units  

All model fitting was performed on the training set and the goodness of fit (R​2​) was quantified on                  

the test set. In the clock-accumulator model with a flexible threshold, a linear ramp with fixed                

slope and different thresholds for different production intervals was fit to the response profile. In               

the clock-accumulator model with a flexible clock, the threshold was fixed and ramping rate was               

adjusted according to the interval. In the oscillation based models, sinusoidal functions or a sum               

of up to 4 different sinusoids were fit to activity profiles, in which the frequency, amplitude and                 

phase for each sinusoid were free parameters. In the population clock, a single polynomial of up                

to 8th order was fit to the response profiles for both ​Short and ​Long contexts. For the temporal                  

scaling model, the response profiles for the ​Short condition was used to find the best-fitting               

polynomial, and the temporally scaled version of the fitted functions were used to test the               

goodness of fit for ​Long​ trials.  

Scaling Subspace  

We used a principal component analysis (PCA) as a first step to compute a low-dimensional               

and unbiased estimate of data. We found that the first 9 principal components (PCs) captured               

nearly 80% of the variance in the data (Fig. 3b, bottom). We therefore computed the scaling                

components (SCs) from data captured by the first 9 PCs, which was computed as follows: 

and is the projection matrix, in which is the            

i ​th ​PC direction. Therefore, the denoised activity across all conditions and time points              

is of size . We computed the corresponding scaled responses using our            

scaling procedure and denoted the result by . To find the scaling subspace, we solved               

an optimization problem that minimized the difference between average firing rates associated            

with different ​Tp ​s (e.g., and ). We denote the corresponding projection by and refer                
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to its columns as scaling components (SCs). The resulting projection can be computed as               

follows:  

  

 

We hypothesized that the speed of activity in the scaling subspace predicts Tp ​. We computed               

the instantaneous speed in the scaling subspace from projections of responses on to the first               

three SCs as follows: 

 

. 

For each interval bin, we obtained an unbiased estimate of the relationship between speed and               

by resampling trials with replacement within each interval bin. The relationship between the              

average speed  and production intervals was fitted in the log space by a linear function: 

 

Scaling index for population data 

We quantified temporal scaling in single units, principal components (PCs) and scaling            

components (SCs) using a scaling index (​SI​) that represented a general measure of the degree               

of similarity between multiple response profiles associated with different intervals. ​SI was            

computed as follows: (1) trials were sorted based on production interval (​Tp​); (2) sorted trials               

were grouped into bins of similar ​Tp ​s (as described previously in Methods); (3) the first 9 PCs                 

and the corresponding SCs for each bin were computed; (4) for each PC and SC, the index was                  

computed as the coefficient of determination ( ​) after the PCs and SCs were temporally              

scaled. This metric, which varies between 0 and 1, quantifies the degree to which each PC/SC                

undergoes temporal scaling for different ​Tp​s.  
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We evaluated the degree of scaling among populations in each region of interest by computing               

the scaling index for each PC and SC in those populations. Additionally, we computed the               

variance explained by each SC. Finally, to gain an unbiased estimate of the relationship              

between variance explained and scaling index, we computed these two metrics along randomly             

selected dimensions within the state space. This analysis revealed the full distributions of             

variance explained and scaling index and their relationship within the whole state space.  

Surrogate data for testing the scaling property 

In order to assess the significance of scaling in firing rates recorded from the MFC, caudate and                 

thalamus, we compared the ​SI computed for each region of interest to ​SI computed for data                

generated from a number of surrogate models that emulated various properties of the neural              

data with increasing levels of sophistication (Table 2). In what follows, we describe the four               

cumulative constraints that we considered for generating the surrogate data. 

Surrogate model 1. We required the firing rates to have heterogeneous and nonlinear profiles              

while mimicking the same temporal smoothness as our data. To address this constraint, for              

each surrogate neuron, we sampled the response profiles (i.e., analogous to firing rates) from a               

zero-mean multinomial Gaussian Process (GP) prior ​81,82​. The covariance function between time            

points  and , also known as the kernel function, , was formulated as follows: 

, with  and .  

These parameters were chosen to mimic the average smoothness observed in response            

profiles of neurons. This constraint allowed us to examine whether the scaling indices             

associated with different regions of interest could be attributed to the the smoothness of firing               

rate functions. The surrogate model 1 was not worthy of consideration as i did not exhibit any                 

scaling. But the smoothness constraint was used in the subsequent more constrained models. 

Surrogate model 2. The first model did not impose any structure among response profiles              

across the different produced intervals. In model 2, for each surrogate neuron, the starting point               

of the surrogate data was the same as the starting point of the real data and the endpoint of the                    
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surrogate data was the same as the endpoint of the real data, but the starting point and end                  

point of the real data were not necessarily the same. To satisfy this constraint, for each                

surrogate neuron, we first generated a response profile corresponding to the shortest produced             

interval, which we will refer to as the primary profile. We then constrained the response profiles                

associated with all longer produced intervals to match the primary profile at both the starting and                

terminal points. To do so, we sampled the remaining profiles from a conditional GP where the                

endpoint values were constrained to be the same as the primary profile. This constraint can be                

applied using GP regression analysis ​83​, where we derived the expectation and covariance of              

given the endpoints . This model tested whether our scaling results could            

be attributed to a general level of similarity between smooth data with matched initial and               

terminal points.  

Surrogate model 3. The first two constraints ensured that the smoothness of the surrogate data               

and its starting/ending points corresponded to the recorded neuronal profiles. As a third             

constraint, we required the surrogate data to have the same dimensionality as the physiological              

data. To satisfy this constraint, we projected the surrogate data onto its principal components              

(PCs) and adjusted the variance according to the variance explained by PCs in neural data.               

This can be achieved by multiplying the data in the PC space by a diagonal matrix that scales                  

each axis according to the desired variance. This model tests whether our scaling results could               

be attributed to data generated from a low-dimensional process with the same smoothness and              

matching initial and terminal points.  

Surrogate model 4. As a final constraint, we required the surrogate data generated for different               

produced intervals to exhibit the same coefficient of determination (R​2​) as the surrogate data              

generated from perfect scaling. To satisfy this constraint, for each surrogate neuron, we first              

sampled one instance from the GP for the shortest produced interval; i.e., the primary profile for                

that neuron. We then stretched the primary profile temporally to generate a set of perfectly               

scaled response profiles for all other produced intervals. We computed R​2 as a measure of               

similarity between perfectly scaled responses. We then created samples from GP for other             

produced intervals that were matched in starting/ending points and had the same R​2 ​as the               

perfectly scaled data. As a final step, we applied the same strategy as in surrogate model 3 to                  

match the dimensionality of the surrogate and neural data. This model enabled us to test               

whether our scaling results could be attributed to the dimensionality of the data, given the same                
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smoothness and similarity in response profiles achieved by matching temporal correlation as            

well as initial and terminal points.  

We will refer to these models by the constraints they impose as follows: 

Surrogate model 1 (S) Smoothness constrained (​S​) 

Surrogate model 2 (​E+S​) Smoothness constrained (S) 

Endpoints constrained (​E​) 

Surrogate model 3 (​D+E+S​) 

 

Smoothness constrained (​S​) 

Endpoints constrained (​E​) 

Dimensionality unconstrained (​D​) 

Surrogate model 4 (​C+D+E+S​) 

 

Smoothness constrained (​S​) 

Endpoints constrained (​E​) 

Dimensionality constrained (​D​) 

Correlation constrained (​C​) 

Table 2. Surrogate models 

The same analyses used to assess the neural responses were used to asses scaling in data                

generated from the surrogate models. This included (1) reducing the dimensionality to the first 9               

PCs (which captured 80% of total variance of the physiological data), (2) computing the scaling               

index for each PC, (3) assessing the relationship between variance explained and scaling index              

for random projections of activity in the state space, (4) repeating the step for 200 times to                 

obtain a distribution of scaling indices, and (5) comparing the distribution among different             

surrogate models and regions of interest.  

Recurrent Network Architecture 

We constructed a firing rate recurrent neural network (RNN) model with nonlinear units (              

). The network dynamics was governed by the following differential equation: 
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Variable is an N-dimensional vector representing the activity of all the units. Variable               

represents the firing rates of those units by transforming through a saturating              

nonlinearity. The time constant of each neuron was set to . This value is different from                

, which emerges at the network-level. Variable is a vector representing a stationary              

offset the units receive, and is a vector representing white noise sampled at               

each timestep . The recurrent connections in the network are specified by matrix ,              

whose values, following previous work on balanced networks, are drawn from a normal             

distribution with zero mean and variance 1/N. The network receives a two-dimensional input              

consisting of a context cue and a transient Set pulse . The network received these                

inputs through synaptic weights , which were initialized to random values drawn            

from a uniform distribution with range -1 to 1.  

The context input, , represents the interval-dependent context cue input (color). The value of              

was was set to zero for 100 ms and then jumped to a graded value proportional to the length                    

of one of 16 desired intervals distributed within a range 500 - 1700 ms. The offset of was                   

sampled proportionally from the range 0.1 to 0.6 and was perturbed with Gaussian noise              

at each . Increasing input noise did not qualitatively alter the network training             

solutions. The transient Set pulse was active for 10 ms with magnitude 0.1 and zero                

elsewhere. On each training and test trial, the interval between the onset of and was                 

drawn from a uniform distribution with range (100 - 200 ms).  

The network produced a one-dimensional output , read-out by the summation of linear units              

with weights and a bias term . The output weights were initialized to zero at the start of                   

training. 

 

Network Training 

Multiple networks were trained with inputs that were presented randomly across trials as             

specified above. Networks were trained using backpropagation-through-time ​84 and the          

Hessian-free (HF) method ​85,86 was used to stabilize this. For HF, we used a preconditioner that                

utilized the diagonal of the generalized Gauss Newton matrix ​87​. We computed model             
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parameters by minimizing a squared loss function between the network output and a              

target function 62​.  

The objective least-squares function used during training was  : 

 

The target function was computed for a subset of the trials and was only defined from the                  

onset of the Set pulse till the length of the desired interval. For the duration of the Set pulse, the                    

target function assumed a value of zero to prevent rapid transient switches in activity before the                

production stage.  

Once training was complete, we generated a new set of randomized test trials, chose a               

threshold corresponding to the desired output ( ) and computed the times at which the              

network output crossed that threshold after Set. The time of threshold-crossing relative to Set              

was taken as the network’s produced interval (​Tp​). Network responses were also tested for              

intervals that interpolated within and extrapolated beyond the trained range. All networks            

exhibited good interpolation performance. Networks that exhibited good extrapolation         

performance within 150 ms beyond trained ranges were used for further analysis (90% of tested               

networks). In the main text, we report interpolated intervals that matched the monkeys’             

response variability for both intervals. 

We trained and tested multiple networks with different input profiles and different training             

objectives to check the consistency of the solution (Supplementary Data Fig. 6). In these              

networks, the scalar nature of the objective function was controlled by two parameters, and               

, to create a continuum of objective functions between a ramp (linear scaling) and a delta                

function (non-scaling). For example, with parameters A = 3 and alpha = 2.8, the above function                

approximates a scaled linear ramp of desired duration.  

 

We tested additional networks with explicit non-scaling objectives and also with Cue inputs that              

did not remain constant throughout the trial. We have reported the results of two such variations                

in Supplementary Fig. 6, one in which the objective does not scale with interval duration               
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(Supplementary Data Fig. 6a), and one in which the Cue input was a transient pulse               

(Supplementary Data Fig. 6d).  

Following techniques adopted by Sussillo & Barak ​65​, we analyzed the rate of change of the                

network state to uncover its underlying dynamics. We computed to find            

the fixed and slow points of the system (corresponding to tolerances of and               

respectively). We analyzed the local dynamics around fixed points by performing an            

eigendecomposition of the corresponding linearized system. Fixed points associated with no           

positive eigenvalues were classified as stable fixed points. The unstable fixed points ( )             

that we detected in some networks were usually associated with one unstable mode and often               

helped mediate the transition of trajectories after Set towards F​terminal ​.  

We projected activities of neurons on each trial onto the first three principal components of the                

total activity covariance matrix (across all trials) to obtain state space trajectories (Fig. 5c). Fixed               

points were projected onto the same basis for visualization purposes. For various networks, the              

mean squared speed of network trajectories during interval production over the first three PCs              

was used to relate dynamics to ​Tp ​(Fig. 5, Supplementary Figure 6). We additionally computed               

the scaling components (SCs) for the activity of various networks (Supplementary Fig. 7) The              

speed of the trajectory within the scaling subspace was calculated based on projection onto the               

first 3 SCs (Supplementary Data Fig. 7).  

Two inhibitory-neuron model 

Following previous work  ​69​, ​we engineered a two-neuron model that captured the key intuition 

behind speed control in the interval timing task. The network consists of two mutually inhibitory 

neurons (​u​, and ​v​), which receive a common input representing the contextual cue, denoted as 

θ ​(Fig. 6a). The time-varying firing rates of the model neurons are governed by a pair of 

nonlinear differential equations as follows: 
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Model structure and parameters were as follows: 

 
 

 

Magnitude of synaptic weight from 
input j to unit i 

  Balanced input to ​u​ and ​v 

 100 ms  Time constant of each unit, 
 (time step) 

,  
 

Activation function for ​u​ and ​v 
respectively 

 

The nullcline for each variable is defined as the set of all the states where the derivative of the                   

variable vanishes. For example, solving for provides a solution of the kind ,              

which represents the nullcline for ​u (Fig. 6c). The intersection of the nullclines pertaining to each                

variable represent a point where variables do not change, i.e., fixed points (FPs). For a range of                 

synaptic weights ( ) and input levels (​θ​), the system has two stable FPs that are separated                

by an unstable one. Increasing ​θ systematically shifts the position of the two nullclines (Fig. 6c).                

It also ​ ​reduces the energy gradient between the FPs (Fig. 6b) causing the system to slow down.  

We numerically solved the coupled equations to compute the system’s response dynamics.             

The energy (E) of the system was defined as the path integral over a vector field:                

. This was computed numerically by integrating the speed along a           

deterministic trajectory from the unstable FP to the stable ones using the equations above to                

numerically simulate the relaxation of the activity towards the final FP.  
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Fig. 1. Time production task and behavior. ​(a) Trial structure. Animals had to produce either               

a 1500 ms (​Long​), or an 800 ms (​Short​) interval, either by making a saccade (​Eye​) or a button                   

press (​Hand​). These four conditions were randomly interleaved and were cued throughout the             

trial by the color and shape of two central stimuli, a circular fixation for the eye and a square that                    

cued the animal to place its hand on a button. The colored shape (circle or square) cued the                  

effector, and the hue (red or blue) cued the desired interval (red for ​Short ​and blue for ​Long​).                  

After a random delay (0.5 - 1.5 sec, uniform hazard), a filled white circle was flashed to the left                   

or right of the fixation point. This peripheral flash specified the saccadic target for the eye trials                 

and played no role in the hand trials. After another random delay (0.5 - 1.5 sec, uniform hazard),                  

a ​Set cue (a ring flashed around the two fixation stimuli) initiated the motor timing epoch. The                 

animal’s production interval (​Tp​) was measured as the interval between ​Set and when either the               
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saccade was made or the button was pressed. The saccade was rewarded if it was directed to                 

the memorized location of the peripheral target. When ​Tp for the desired effector (eye or hand)                

was within a specified reward window, the peripheral target (or the square fixation) turned              

green, auditory feedback was provided, and animal was rewarded with juice. The reward             

window was set adaptively on a trial-by-trial basis and independently for the ​Short and ​Long               

conditions so that the animal received reward on approximately 50% of trials both both interval               

context on every session (on average, 57% in monkey A and 51% in monkey D). The reward                 

magnitude increased linearly with accuracy as shown by the green triangular reward function.             

Two example trials, one for the ​Eye​/​Short (ES) condition (left) and one for the ​Hand​/​Long (HL)                

condition are shown. ​(b) A typical behavioral session showing ​Tp ​while the animal flexibly              

switched between the four trial conditions. For clarity the ​Eye (left) and ​Hand (right) trials are                

plotted separately although during the task they were randomly interleaved. The top 4             

histograms show the distribution of ​Tp for each condition with rewarded trials in green. The               

vertical lines correspond to the mean values that are also reported numerically. ​(c) Top:              

Behavior across 31 sessions for animal A. The standard deviation of ​Tp scaled with its mean for                 

both ​Eye (left panel, circle) and ​Hand (right panel, square) and both intervals (red and blue).                

The mean ​± s.e.m of ​Tp ​s was ES: 810 48.9 ms, EL: 1495 117 ms, HS: 822.3 53.7 ms, HL:        ±    ±    ±    

1486 136 ms. The variability was significantly higher for the ​Long compared to the ​Short​. The±                

average Weber fraction (ratio of standard deviation to mean) for the ​Hand ( ) was              

significantly larger that ​Eye ( ) (one-tailed paired sample ​t​-test, n = 31). Bottom: Same as               

the top panel for animal D. The mean ​± s.e.m of ​Tp ​s for the 4 trial conditions were: ES: 808                   ±

56.1 ms, EL: 1481 137 ms, HS: 836.7 91.3 ms HL: 1521 177 ms. The variability was   ±    ±    ±      

significantly higher for the ​Long ​compared to the ​Short and, was significantly larger than               

 (one-tailed paired sample ​t​-test, n = 35)  .05 ( ) and  =  .001 ( ) levels.* ***   
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Fig. 2. Medial frontal cortex inactivation and electrophysiology. (a) Parasagittal view of one             

of the animals (monkey D) with a red ellipse showing the region targeted for inactivation and                

electrophysiology. Bottom: the corresponding stereotactic coordinates in each animal with          

respect to anterior commissure (AC) and midline (ML). ​(b) Muscimol inactivation. Each line in              

each panel shows the change in bias (abscissa) and change in standard deviation (ordinate)              

after muscimol injection in one behavioral session separated for ​Hand (square) and ​Eye (circle).              

Red and blue correspond to ​Short ​and ​Long trials, and black, to Saline control sessions. The                

reported p-values correspond to a test of whether inactivation increased RMSE across sessions             

(RMSE​2 = (​Tp - Ts ​)​2 = Bias​2 + Var, one-tailed paired t-test, see Table 1). No significant  Σ                

change of RMSE was observed after saline injection (Table 1). ​(c) Computing            

post-stimulus-time histograms (PSTHs). Top: Raster plot of spike times (black ticks) for a single              

neuron aligned to movement initiation time (dashed line) across trials (rows) for an example              

neuron. Trials were sorted and grouped into bins (colors) according to the produced interval              

(​Tp ​). Bottom: PSTHs that were computed with respect to movement initiation time were             

subsequently plotted aligned to the time of Set (dashed line). The Set across trials in the top                 

panel, and the activity profiles in the bottom panels were colored according to ​Tp bins (legend).                

(d) Activity profile of 8 example neurons for ​Hand (top) and ​Eye (bottom) conditions computed               

as described in (c). ​(e) ​Analysis of single neurons with respect to various model of timing.                

Whisker plot (median: center line; box: 25th to 75th percentiles; whiskers: ±1.5× the interquartile              

range; dots: outliers) showing the range of R​2 values captured by six models fitted to the PSTHs                 
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of individual neurons. The “Temporal scaling” model (top) had the highest explanatory power of              

R​2 in comparison with all other models (one-way ANOVA, F​6, 2444 = 156.5, P < 0.001, and                 

one-tailed paired sample ​t​-test between ‘Temporal scaling’ and ‘Population clock’ model, n =             

416,​ P​ < .001). 
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Fig. 3. Temporal scaling in the medial frontal cortex at the population level. (a) Top:               

Population activity profiles for hand trials of one animal projected onto the first 3 principal               

components (PCs) from the time of Set to the time of button press (Response). Activity profiles                

associated with different produced intervals for ​Short ​and ​Long conditions are plotted in different              

colors (see color bar in Fig. 3f). The state at 700 ms after Set is shown along the trajectories                   

(diamond). Bottom: ​The time course of the first three PCs with the corresponding scaling index               

(SI) values. (b) ​Top: Schematic drawing illustrating the scaling subspace. The response            

dynamics associated with a ​Short (red) and ​Long (blue) produced interval (​Tp​) are depicted as               

32 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 25, 2017. ; https://doi.org/10.1101/155390doi: bioRxiv preprint 

https://doi.org/10.1101/155390


 

distinct trajectories in the state space. The start and end of the trajectory are demarcated by Set                 

and Response (filled circles). Projections of neural responses onto a scaling subspace result in              

overlapping trajectories (purple) whose speed determines the produced interval (fast for short            

and slow for long). Bottom: ​Cumulative percentage variance explained by PCs and SCs. ​(c)              
Top: Population activity sorted according to ​Tp bins and projected onto the first 3 scaling               

components (SCs). As expected, in this subspace, the trajectories overlap. Bottom: The first             

three SCs with the corresponding SI values. Because of cross-validation, the scaling index of              

SCs of the test data were not in decreasing order, although they were for the training dataset                 

(not shown). ​(d) ​Variance explained ​for individual SCs as a function of scaling index. SCs with                

the larger scaling indices explain a large percentage of variance for both ​Hand (square) and ​Eye                

(circle) conditions. Inset: An unbiased estimate of variance explained as a function of scaling              

index derived from random linear projections of the MFC activity in the state space. The plot                

includes 200 random projections binned and pseudocolored to indicate the frequency of            

occurrence. The data shows that high scaling indices are associated with high variance             

explained. ​(e) Comparison of scaling index between the MFC, caudate and thalamus with three              

surrogate models that capture the observed firing rate statistics with increasing levels of             

sophistication. The data for surrogate models were generated from Gaussian processes that            

were constrained to match the smoothness in the data (i.e., same smoothness, ​S​). In the first                

model (​E+S​), surrogate data were additionally constrained such that responses for different            

production intervals were the same at the time of Set and the time of response (i.e., same                 

endpoints, ​E​). The second model (​D+E+S​) additionally constrained the surrogate data to have             

the same dimensionality as the MFC data (i.e., same dimension, ​D​). The third model              

(​C+D+E+S​) further constrained the data such that the R​2 correlation between responses to             

different produced intervals were the same as what would be expected from perfectly scaling              

responses (i.e., same correlation, ​C​). Each model consisted of the same number of neurons as               

that in the MFC data, and the number of bootstrapped samples for each model was n = 200.                  

The plot shows the the average scaling index across all SCs computed from bootstraps (small               

circles) along with the corresponding mean (vertical line) for each of three brain areas and each                

of the surrogate models. The average scaling index for each surrogate model was significantly              

lower than the values associated with the MFC and caudate, but not for the thalamus (one-tailed                

two-sample ​t​-tests, n = 200, *** indicates ​P < .001, see main text). The inset shows the                 

hypothesis space in relation to various constraints and their combinations with distinct colors             

and their overlaps. Perfect scaling (middle ellipse) is a subset of the possibilities that satisfy all                
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four constraints. The colors correspond to those used to label surrogate models on the ordinate.               

(f) The speed of neural trajectory within the scaling subspace spanned by the first 3 SCs                

predicted average ​Tp​s across bins. 
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Fig. 4. Inactivation, electrophysiology and temporal scaling in the caudate and thalamus.            
(a) Same as Fig. 2a with a red ellipse showing the region of caudate targeted for inactivation                 

and electrophysiology. Bottom: stereotactic coordinates in each animal. ​(b) ​Muscimol          

inactivation in the caudate. Results are presented in the same format as in Fig. 2b. Statistics are                 

reported in Table 1. ​(c) Activity profile of three example neurons across production time (​Tp​)               

bins (colors) computed as described in Fig. 2c. ​(d) ​Top: The relationship between variance              

explained and scaling index in the caudate. Results are presented in the same format as the                

inset of Fig. 3d. Bottom: The first three PCs with the corresponding scaling index (SI) values. ​(e)                 
Same as panel a showing the region of interest in the thalamus. We recorded from neurons in                 

the region where MFC-projecting neurons were identified antidromically. Inset: example of           

reliable and low-latency spikes detected after antidromic stimulation. ​(f) ​Muscimol inactivation in            

the thalamus. Results are presented in the same format as in Fig. 2b. Statistics are reported in                 

Table 1. ​(g) Same as panel c for three example neurons in the thalamus. The example neuron                 

in top right was antidromically identified. ​(h) ​Top: Variance explained as a function of SI in the                 

thalamus (same format as in panel d). Results in the thalamus are qualitatively different from the                

caudate (panel d) and MFC (Fig. 3d) in that most projections in the state space do not exhibit                  

temporal scaling. Bottom: The first three PCs and the corresponding SI values in the thalamus.  

35 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 25, 2017. ; https://doi.org/10.1101/155390doi: bioRxiv preprint 

https://doi.org/10.1101/155390


 

 

 

Fig. 5. Recurrent neural network model dynamics. ​(a) A recurrent neural network model that              

receives an input (Cue) whose strength depends on the desired interval (different colors), and a               

transient Set pulse that initiates the timing interval. After Set, the output (​z​) of the network                

begins to ramp linearly toward a threshold (not to scale). The training target was a linear ramp                 

(for other objectives see Supplementary Data Fig. 6) ​(b) ​The response profiles of randomly              

selected units in network (a) aligned to the time of Set. Many units exhibit temporal scaling. (c)                 

Left: Network activity projected onto the first three principal components across all trials.             

Different traces correspond to trials with different durations (red for shortest to blue for longest).               

For each Cue input, the network engenders a pair of initial and terminal fixed points (circles; F​init                 

and F​terminal ​). Diamonds mark the state of the network along the trajectory 500 ms after Set. ​The                 

Cue input moves the fixed points within an “Input” subspace. The corresponding trajectories for              

different intervals reside in a separate “Recurrent” subspace. Right: Rotation of the state space              

reveals the invariance of trajectories in the recurrent subspace. In the recurrent subspace             

trajectories traverse the same path at different speeds (see diamonds for different Cue inputs).              

(d) ​After training, ​the network accurately produced the intervals according to the presented Cue              

input. ​(e) ​A plot of the average speed in the recurrent neural network model as a function of the                   

logarithm of the production interval (​Tp​). The speed was estimated from the rate of change of                
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activity along the neural trajectory within the subspace spanned by the first three PCs. ​(f) Left:                

The spectrum of eigenvalues of the linearized dynamics near F​terminal ​. Right: The spectrum of              

eigenvalues of a linear system ( ). Applying a gain factor, , to the transition matrix,               

, causes eigenvalues to move radially (expand or contract) while the eigenvectors are             

preserved. The spectra corresponds to eigenvalues of an N-dimensional linear dynamical           

system with elements of sampled from a distribution . Decreasing the gain values              

from = 1.0 (red) to 0.57 (blue) progressively decreases the magnitude of the eigenvalues and                

increases the effective time constants ( ). ​(g) ​Units in recurrent model were sorted             

based on their maximal activity when the network was near F​terminal ​. The plot shows the               

maximum activity as function of Cue input. Vertical arrows mark two neurons, one with positive               

and another with negative activity, which are plotted in panel (h). ​(h) Stronger input drives units                

toward the saturation point of their nonlinear activation function where the shallowness of slopes              

leads to reduced gain of neural activity. This is true both for units with a positive response                 

whose responses increased with Cue input (right), as well as units with a negative response,               

whose responses decreased with input drive (left). In all plots, different colors correspond to              

different intervals as shown by the color bar. 
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Figure 6. A simple two-neuron implementation of speed control. ​(a) Two inhibitory units (u              

and v) with recurrent inhibition receive a common excitatory input (Cue). ​(b) ​The energy              

landscape of the 2-neuron model. The network has a bistable energy landscape whose             

gradients depend on the strength of the Cue input. Stronger inputs (blue) lead to shallower               

energy gradients and vice versa (red). The Set pulse moves the state away from the initial fixed                 

point (F​init​, filled circle) and over the saddle point (F​saddle​, open circle). The network then               

spontaneously moves toward the terminal fixed point (F​terminal ​, filled circle). The speed of the              

movement toward F​terminal is relatively slow when the energy gradient is shallow (blue) due to               

stronger common input. ​(c) Phase plane analysis of the 2-neuron model. The two axes on the                
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lower left correspond to the activity of the two neurons (u and v). The input is applied to both                   

units and thus drives the system along the diagonal, which is labeled as “input subspace”. The                

input level moves the nullclines of the two units (du/dt = 0, dashed, and dv/dt = 0, solid) and                   

adjusts the location of the three fixed points, (F​init​, F​terminal and the intermediate F​saddle​). The figure                

shows the two nullclines and the corresponding fixed points for two inputs levels (red and blue).                

Activation of Set moves the system along a “recurrent subspace” which is orthogonal to the               

input subspace. The proximity of nullclines (crosses below the Input subspace) controls the             

speed. When the input is stronger, the nullclines are closer, which causes the system to               

become slower. ​(d) Interaction of the input drive with the saturating nonlinearity of one unit. The                

action of the input upon the nonlinear activation functions moves the saddle point and controls               

the speed of the system. Stronger inputs push the neurons toward the shallower part of the                

nonlinear activation function, and moves the saddle point to slower regions of the phase plane               

causing the system to recurrent interactions to slow down.  
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 Muscimol Saline  

 Long Short Long Short  Reaction times 
in Muscimol 

MFC n =  58,  
P​ = 0.002 

n =  63,  
P​ = 0.003 

n =  14,  
P​ = 0.095 

n =  14,  
P​  = 0.86 

n =  12,  
P​ = 0.51 

Caudate n =  48,  
P​ = 0.005 

n =  46,  
P​ = 0.036 

n =  15, 
P​ = 0.60 

n =  16,  
P​ = 0.86 

n =  14,  
P​ = 0.26 

Thalamus n =  53,  
P​ < 0.001  

n =  50,  
P​ < 0.001  

n =  14,  
P​ = 0.81 

n =  13,  
P​ = 0.12 

n =  12,  
P​ < 0.001 

 
 
Table 1. Effects of muscimol inactivation in the three brain areas. In assessing the              

significance of inactivation in the motor timing experiment (second and third columns from left),              

we used one-tailed paired-sample Student’s ​t​-tests to examine whether the muscimol caused an             

increase in RMSE (H0: no increase in RMSE). The same test was used for the saline injection                 

experiments (third and fourth columns from left). Statistical tests were done based on             

distributions of average RMSEs derived from trials before and after muscimol injection. Each             

pair of average RMSE values were computed from a pair of 50 random trials from before and                 

after injection. The sampling was made without repeats to ensure trials were not counted twice.               

In assessing the effect of muscimol on reaction times (RTs) in the memory saccade task (the                

rightmost column), we used a two-tailed Student’s ​t​-tests to examine whether the muscimol             

caused a change in reaction time (H0: no change in RT). Statistically significant effect are               

marked in gray. There was a change in RT after muscimol inactivation in the thalamus. This                

suggests that the region influenced by the inactivation of thalamus could also have a role in the                 

memory saccade task.  
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Supplementary Figure 1. ​Scaling index of single neurons in different brain areas.            
Histograms on the top show the normalized distribution of scaling index for individual neurons in               

the MFC (n = 416), caudate (n = 278), and thalamus (n = 846) for the ​Eye (Left) and ​Hand                    

conditions (Right). The bottom panel shows a comparison of the cumulative probability            

distribution of scaling index across the three areas. The thalamus shows a predominance of              

smaller scaling index value (one-tailed two sample ​t​-test, ​P ​ < .001) . 
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Supplementary Figure 2. The time course of PCs (left) and SCs (right) for MFC data. ​First                

9 PCs over the course of the production interval (abscissa) that explain 80% of variance in the                 

MFC data in decreasing order of variance explained (left) for Short (warm colors) and Long (cool                

colors) intervals. First 9 SCs, obtained for the same data, in decreasing order of scaling (right,                

see Methods). 
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Supplementary Figure 3. ​Analysis of scaling with surrogate data. (a) ​Venn diagram            

showing the various constraints considered for non-scaling models. All surrogate data was            

generated from a Gaussian Process (GP) with the same level of temporal smoothness (white              

rectangle, ​S​) as the data. We considered three additional constraints to make the surrogate              

data more similar to neural data without an explicit requirement for scaling. One constraint              

required responses for all production intervals to be at the same level at the time of Set and at                   

the time of response. We refer to this constraint as endpoint matching (red circle, ​E​). Another                

constraint required that the dimensionality of the surrogate data match the neural data, and              

additionally the variance explained by each principal component (PC) be matched. We refer to              

this constraint as dimensionality matching (green circle, ​D​). Finally, we considered a constraint             

that required the collection of responses for different production intervals to have the same              

correlation (quantified as R​2​) as expected from perfect scaling. We refer to this constraint as               

correlation matching (blue circle, ​C​). We created surrogate data for each constraint and for              

various combination of constraints, and compared the scaling properties to the original data.             

Note that each constraint characterized a superset of the scaling hypothesis. ​(b) ​Example             

traces showing the procedure for generating the surrogate data in the ​C+D+E+S model for 5               

randomly selected surrogate units aligned to the time of Set. We first sampled a ​Short ​trace                

(red) from a Gaussian process. The trace in blue corresponds to the perfectly scaled version of                
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the red trace and is not a sample from the surrogate model. The surrogate data were generated                 

using a constrained Gaussian Process (GP) prior as follows: the response for the shortest              

production intervals (red) was sampled from a GP with the same level of temporal smoothness               

as the neural data. The corresponding response with perfect scaling was generated by linear              

scaling (shown in blue). Note that the trace in blue is not a sample from the GP and is therefore,                    

not part of the surrogate data. The gray traces correspond to the surrogate data. To generate                

the surrogate data, we drew samples from the Gaussian process that satisfied several criteria.              

First, the starting point as well as the ending point of every gray trace had to be perfectly                  

matched to the starting point and ending point of the perfectly scaled blue trace. Second, across                

the population of surrogate data, the dimensionality had to match observed neural data. Finally,              

the correlation between every gray trace and the red trace was the same as the correlation                

between the red and blue trace. In this way, every sample of GP (gray traces) matched the                 

smoothness, endpoints, dimensionality and correlation as the real data (i.e., ​C+D+E+S model).            

(c) ​Cumulative percentage variance explained by PCs and SCs for the surrogate data             

generated from the non-scaling ​C+D+E+S model. ​(d) ​The first 9 principal components of             

population activity (PC, left) and the corresponding 9 scaling components (right, SCs) plotted as              

the function of time from Set for the non-scaling ​C+D+E+S model. Note that PCs and SCs are                 

based on the surrogate data (gray traces in panel b) – not the perfectly scaled data (blue traces                  

in panel b). 
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Supplementary Figure 4. Relationship between MFC population activity and behavior. ​The           

speed of neural trajectory in MFC within the scaling subspace spanned by the first 3 SCs                

predicted ​Tp across both ​Short and ​Long conditions on a trial-by-trial basis. The case of hand                

trials for Monkey A was shown in Fig. 5d. Here, all the other conditions are shown. 
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Supplementary Figure 5. Analysis of scaling at the population level in the caudate (top)              
and thalamus (bottom). Left column: Population activity profiles projected onto the first 3             

principal components (PCs). Activity profiles associated with different produced intervals for           

Short and ​Long conditions are plotted in different colors (same color scheme used throughout              

the paper). The state at 700 ms after Set is shown along the trajectories (diamond). Second                

column from the left: Population activity projected onto the first 3 scaling components (SCs).              

Activity spanned by the first 3 SCs overlap for different intervals in the caudate but not in the                  

thalamus. Third column from left: Variance explained for individual SCs as a function of scaling               

index. Right column: The speed of neural trajectory within the scaling subspace spanned by the               

first 3 SCs. 
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Supplementary Figure 6. Alternative recurrent neural network models ​(a) A recurrent           

neural network (RNN) trained to use an interval-dependent Cue input to produce time intervals              

flexibly. The network was trained using a non-scaling exponential objective with a fixed time              

constant. ​(b) The speed of dynamics measured within the space spanned by the first three PCs                

predicted ​Tp across both ​Short and ​Long conditions. ​(c) ​The response profiles of randomly              

selected units in the network (a) aligned to the time of Set. (d) ​A RNN trained to use a brief                    

pulse as the interval-dependent Cue input to produce time intervals flexibly. The network was              

trained using a linear ramping objective like the network in the main text. ​(e) The speed of                 

dynamics predicted ​Tp across both ​Short and ​Long conditions. ​(f) ​The response profiles of              

randomly selected units in network (d) aligned to the time of Set.  
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Supplementary Figure 7. Temporal scaling in the recurrent network model ​(a) The first 9              

scaling components (SCs) of the population activity in the RNN with a scaling output function               

(Fig. 5). The early SCs correspond to the recurrent subspace, and the last SC represents the                

input subspace. ​(b) The average speed of population activity in the subspace spanned by the               

first 3 SCs is predictive of both within context and across context variations in ​Tp ​. ​(c) The                 

average firing rate of the population activity projected onto the last SC is also predictive of ​Tp ​.                 

(d) ​Cumulative percentage variance explained by PCs (white) and SCs (black). The dashed             

vertical line correspond to the 9th component. ​(e-h) ​Same as a-d, for a network that was trained                 

for a non-scaling exponential output objective function (Supplementary Fig. 6d).  

  

48 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 25, 2017. ; https://doi.org/10.1101/155390doi: bioRxiv preprint 

https://doi.org/10.1101/155390


 

 

Supplementary Figure 8. Non-scaling population activity in MFC. ​Left: The time course of             

the SC9 (the least scaling component) across conditions. Right: The average firing rate of              

population activity projected onto SC9 (left), also the putative input subspace, increases with             

produced intervals (​Tp​). This is consistent with the hypothesis that the average firing rate in the                

non-scaling subspace controls speed. Based on the recurrent network model, this subspace            

likely reflects the input drive to MFC. 

 

___________________________________________________________________________ 
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