Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Correlated evolution of self and interspecific incompatibility across the range of a Texas wildflower

View ORCID ProfileFederico Roda, Robin Hopkins
doi: https://doi.org/10.1101/155986
Federico Roda
1Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138
2The Arnold Arboretum, Harvard University 1300 Centre St, Boston, MA 02131
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Federico Roda
Robin Hopkins
1Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138
2The Arnold Arboretum, Harvard University 1300 Centre St, Boston, MA 02131
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Plant species have repeatedly evolved recognition systems between pollen and pistils that identify and reject inappropriate matings. Two of the most important systems recognize self-pollen and interspecific pollen. Outstanding questions are whether and how these two recognition systems are linked and if this association could constrain the evolution of mate choice. Our study characterizes variation in self and interspecific incompatibility in the native range of the Texas wildflower Phlox drummondii. We found quantitative variation in self-incompatibility and demonstrate that this variation is significantly correlated with variation in incompatibility with its close congener P. cuspidata. Furthermore, we find strong evidence that self and interspecific incompatibility involve common mechanisms of pollen adhesion or early pollen-tube germination. Finally, we show that P. drummondii populations that co-occur and hybridize with P. cuspidata have significantly higher interspecific incompatibility and self-incompatibility than isolated P. drummondii populations. This geographic variation suggests that the evolution of self-compatibility is constrained by selection favoring interspecific incompatibility to reduce maladaptive hybridization. To our knowledge this is the strongest evidence that a correlation between variation in self and interspecific incompatibilities could influence the evolution of pollen recognition across the range of a species.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted August 23, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Correlated evolution of self and interspecific incompatibility across the range of a Texas wildflower
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Correlated evolution of self and interspecific incompatibility across the range of a Texas wildflower
Federico Roda, Robin Hopkins
bioRxiv 155986; doi: https://doi.org/10.1101/155986
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Correlated evolution of self and interspecific incompatibility across the range of a Texas wildflower
Federico Roda, Robin Hopkins
bioRxiv 155986; doi: https://doi.org/10.1101/155986

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Plant Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4078)
  • Biochemistry (8750)
  • Bioengineering (6467)
  • Bioinformatics (23314)
  • Biophysics (11718)
  • Cancer Biology (9133)
  • Cell Biology (13227)
  • Clinical Trials (138)
  • Developmental Biology (7403)
  • Ecology (11359)
  • Epidemiology (2066)
  • Evolutionary Biology (15076)
  • Genetics (10390)
  • Genomics (14000)
  • Immunology (9109)
  • Microbiology (22025)
  • Molecular Biology (8772)
  • Neuroscience (47312)
  • Paleontology (350)
  • Pathology (1418)
  • Pharmacology and Toxicology (2480)
  • Physiology (3701)
  • Plant Biology (8043)
  • Scientific Communication and Education (1427)
  • Synthetic Biology (2206)
  • Systems Biology (6009)
  • Zoology (1247)