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ABSTRACT 28 

Cystic fibrosis (CF) is a debilitating chronic condition, which requires complex and expensive 29 

disease management. Exercise has now been recognised as a critical factor in improving health and 30 

quality of life in patients with CF. Hence, cardiopulmonary exercise testing (CPET) is used to 31 

determine aerobic fitness of young patients as part of the clinical management of CF. However, at 32 

present there is a lack of conclusive evidence for one limiting system of aerobic fitness for CF 33 

patients at individual patient level. 34 

 35 

Here, we perform detailed data analysis that allows us to identify important systems-level factors that 36 

affect aerobic fitness. We use patients’ data and principal component analysis to confirm the 37 

dependence of CPET performance on variables associated with ventilation and metabolic rates of 38 

oxygen consumption. We find that the time at which participants cross the anaerobic threshold (AT) 39 

is well correlated with their overall performance. Furthermore, we propose a predictive modelling 40 

framework that captures the relationship between ventilatory dynamics, lung capacity and function 41 

and performance in CPET within a group of children and adolescents with CF. Specifically, we show 42 

that using Gaussian processes (GP) we can predict AT at the individual patient level with reasonable 43 

accuracy given the small sample size of the available group of patients. We conclude by presenting 44 

future perspectives for improving and extending the proposed framework. 45 

 46 

Our modelling and analysis have the potential to pave the way to designing personalised exercise 47 

programmes that are tailored to specific individual needs relative to patient’s treatment therapies. 48 

 49 

 50 

 51 
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 61 

INTRODUCTION 62 

Cystic fibrosis (CF) is the most common life shortening genetic disease in the Caucasian population, 63 

affecting nearly 11,000 individuals in the United Kingdom (UK) (1). The pathology of the disease, 64 

for which there is no cure, manifests itself throughout the respiratory, digestive and reproductive 65 

systems of the human body. Currently, as there is no cure for CF, the management of the disease is a 66 

key factor in the quality of care and health related quality of life factors. Part of the management of 67 

this disease requires cardiopulmonary exercise testing (CPET) to determine aerobic fitness, as 68 

represented by the maximal oxygen consumption (V̇O2max). This parameter provides a clinically 69 

useful prognostic evaluation of a patient’s functional capabilities. Even in mild to moderate severity 70 

of CF, patients are known to demonstrate impairments in cardiac and respiratory functions leading to 71 

exercise intolerance.  72 

 73 

Enhanced aerobic fitness has been shown to improve quality of life in young patients with CF (6-18 74 

years), with benefits including lower risk of hospitalisation, increased exercise tolerance, reduced 75 

residual volume, increased endurance of the respiratory muscles, enhanced sputum expectoration and 76 

decreased rate of decline in pulmonary function (2-6). It has also been shown from CPET that 77 

individuals with CF possessing a higher V̇O2max are shown to have a reduced mortality risk. Nixon et 78 

al. (1992) reported that individuals with a V̇O2max greater than 82% of their predicted value had an 79 

83% 8-year survival rate, compared to just 28% 8-year survival rate for patients with a V̇O2max less 80 

than 58% of their predicted value (7). Furthermore, patients with a higher V̇O2max also have 81 

additional benefits in terms of improved fluid balance, retention of serum electrolytes through 82 

increased plasma volume, and potential for impact on sweat gland function thus reducing thermal 83 

strain and dehydration (8). These systemic changes are advantageous responses to exercise training, 84 

and result in an enhanced quality of life, increased physical function and increased life expectancy (9, 85 

10).   86 

 87 

Effective management of the disease has become even more critical in recent years due to an aging 88 

CF population group, with the median predicted survival of children born with CF in the UK now 89 

being  45 years (1). As a consequence of an aging patient group and high medical care costs (11), 90 

maintaining or enhancing fitness is crucial. Exercise has being widely acknowledged as a key 91 

management strategy for CF, supported by some mechanistic data on the systemic effects of exercise 92 

at the cellular level in vivo in young patients with CF (5-9). However, an integrated systems level 93 
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understanding of the limitations of aerobic fitness for CF patients is lacking. Measurement techniques 94 

that do exist to quantify within-organ, real-time perfusion and intracellular oxygenation are invasive 95 

and unethical for use with paediatric patients, and current animal model research provides limited 96 

direct relevance to paediatric pathology. In clinical practice, there is significant interaction between 97 

cardiac and pulmonary function and the behaviour of the systemic vasculature during exercise 98 

training. This can result in the functional improvement in one part of the combined system, but 99 

detrimental effects on others (9). Clinicians therefore inevitably have to adopt very imprecise 100 

guidelines related to exercise prescription (12).  101 

 102 

The use of modelling and simulation tools in clinical medicine is currently the subject of intense 103 

research interest both in the UK and internationally (13-17), and the adoption of a systems 104 

biomedicine approach to build and validate novel multi-scale, organ-level, integrated, re-usable and 105 

re-deployable models represents a paradigm shift in biomedical modelling and simulation. There are 106 

numerous organ level models in existence (18-21), however, to date there have been limited attempts 107 

to either integrate these or to apply them to real clinical applications. There is ongoing basic science 108 

and clinical trial work providing data on the micro (22) and macrovascular (23) changes associated 109 

with exercise. These data, although important, have yet to be integrated quantitatively with other data 110 

streams. In particular, there has been almost no previous work on the use of predictive modelling and 111 

simulation technologies for developing treatment strategies for CF patients.  112 

 113 

Here, we present detailed data analysis of responses to progressive exercise in patients with CF, with 114 

a view of determining predictors of performance. We find that the time at which participants cross 115 

the anaerobic threshold (AT), as measured by means of gas exchange threshold (GET) is well 116 

correlated with overall performance. To gain further insight, we then develop a surrogate (statistical) 117 

model that allows us to evaluate how CF impairs exercise tolerance relative to increasing ventilatory 118 

and metabolic demands. Our modelling and analysis was based on data collected during cycling 119 

exercise form a CPET at different work rates (from resting to voluntary exhaustion) in young patients 120 

with CF. The outputs produced are discussed in this paper, with analyses focussing on pulmonary 121 

parameters. 122 

 123 

METHODS 124 

Before turning our attention to modelling, we perform an exploratory analysis of the available data in 125 

order to identify predictors of performance. This study was carried out in accordance with the 126 
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recommendations of the European Respiratory Society, written consent and assent was obtained from 127 

parent(s)/guardian(s) and participants, respectively. All participants’ parents gave written informed 128 

consent in accordance with the Declaration of Helsinki. The protocol was approved by the South 129 

West NHS Research Ethics Committee. Data were collected from 15 children and adolescents with 130 

CF, who performed a valid (24) and reliable (25) combined ramp incremental and supramaximal 131 

(Smax) CPET to determine V̇O2max and the GET. This protocol was performed on an electronically 132 

braked cycle ergometer, and required patients to perform  an initial exhaustive ramp incremental test 133 

at a pre-determined rate between 10–25 W·min-1, in order to elicit exhaustion in approximately ten 134 

minutes (26). After a 3-min warm-up at 10-20 W, participants completed this incremental test to the 135 

point of volitional exhaustion, maintaining a cadence of 70–80 rpm throughout. Exhaustion was 136 

defined as a 10 rpm drop in cadence for five consecutive seconds, despite strong verbal 137 

encouragement. Active (5-min cycling at 20 W) and then passive seated recovery (10 min) then 138 

preceded the Smax bout. Smax verification consisted of a 3-min warm-up (10-20 W), followed by a 139 

‘‘step’’ transition to a constant work rate corresponding to 110% peak power output (27). Upon 140 

volitional exhaustion (defined previously), a 5-min active recovery (slow cycling at 20 W) concluded 141 

the combined CPET session.  142 

 143 

MODEL SIMULATIONS 144 

Simulations are widely used in various fields of science and engineering because conducting physical 145 

experiments is too costly, or highly time-consuming, or even impossible in some cases (28). In the 146 

case of CPET in CF patients, there are also ethical considerations, since the test adds to the treatment 147 

burden many children and adolescents with CF already face.  148 

 149 

Often, a primary goal of using model simulations is to perform quantitative studies such as 150 

uncertainty quantification or sensitivity analysis. Such studies are crucially important in biomedicine, 151 

since there exists significant variation both between and within patient groups. Through 152 

understanding and quantification of the uncertainty within the mathematical models, outcomes of 153 

patient-specific interventions can be better predicted. However, such investigations require a large 154 

number of runs that makes it impractical if each run takes more than a few seconds. To cope with this 155 

difficulty, one can use emulators, also known as surrogates, or metamodels or response surfaces 156 

(29). These provide a fast approximation of the input/output relation governed by the underlying 157 

simulator. The most important classes of surrogate models have been described elsewhere (30-32).   158 

 159 
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The surrogate model employed in this study is based on Gaussian processes (GP), which have 160 

become increasingly popular over the last decade (29). GPs have been used in a wide range of 161 

applications from wireless communication, to obtain position estimates for a mobile user (33); 162 

metallurgy, to model the development of microstructure (34); and in biology, to describe gene 163 

regulatory processes and cell growth (35-37).  164 

 165 

The data analysis was performed using Python (Anaconda Software Distribution. Version 2-2.4.0. 166 

Continuum Analytics, 2016. URL https://continuum.io) and MATLAB and Statistics Toolbox 167 

Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United States. The GP model simulator 168 

was implemented in R (R Core Team (2013). R: A language and environment for statistical 169 

computing. R Foundation for Statistical Computing, Vienna, Austria.   URL http://www.R-170 

project.org/.) 171 

 172 

RESULTS 173 

Data Analysis 174 

To facilitate understanding, we first plot in Figure 1(a), raw data displaying the performance of the 175 

participants. The work rate for each participant is increased at a rate that is either, a) dependent on 176 

their performance in previous tests, or b) when a prior test is unavailable, at a rate that is predicted to 177 

elicit exhaustion in approximately ten minutes (26). This is done in order to keep the expected 178 

duration of the test comparable to other participants. Note that this means that the total energy 179 

expended by a given participant is not based on the duration of the test alone. In Figure 1(b), we 180 

show how participant age affects overall test performance. We observe a correlation between the two: 181 

the worst performing participants tend to be the youngest, but this effect is insignificant at older ages. 182 

The colour coordination used in this figure (red-worst performance → blue-average performance 183 

→green-best performance) will be used throughout the remainder of this section, where performance 184 

is quantified by the total energy transferred during the test. 185 
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 186 
Figure 1: (a) The work rate for each participant is increased at a rate dependent on their past 187 

test performance. (b) Participant age is correlated with test performance for young 188 

participants, but not for older ones. 189 

 190 

In Figure 2, we plot the ratio of V̇O2 over total ventilation (V̇E) with respect to time. The markers on 191 

each of the time traces indicate the time of volitional exhaustion for that participant. There are two 192 

features that stand out from this figure. Firstly, participants who perform better have higher V̇O2/V̇E 193 

ratios, suggesting that their oxygen uptake is more efficient than their poorer performing 194 

counterparts. Secondly, in the recovery phase of the test (5 minutes following volitional exhaustion) 195 

better performing participants exhibit a sharp decrease in V̇O2/V̇E, which is not observed in the poor 196 

performance group. Again, this suggests a more efficient utilisation amongst the former group and 197 

that exhalation of CO2 is perhaps more significant to total breathing following the test. 198 

 199 
Figure 2: Ratio of oxygen utilisation and total breathing throughout the test. Markers indicate 200 

the volitional exhaustion times for each participant. 201 

 202 

(a) (b)
r  = 0.4944092
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We next examine the effect that breathing patterns have on participant performance.  Two classical 203 

prognostic measures used for patients with cystic fibrosis are the forced vital capacity (FVC), and the 204 

forced expiratory volume in one second (FEV1). These measures have been shown to be well 205 

correlated with mortality and overall fitness of CF patient groups (38-40). In Figure 3, we 206 

demonstrate how these metrics are correlated with performance in the CPET test. In Figure 3(a), we 207 

observe good correlation between FVC and the maximum tidal volume (TV) of breathing achieved 208 

throughout the test. This is unsurprising since participants are likely to be trying to maximise their 209 

breathing depth close to their exhaustion point. However, notice that, although the group with low 210 

FVC performed poorly, this measure was unable to separate other participants. Figure 3(b) reiterates 211 

this result and also highlights the high correlation between FEV1 and FVC.  212 

 213 
Figure 3: (a) Correlation of FEV1 with the maximal tidal volume achieved throughout the test. 214 

(b) Correlation between FEV1 and FVC is high. Note that, although FVC and FEV1 are good 215 

predictors of poor test performance, they are unable to distinguish better performing 216 

participants. 217 

 218 

In order to better classify the performance of the participants, we must instead look for other factors. 219 

In Figure 4, we present the total breathing rate against the oxygen consumption throughout the test. 220 

In Figure 4(a), we find a strong relationship between test performance and respiratory pattern. Note 221 

that the curvature of the graphs suggests that an exponential fit, rather than a linear one, is most 222 

appropriate for these data. In order to test this, we take logarithms of the data and perform a linear 223 

regression, ignoring the first 180s of the test since participants are here in the warm up phase (work 224 

rate is not increasing) and the final 60s of the data prior to volitional exhaustion, since participants 225 

pass their respiratory compensation point, inducing hyperventilation and erratic breathing.  The 226 
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results of the fit are shown in Figure 4(b) and we can see more clearly the association of 227 

performance on breathing pattern.  228 

 229 
Figure 4: (a) Total ventilation plotted against oxygen utilisation. We observe that breathing 230 

pattern is strongly correlated with test performance. (b) Exponential curves are fitted through 231 

the raw data, further highlighting this dependence. 232 

 233 

From the fitted curves, we can further explore the dependence of breathing patterns on performance.  234 

Firstly, in Figure 5(a), we plot the slope of the fitted curve against the total energy transfer. We find 235 

that the slope of the curve of logV̇E against V̇O2 alone does not capture all of the variation in energy, 236 

which is highlighted by the low R-squared value (0.68). Instead, we plot in Figure 5(b) the oxygen 237 

consumption at a fixed rate of breathing against the total energy. Here, we find a good 238 

characterisation of the overall performance, with a much higher R-squared value (0.86), confirming 239 

that those who utilise oxygen more efficiently perform better. 240 

 241 

242 
Figure 5: Slope of the fitted curves (logV̇E against V̇O2) from Fig. 4(b) plotted against the total 243 

energy transfer during the test. We find a relatively poor characterisation of the variance 244 
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between performances. (b) By instead plotting the oxygen consumption at a fixed rate of 245 

breathing, we better capture differences in performance. 246 

 247 

Next, we examine the specific patterns of breathing exhibited by the participants, in particular, 248 

focussing on breathing depth and frequency. Initial characterisations of these patterns seem to 249 

provide little information, as indicated in Figure 6(a).  However, when we now also include 250 

dependence of oxygen consumption, we find a near perfect classification of participants into the 251 

lowest performing groups, the best performing groups and the middle group. These data are 252 

displayed in Figure 6(b). Note that in this figure, the trajectories appear to be evolving on a planar 253 

manifold, suggesting significant co-dependence between these three variables. 254 

 255 

 256 

 257 
Figure 6: (a) Breathing patterns subdivided into the breathing rate and tidal volume. These 258 

data appear uninformative for predicting test performance. (b) With the additional inclusion of 259 

the oxygen consumption at a fixed rate of breathing, we find that these variables now almost 260 

perfectly capture variation in participant performance. 261 

 262 

Given that there appears to be co-dependence between the variables used in Figure 6(b), a sensible 263 

next step is to use principal component analysis (PCA) to account for these dependencies. By 264 

projecting the data onto their principal components, we show in Figure 7 how well these capture the 265 

variation in participant performance. Given that there are only three independent variables in our 266 

analysis, it is natural to use spherical polar coordinates to show how these quantify performance. The 267 

first of these components, θ, captures over 90% of the variation in performance (Figure 7a), as does 268 
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the normal component in the direction of breathing frequency (Figure 7b). These results further 269 

indicate the importance of breathing frequency, together with co-variation of oxygen consumption 270 

and tidal volume as predictors of test performance. 271 

 272 
Figure 7: First of the principal components obtained via PCA accounts for over 90% of the 273 

variation in test performance. (b) Similar levels of variance are accounted for by taking only 274 

the normal component of the first principal component in the breathing frequency direction. 275 

 276 

Gas Exchange Threshold 277 

Under steady state levels of exercise, the metabolic rate of production of CO2 is assumed to be 278 

proportional to the utilisation rate of O2 via the cellular respiratory quotient, since (after the initial 279 

rest-work transition) adenosine triphosphate (ATP) is replenished primarily via aerobic metabolism 280 

pathways. As the work rate increases, this pathway becomes unable to supply sufficient ATP to 281 

satisfy the required amount of energy and anaerobic pathways have to contribute to overcome the 282 

shortfall. In doing so, they increase the levels of waste products, such as lactate and also increase the 283 

overall production rate in CO2. The point at which this occurs is known as the anaerobic threshold 284 

(AT) or sometimes referred to as the lactate threshold. However, this is difficult to directly measure 285 

in vivo during exercise, and as such the GET is utilised as a non-invasive surrogate of the AT (41).  286 

 287 

The time at which participants cross the anaerobic threshold is well correlated with overall 288 

performance, as shown in Figure 8(a), due to the fact that the anaerobic pathways are less efficient at 289 

producing ATP and because build-up of lactate contributes significantly to fatigue. One of the major 290 

contributing factors in defining AT is V̇O2max, since this is indicative of the limit of the rate of 291 

oxidative phosphorylation. It thus comes as little surprise that V̇O2max is the best single predictor of 292 

CPET performance, as shown in Figure 8(b). 293 
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 294 
 295 

Figure 8: (a) Quantifying the relationship between the anaerobic threshold and overall test 296 

performance. Anaerobic thresholds were calculated using an automated procedure based on 297 

previous methods (41) (b) V̇O2max is the best single predictor of overall test performance. 298 

 299 

Gaussian Processes-based Modelling 300 

A Gaussian Process (GP) defines a probability distribution over functions where the true function is 301 

considered as a particular sample path. In our modelling, we attempt to describe the influence of 302 

breathing patterns and V̇O2 on the AT, since this is shown to correlate well with overall test 303 

performance (see Figure 8). In mathematical terms, we treat AT as our scalar output variable, with 304 

input variables comprising: baseline breathing rate and tidal volumes, and O2 consumption rates at a 305 

fixed ventilation rate, FVC, FEV1, and the rate of changes in breathing rate and tidal at exercise 306 

onset, using the slopes calculating in Figure 4(b). Thus, we have an output variable dependent on 307 

seven input variables, which we conveniently store in a vector x ∈ 𝐷 ⊂ ℝ𝒅, with d=7. We now 308 

assume that there exists a ‘true’ function f: D → ℝ, such that AT = f(x). 309 

 310 

A GP is fully specified by its mean, µ, and covariance K, which are both functions of the input 311 

variables: µ = µ(x), K = K(x,x’). Specifically, if Y is a GP, then we write: 312 

 313 

𝑌 ∼ 𝐺𝑃 µ, 𝐾 :				𝜇 = E 𝑌 𝐱 ,				𝐾(𝐱, 𝐱′) = Cov(𝑌(𝐱), 𝑌(𝐱′)),				𝐱, 𝐱′ ∈ 𝐷 314 

 315 

The above can be regarded as prior distribution over function spaces. This can be seen more clearly 316 

in Figure 9(a). In this subfigure, which shows a generic example of a GP, the bold red line is the 317 

‘true’ function f. Note that the true function is unknown – our aim is to construct a model that 318 
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approximates it. The thin grey lines are sample paths of a GP with a zero mean prior and a constant 319 

prior covariance function. For exposition purposes, the example plot is restricted to the case d=1, but 320 

the approach is unchanged for d > 1. In principle, µ could be any function, for practical purposes, 321 

polynomial regressions are common choices. The choice of covariance function reflects our prior 322 

belief about the structure of f (such as the level of smoothness) and therefore has a crucial influence 323 

on our modelling. A typical choice for the covariance function is the squared-exponential kernel, 324 

given by: 325 

 326 

𝐾(𝐱, 𝐱′) 	= 	𝜎; 𝑒𝑥𝑝 −
|𝑥A − 𝑥AB|;

2𝛷A;

E

AFG

 327 

 328 

Here, σ controls variability of Y along the y-axis while 𝛷A > 0, 𝑖 = 1,… , 𝑑, scale the distance 329 

measure for each input dimension. A more thorough exposition of common choices for the 330 

covariance function may be found in (42).   331 

 332 

Thus far, we have defined the prior distribution for the GP. It is clear from Figure 9(a) that, in 333 

general, prior distributions are unlikely to provide a good approximation to the true function f. We 334 

can incorporate data (or evaluation of f at specific points), with our prior distribution to give a 335 

posterior distribution, following a Bayesian framework. The resulting posterior distribution of the 336 

GP, conditioned on the data, will be much closer to the true function.  337 

 338 

Let 𝐲 = 𝑓(𝐱G), … , 𝑓(𝐱P)  be a set of function evaluations at n locations 𝐗 = 𝐱G, … , 𝐱P . Here, 339 

function evaluations correspond to the AT location for a set of patients during the CPET. Predicting 340 

with GP is obtained by conditioning Y on sample points Ω = {X, y}. For any (new) z ∈ D, the 341 

posterior distribution of Y(z)|Ω has a normal distribution with the following mean, m, and variance, 342 

s2: 343 

m(z) = μ(z) + K(z, X)⊤K (X, X)−1 (y – μ),   (1) 344 

s2(z) = K(z,z) − K(z, X)⊤K (X, X)−1 K(z, X),  (2) 345 

 346 

where T denotes the transpose operator, -1 is the inverse operator and μ = μ(X) is the vector of the 347 

mean function at X. In addition, K(z,X) and K(X,X) are the covariance vector between Y(X) and Y(z) 348 
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and the covariance matrix between the observations. Figure 9(b) shows an example of incorporating 349 

sample points to update the prior distribution shown in Figure 9(a). In this generic example, the 350 

function f is evaluated at five distinct values of x, and the mean and variance of the GP are updated 351 

using (1)-(2). 352 

 353 

 354 
Figure 9: GP is a probability distribution on function spaces. The thick solid red line is the true 355 

function f and the thick dashed black line is the GP mean. (a) Thin grey lines show sample 356 

paths of a prior GP whose mean is zero. (b) Blue bullets indicate five data points sampled from 357 

f. The GP mean and covariance are updated using these sample points. The thin grey dashed 358 

lines show m(x) ± 2s(x). 359 

 360 

At the evaluated points, indicated in blue (colour online), the true value of f is known and so the 361 

variance of the GP at these points vanishes and μ(X) = f(X). In between these points, the variance 362 

increases, dependent on the distance from an evaluated point. The mean of the GP, shown by the 363 

thick black dashed line now approximates the true function much more closely (recall that the prior 364 

mean function in Figure 9(a) was zero everywhere), and matches exactly at the evaluated points. The 365 

approximation can be further improved by incorporating more data (function evaluations), 366 

particularly around those input values for which the variance is high. Thus, as more data becomes 367 

available, the model is iteratively improved. 368 

 369 
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In our simulator, we have used the AT as our output (dependent) variable. Another choice for this 371 

could be the performance in the CPET or V̇O2max, since these are the primary biomarkers for gauging 372 

aerobic fitness. However, the use of the GET has been shown to have high agreement with the lactate 373 

threshold (another surrogate for the AT), and related to disease severity in CF (43). Furthermore, as 374 

reported in Figure 8(a), the AT location for a given patient correlates well with their overall 375 

performance in this test. Furthermore, by constructing a predictive model to approximate the AT 376 

values for a patient, we can hope to further extend this to identify contributions of aerobic and 377 

anaerobic pathways in supplying ATP to meet the demand imposed during the exercise test.  378 

 379 

The initial exploration of results highlighted that both ventilation parameters and metabolic rates of 380 

O2 consumption were the primary factors influencing test performance. It is clear that V̇O2 should 381 

play a significant role in determining the AT location, since it is a proxy for oxidative 382 

phosphorylation which is the main pathway for ATP synthesis in steady state exercise. As a measure 383 

of oxygen uptake efficiency in our model, we use the oxygen consumption rate at a fixed total 384 

ventilation rate (that being 0.822 L/s) as an input (independent) variable for each patient. 385 

 386 

There are a number of ventilatory input variables incorporated in our simulator. Given their potential 387 

importance as clinical biomarkers, highlighting the limitations of lung capacity and function, we 388 

include FVC and FEV1 as input (independent) variables. During the aerobic exercise test, participants 389 

spend three minutes cycling at a minimal work rate, over which we quantify their baseline breathing 390 

frequency and baseline tidal volume by taking the means of these variables over this period. To 391 

capture the dynamics response associated with the exercise, the rates of change of breathing 392 

frequency and tidal volume are calculated, based on the fits obtained in Figure 4(b). The rates of 393 

change of these ventilatory variables indicate how participants respond to changes in workload and 394 

were shown in Figure 6(b) to discriminate between participant performances. Moreover, differences 395 

in rates of change of breathing frequency and tidal volume have previously been shown to be 396 

significantly different between control groups and CF groups (44), suggesting that these are 397 

potentially key biomarkers for assessing aerobic fitness in patients with CF.  398 

 399 

GP Emulator Performance 400 

The GP emulator was constructed using the data presented above, with AT calculated using 401 

previously described methods (41). These data were used to train the emulator. For the prior 402 

distributions, a first order polynomial regression was used for the mean, whilst a squared-exponential 403 
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kernel with σ and Φ provided via maximum likelihood estimation was used as the prior covariance. 404 

Since in this pilot study, we have a small number of participants, we use leave-one-out cross-405 

validation to assess the accuracy of our emulator, that is, for each patient, we use the emulator trained 406 

against the remainder of the sample points to approximate the AT value for that patient, given their 407 

input variables. The results of this are presented in Figure 10(a), in which we also plot the 95% 408 

confidence intervals, with relative percentage errors demonstrated in Figure 10(b). 409 

 410 
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 415 

Figure 10: (a) Predictions (asterisks) vs. exact values (bullets). Red bars show the 95% 416 

confidence intervals, mi(xi) ± 1.96 si(xi) around the predicted value, where mi and si are GP 417 

prediction mean and standard deviation based on all but the i’th data point. (b) Relative 418 

prediction error expressed as a percentage of the true value f(xi). 419 

 420 

The emulator has reasonable accuracy, in spite of the small sample size. In general, for high accuracy 421 

in GP emulator, the number of sample points (corresponding to the number of patients in our case) 422 

should be at least ten times larger than the number of input variables (45). Clearly, there is a need to 423 

acquire further data points to improve the predictive capabilities of the emulator. For each patient, the 424 

95% confidence interval around the predicted point contains the true value. Moreover, the relative 425 

errors for many patients is small (considering the low sample size), though we note that some 426 

patients, (3 and 7), the error is high. This highlights a need to extend this study to include more data 427 

to refine estimates around these points, particularly to deal with the high variability of lung function 428 

parameters in this patient group (46). 429 

 430 

DISCUSSION 431 

Our primary modelling aim is to eventually use the model to evaluate how CF impairs exercise 432 

tolerance relative to increasing ventilatory and metabolic demands. Our predictive model could also 433 

be used to evaluate therapies and their effect on exercise performance. Ultimately, we hope that this 434 

will form a series of steps to design better exercise treatment that is tailored to specific individual 435 

needs relative to patient’s treatment therapies, a treatment modality that is affordable, and 436 

personalised (47).  437 

 438 

The data analysis and modelling results have highlighted the dependence of CPET performance on 439 

variables associated with ventilation and metabolic rates of O2 consumption. Whilst these 440 

observations are, in themselves, not novel, we believe that this is the first attempt to mathematically 441 

model the relationship between ventilatory dynamics, V̇O2 and performance in CPET within a group 442 

of children and adolescents with CF. Whilst it is clear that there is much work to be done in this area, 443 

we hope that this will serve as a starting point for improved modelling, not only in the arena of GP 444 

emulators, but also in the domain of mechanistic modelling, which we shall describe briefly. 445 

 446 

Perspectives for GP improvements 447 
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At present, the GP model is conditioned on specific data points for each patient. An improvement to 448 

the GP could be made by instead conditioning with respect to distributions. Given that repeated tests 449 

are often performed for the same individual, so that multiple sample points are provided for each 450 

participant, we can consider a fit to a probability distribution capturing the variability in the identified 451 

variables. This approach has advantages compared to standard GP models, such as avoiding 452 

problems associated with overfitting and regularisation (which is important for the inverting ill-453 

conditioned covariance matrices that often arise during the application of (1)-(2), (48). 454 

 455 

Perspectives for mechanistic modelling 456 

In order to better understand and characterise the difference between performances, it would be 457 

extremely useful to construct and simulate a mechanistic mathematical model, based upon on 458 

ordinary differential equation (ODE) framework, describing the relationship between the 459 

cardiopulmonary system and the metabolic dynamics of skeletal muscle. By describing the 460 

relationships between different organ-level systems, the model would be able to identify the patient-461 

specific rate-limiting factors defining aerobic fitness. Moreover, analysis of the model could be used 462 

to suggest treatment strategies to improve these factors and thus predict how patients will improve 463 

under such regimes. 464 

 465 

At the individual organ level, there are a plethora of models describing individual dynamics of the 466 

level of the heart (49-52), lung (53-56) and systemic metabolic demand (57-63). There also exist a 467 

number of models describing such interactions between cardiopulmonary and metabolic systems (64-468 

68) in a variety of settings, including heart failure and mechanical ventilation. A core feature in all of 469 

these models is the nonlinear interaction between the constituent model compartments that 470 

encompass the distinct tissues. An important consequence of this is that the model must be studied as 471 

whole, in an integrated fashion, to truly understand the body’s response to exercise.  472 

 473 

With respect to the present question, there are a number of limitations of the existing modelling 474 

approaches. Most significantly, none have been designed with either an adolescent, or a CF patient 475 

group in mind, and the nuances of these patient groups will have to be factored into to any model 476 

development. In particular, these models have relatively simple, empirical models to describe 477 

changes in ventilation, which may not capture breathing dynamics of our patient group well. 478 

Moreover, to the best of our knowledge, no model considers the changes in ventilation separated into 479 
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breathing frequency and depth that have been shown by us and others (44) to be critical to overall test 480 

performance. 481 

 482 

In our analysis, we have demonstrated that the AT or GET location is a critical factor in determining 483 

overall patient aerobic fitness. Many of the mathematical exercise models describe only steady-state 484 

exercise, in which aerobic pathways meet most of the ATP demand (64-68). As such, these models 485 

are inadequate to capture the dynamics we describe here. Another common topic of study is the 486 

dynamic response at exercise onset, which again, does not meet the current need to describe the AT 487 

crossing point (69-72). 488 

 489 

Of the mathematical models that describe the contribution of anaerobic pathways to ATP production, 490 

some assume that the shortfall in meeting ATP demand via oxidative phosphorylation is met entirely 491 

by anaerobic pathways (73), yet this is clearly not so, since ATP levels in skeletal muscle post-492 

exercise may be up to 30% lower than pre-exercise values (74). Mathematical models that factor in 493 

fatigue brought about by anaerobic metabolism are generally phenomenological in nature, and it is 494 

difficult to quantify these models against real patient data (73, 75, 76), and these models mostly fall 495 

outside the arena of ODE-based modelling and so dynamical properties are difficult to infer from 496 

them. 497 

 498 

Developing a mathematical model to describe the integrated behaviour of all of the relevant organs, 499 

whilst remaining biophysically plausible, but without requiring excessive or invasive 500 

parameterisation is a difficult task. The proposed model should include descriptions of the 501 

cardiovascular system, the ventilatory system and simple models of metabolism at the tissue level. 502 

Specifically, dynamic variables should include alveolar, arterial, venous and tissue level partial 503 

pressures/concentrations of O2 and CO2, cardiac output, ventilation and metabolic rates oxygen 504 

utilisation and CO2 production. Partial alveolar gas pressures can be linked to data collected during 505 

the test, and the work rate can then be provided as inputs to the model. Note that these variables are 506 

similar to those included in previously defined models (64-68) and the aim is to extend these to 507 

describe the dynamics observed in patients with CF. The proposed model schematic is displayed in 508 

Figure 11. 509 

 510 

Of critical importance to the overall model construction is the development of a simple, yet realistic 511 

model of cellular metabolism, to overcome the issues discussed earlier. The model should respect the 512 
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different metabolic processes that occur in the muscle tissue, in particular: glycolysis, 513 

phosphocreatine breakdown and synthesis and oxidative phosphorylation, in a simplistic fashion that 514 

is amenable to being fit to CPET data. Whilst there are models that describe the biochemical 515 

reactions associated with these processes, and importantly, their stoichiometry (58, 61, 63, 67, 77), 516 

quantifying their associated rate constants in vivo is a near-impossible task, and so efforts must be 517 

made to develop a model that incorporates the relevant metabolic dynamics whilst being simple 518 

enough to be fit to data. 519 

 520 

With knowledge of the integrated system, attempts can also be made to describe other important 521 

exercise-based processes, such as lactate buffering and recycling (as a fuel source) (61, 78, 79) and 522 

the overall muscle fatigue brought about by the combination of all of these factors. Only by 523 

systematically exploring the dependence of aerobic fitness of all of the factors described in this 524 

section can we begin to understand the system in an integrated fashion. 525 

 526 

 527 
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 528 
 529 

Figure 11: Schematic of the variables and processes in the proposed ODE-based mathematical 530 

model. Adapted from Timischl (1998) (66) and Batzel et al. (2005) (80).  531 

 532 

LIMITATIONS 533 

A limitation with the current study is the utilisation of a relatively small sample size, and this may be 534 

contributing towards aforementioned errors. Future studies should seek to utilise CPET collected 535 

annually in CF centres, to develop larger, multi-centre, samples whereby a uniform exercise protocol 536 

is utilised. Given that utilisation of CPET is now recommended and endorsed for regular use by 537 

international medical societies (81), and individual CF centres are reporting upon experiences of 538 

using CPET (82), large-scale utilisation of such data is a feasible target.  539 

 540 

The findings presented may be derived from a smaller sample, and therefore the models presented are 541 

only preliminary results for this patient cohort; however, the study provides a unique examination 542 

into the aerobic and anaerobic signatures of individual patients with CF in response to progressive 543 

exercise. 544 
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 545 

Finally, whilst this study provides an insight into metabolic process during exercise, future research 546 

and models must account for additional variables predictive of function and mortality (e.g. genotype, 547 

body composition, pancreatic sufficiency, infection status, exacerbations (83, 84)) and co-morbidities 548 

(CF-related diabetes (85), pulmonary arterial hypertension (86)) existent within CF, notably those 549 

that may affect exercise tolerance. 550 

 551 

CONCLUSIONS 552 

Benefits of modelling include the ability to utilise existing data sets at a time when there are limited 553 

resources. There is also a call to reduce the burden on sick patients (EU directive). As models 554 

improve and the quality of fits to data are improved, the models can be used in a prognostic setting to 555 

predict potential improvements in aerobic fitness that may arise due to therapeutic intervention. 556 

Moreover, with proper mechanistic modelling of the primary organs affected in CF, there exists the 557 

potential to optimise treatment for this patient group by identifying the limiting factors of aerobic 558 

fitness.  559 
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Figure Titles 841 

Figure 9: (a) The work rate for each participant is increased at a rate dependent on their past 842 

test performance. (b) Participant age is correlated with test performance for young 843 

participants, but not for older ones. 844 

 845 

Figure 10: Ratio of oxygen utilisation and total breathing throughout the test. Markers indicate 846 

the volitional exhaustion times for each participant. 847 

 848 

Figure 11: (a) Correlation of FEV1 with the maximal tidal volume achieved throughout the test. 849 

(b) Correlation between FEV1 and FVC is high. Note that, although FVC and FEV1 are good 850 

predictors of poor test performance, they are unable to distinguish better performing 851 

participants. 852 

 853 

Figure 12: (a) Total ventilation plotted against oxygen utilisation. We observe that breathing 854 

pattern is strongly correlated with test performance. (b) Exponential curves are fitted through 855 

the raw data, further highlighting this dependence. 856 

 857 

Figure 13: Slope of the fitted curves (logV̇E against V̇O2) from Fig. 4(b) plotted against the 858 

total energy transfer during the test. We find a relatively poor characterisation of the variance 859 

between performances. (b) By instead plotting the oxygen consumption at a fixed rate of 860 

breathing, we better capture differences in performance. 861 

 862 

Figure 14: (a) Breathing patterns subdivided into the breathing rate and tidal volume. These 863 

data appear uninformative for predicting test performance. (b) With the additional inclusion of 864 

the oxygen consumption at a fixed rate of breathing, we find that these variables now almost 865 

perfectly capture variation in participant performance. 866 

 867 

Figure 15: First of the principal components obtained via PCA accounts for over 90% of the 868 

variation in test performance. (b) Similar levels of variance are accounted for by taking only 869 

the normal component of the first principal component in the breathing frequency direction. 870 
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Figure 16: (a) Quantifying the relationship between the anaerobic threshold and overall test 879 

performance. Anaerobic thresholds were calculated using an automated procedure based on 880 

previous methods (41) (b) V̇O2max is the best single predictor of overall test performance. 881 

 882 

Figure 9: GP is a probability distribution on function spaces. The thick solid red line is the true 883 

function f and the thick dashed black line is the GP mean. (a) Thin grey lines show sample 884 

paths of a prior GP whose mean is zero. (b) Blue bullets indicate five data points sampled from 885 

f. The GP mean and covariance are updated using these sample points. The thin grey dashed 886 

lines show m(x) ± 2s(x). 887 

 888 

Figure 10: (a) Predictions (asterisks) vs. exact values (bullets). Red bars show the 95% 889 

confidence intervals, mi(xi) ± 1.96 si(xi) around the predicted value, where mi and si are GP 890 

prediction mean and standard deviation based on all but the i’th data point. (b) Relative 891 

prediction error expressed as a percentage of the true value f(xi). 892 

 893 

Figure 11: Schematic of the variables and processes in the proposed ODE-based mathematical 894 

model. Adapted from Timischl (1998) (66) and Batzel et al. (2005) (80).  895 
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