
“main” — 2018/4/16 — page 1 — #1

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

SNP Calling via Read Colored de Bruijn Graphs
Bahar Alipanahi∗ Martin D. Muggli Musa Jundi Noelle Noyes and Christina
Boucher

Department of Computer & Information Science & Engineering, University of Florida, Gainesville, 32611, US.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The resistome, which refers to all of the antimicrobial resistance (AMR) genes in
pathogenic and non-pathogenic bacteria, is frequently studied using shotgun metagenomic data [14, 47].
Unfortunately, few existing methods are able to identify single nucleotide polymorphisms (SNPs) within
metagenomic data, and to the best of our knowledge, no methods exist to detect SNPs within AMR genes
within the resistome. The ability to identify SNPs in AMR genes across the resistome would represent a
significant advance in understanding the dissemination and evolution of AMR, as SNP identification would
enable“fingerprinting” of the resistome, which could then be used to track AMR dynamics across various
settings and/or time periods.
Results: We present LueVari, a reference-free SNP caller based on the read colored de Bruijn graph,
an extension of the traditional de Bruijn graph that allows repeated regions longer than the k-mer length
and shorter than the read length to be identified unambiguously. We demonstrate LueVari was the only
method that had reliable sensitivity (between 73% and 98%) as the performance of competing methods
varied widely. Furthermore, we show LueVari constructs sequences containing the variation which span
93% of the gene in datasets with lower coverage (15X), and 100% of the gene in datasets with higher
coverage (30X).
Availability: Code and datasets are publicly available at https://github.com/baharpan/cosmo/
tree/LueVari.

1 Introduction
Antimicrobial resistance (AMR) refers to the ability of an organism to
persist in the face of exposure to an antimicrobial agent, i.e., an antibiotic.
The resistome, which refers to the set of all AMR genes found in pathogenic
and non-pathogenic bacteria, defines the potential resistance to known
antibiotics. Shotgun metagenomic data has already been generated to
characterize the resistome in clinical [14, 47] and food production [38]
settings. The characterization of various resistomes includes identification
of specific AMR genes and a measure of their abundance. One element of
the resistome that has not yet been sufficiently characterized is the profile
of single nucleotide polymorphisms (SNPs) within the AMR genes that
comprise any given resistome. Characterization of the SNP profile would
be very informative, as such a profile would allow specific AMR genes
to be tracked across various settings and time points. Such traceability
would greatly advance our understanding of how AMR disseminates and

evolves; however, the ability to perform such traceability studies hinges on
the accurate identification of AMR SNPs within metagenomic data. While
methods do exist for identification of SNPs within eukaryote species, few
current methods are suitable for metagenomic data—a sentiment expressed
by Nijkamp et al. [37] when they state: “..there is a lack of algorithms for
finding such variation in metagenomes.”

In this paper, we develop a scalable, reference-free method for
identifying SNPs in metagenomic data, which we call LueVari. In order
to be suitable for metagenomics, it is important that any SNP calling
method be reference-free, as only a small fraction of the total diversity
of microbes are culturable [44] and therefore, the majority of organisms
within a given metagenomic sample will likely not have a reference
genome in the near future. Hence, reference-guided tools will only detect
a small fraction of available SNPs in metagenomes. Current reference-free
methods specifically designed for metagenomic data typically require an
“assembly” step that uses an overlap-layout-consensus (OLC) approach
[18] or an Eulerian (de Bruijn graph) paradigm [3, 27, 34, 23, 45]. SNP

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

“main” — 2018/4/16 — page 2 — #2

2 Alipanahi et al.

detection in metagenomic data is challenging because it exacerbates the
weaknesses of these two algorithmic approaches. De Bruijn graph-based
SNP callers require each read to be fragmented into k-length sequences
(called k-mers), and are thus prone to inappropriate combining of read
segments from different species, resulting in chimeric sequences. OLC
approaches–such as Bambus2 [18]–have an advantage over de Bruijn
graph approaches in that they build an overlap graph in which the entirety
of a read (rather than read k-mers) corresponds to a single node in the
graph. As a result, sequences and SNPs recovered from these graphs are
supported by collections of entire reads, rather than k-mers—an attribute
of overlap graphs known as read coherence [33]. In theory, this reduces the
frequency of chimeric SNPs. Unfortunately, OLC approaches suffer from
computational inefficiency and thus are unable to handle large datasets
such as metagenomic sequence datasets [25].

De Bruijn graph approaches have greater capacity to scale to larger
datasets, especially in light of existing succinct data structures for
representing de Bruijn graphs [43, 7, 8, 48, 4]. However, current de
Bruijn graph-based methods lack the read coherence needed to detect SNPs
accurately. Thus, there currently exists a significant trade-off between only
being able to call SNPs within short sequences constructed from non-
branching paths, or risk of chimeric sequences that arise from spanning
branches in the graph. Furthermore, the potential for chimeric sequences
becomes more frequent in resistome analysis due to sequence homology
between AMR genes. Specifically, AMR genes within the same AMR class
can share homologous regions that are typically between 60 bp and 150
bp in length [20], which is longer than the typical k-mer value and shorter
than the read length. Hence, such homologous regions often correspond
to several connected paths in the de Bruijn graph that are difficult to
traverse unambiguously, implying that the de Bruijn graph cannot be used
to reliably and correctly reconstruct the sequences corresponding to these
AMR genes and their corresponding SNPs. As previously mentioned, these
paths are more likely to be read coherent in the overlap graph, but the
time complexity of OLC methods is too large to be practical for large-
scale resistome analysis, which is likely to encompass the detection of
AMR genes and their SNPs in hundreds or thousands of samples. For
example, the USDA is calling for food production facilities to phase in
use of sequencing to monitor AMR by 2021—if accomplished, even at a
small scale, thousands of samples will need to be sequenced and analysed
to monitor food-borne outbreaks.

Therefore, an approach for identification of SNPs in AMR genes within
metagenomic data necessitates a method that combines the scalability of de
Bruijn graph approaches with the read coherence of OLC approaches. To
address this need, we develop a de Bruijn graph based SNP caller. It extends
the concept of the colored de Bruijn graph, which was first introduced by
Iqbal et al. [15] for the detection of variants in eukaryotic species. Given
a set of n samples, the colored de Bruijn graph extends the traditional
de Bruijn graph in that each node (and edge) in the graph has a set of
associated colors in which each color corresponds to one of the n samples.
In Iqbal et al.’s [15] original application, each sample corresponded to the
sequence data of one individual and traversal of the colored de Bruijn graph
allowed for sequence variation to be detected, along with the individuals
containing that variation. Although the colored de Bruin graph allows
for detection of genetic variation among individuals of a population, it
lacks read coherence. In order to overcome this limitation, we propose
an approach that we term a read colored de Bruijn graph. Briefly, a read
colored de Bruijn graph annotates each node (and edge) by an unique
color that corresponds to each individual sequence read (in one or more
samples), allowing for read coherence to be preserved among paths longer
than the k-mer size (typically, k ≤ 60 bp). We formally define this concept
later in this paper.

The read colored de Bruijn graph is an attractive concept because it
avoids chimeric sequences by maintaining each read as a separate color.

However, it does present construction challenges not present in colored de
Bruijn graphs. One such challenge is that a metagenomic sample may be
too large to store on even the largest servers’ hard drives in uncompressed
form. For example, a set of metagenomic samples from a cattle production
facility [38] contains close to 41 billion 32-mers, with the first sample
containing over 57 million reads1. Storing each k-mer-read combination
with a single bit would require 285 petabytes of space. This mandates
that the succinct representation be built in an online fashion such that the
complete uncompressed matrix need never be stored explicitly. Therefore,
we present a succinct data structure to construct and store the read colored
de Bruijn graph, which extends the representation of Muggli et al. [32].
Our main contributions. In this paper, we define the read colored de Bruijn
graph along with several new concepts and demonstrate how it helps
resolve chimeric sequences. This is allows LueVari to not only report the
SNP but also correctly reconstruct the sequence containing the SNP. This is
vital to metagenome applications where a reference genome is frequently
unknown. Hence, ours was the only method to output sequences that span
between 93% to 100% of the gene–even in the case of shallow coverage.
For example, when the sequence data corresponds to 30X coverage and
the SNP rate was 0.005, LueVari constructed all genes containing SNPs
whereas DiscoSNP reported sequences that covered 71% (on average)
of the gene, and Bubbleparse reported sequences that covered 41.76%.
In addition, when compared to current state-of-the-art methods, LueVari
was the only method that had reliably high sensitivity (between 73% and
98.5%); DiscoSNP and Bubbleparse had sensitivity between 32.8% and
91%, and 75% and 85%, respectively. Lastly, we show LueVari has the
scalability to analyze all the data from a large-scale data collection effort
aimed at characterizing the resistome of a commercial food production
facility in the United States.

2 Related Work
As previously mentioned, there are both reference-based and reference-
free SNP and variant callers. the majority of the SNP callers are developed
for diploid organisms, namely eukaryotes, which limits their effectiveness
on prokaryotes [51]. However, there do exist some methods that aim
to detect variation in metagenomes. Among the reference-based variant
callers, there are those that first align reads to the reference and then
process this alignment. These methods include Hansel and Gretal [36],
LENS [19], Platypus [41], MIDAS [35], Sigma [1], Strainer [11], and
ConStrains [26]. Similar to these algorithms, are reference-based read
alignment methods that use combinatorial optimization techniques to find
sequences that best explain the reads and thus, can be used for variant
detection in metagenomic samples. These methods include QuRe [40],
ShoRAH [50], and Vispa [2]. The combinatorial optimization approaches
are computationally intensive, limiting their applications to only relatively
small datasets [13].

There are several reference-free variant callers. MaryGold [37],
Bubbleparse [22], DiscoSNP [46],metafast [45], crAss [9], Commet [29],
compareads [28], and FOCUS [42] are all reference-free. MaryGold [37],
Bubbleparse [22] and DiscoSNP [46] are comparable to LueVari in that
they are able to detect variants in metagenomes without a reference. There
are several algorithms that do comparative metagenomics and return a
similarity measure rather than specific variants that merit mention. These
include metafast [45], crAss [9], Commet [29], compareads [28], and
FOCUS [42]. Lastly, there are several reference-free variant callers that
designed for a specific application and not directly comparable to LueVari,
including KSNP3 [12], NIKS [17], Stacks [6] and 2k+2 [49]. Stacks [6] is
designed for restriction enzyme based sequencing protocols. NIKS [17] is

1 Reads were trimmed and those with ambiguous base calls removed

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

“main” — 2018/4/16 — page 3 — #3

LueVari 3

designed for whole-genome sequencing protocols. KSNP3 [12] and 2k+2
[49] are designed to detect the variations between datasets.

3 Definition of Read Coloring
As we previously discussed, de Bruijn graph approaches for SNP calling
lose read information when the reads are fragmented into k-mers, which
introduces the possibility of the sequences containg the SNP not being
read coherent [33]. This lack of read coherence exacerbates the difficulty
of detecting SNPs in metagenomes. In this section, we formally define the
concept of the read colored de Bruijn graph and show how it is used by
LueVari to detect SNPs accurately.

3.1 Read Colored De Bruijn Graphs

We begin by defining the (traditional) de Bruijn graph. We let R =

{r1, . . . , rn} be the set of n input reads. We construct the de Bruijn
graph for R by creating an edge for each k-mer in R, labelling the nodes
of that edge as the (k−1)-mer prefix and (k−1)-mer suffix of that k-mer,
and lastly, gluing nodes that have the same label. Here is an example of
gluing: if node v1 with label ACG has outgoing edge with label C and node
v2 with the same label ACG, has outgoing edge with label G, since both of
nodes have same label, to make sure that all of labels in de Bruijn graph
are distinctive, we glue them which means that the outgoing edge of v2
will be added to v1, hence v1 has two outgoing edges with labels C and G,
and v2 will be deleted. The story is the same for incoming edges. Next, we
define the concept of a sub-read, which is necessary for defining the read
colored de Bruijn graph. Given a read r of length ` it follows that there
are `− k+1 k-mers. We denote the k-mers of r as sr1, . . . , s

r
`−k+1. We

define the sub-reads of r as the sets of k-mers, denoted as Sr
1 , . . . , S

r
n,

(n ≤ ` − k + 1), where the following is true: (1) every k-mer of r is
contained in one Sr

i , and (2) srx 6= sry for all srx and sry contained in the
same set Sr

i .
More intuitively, we construct the set of sub-reads of r by creating k-

mers from r until a repeated k-mer occurs; then, when we see a repeated
k-mer, those k-mers are grouped into one sub-read and a new sub-read for
r is created. We continue this process until all k-mers are added to a set. We
note that if there are no repeated k-mers in r then the set of k-mers itself is
the sub-read of r. We now give an an example to illustrate this: let r be equal
to ACGTACGTACGT and k = 3. The substring ACGT is repeated three
times in r and therefore, the sets of sub-reads are Sr

1 = {ACG, CGT,

GTA, TAC}, Sr
2 = {ACG, CGT, GTA, TAC}, and Sr

3 = {ACG,
CGT}. We note that making sub-reads in the case of repeated k-mers
will disambiguate the traversal of whirls (directed cycles) that have length
greater than or equal to k and less than or equal to ` . For instance in above
example, the read ACGTACGTACGT, will make a whirl at node ACG that
makes the traversing ambiguous. Note that this problem will be solved if
we follow the sub-reads Sr

1 , Sr
2 and Sr

3 , which lead us to traverse ACG
three times and finish the traversing at CGT.

Next, we define the read colored de Bruijn graph for a set of reads R
constructively as follows: (1) we create the sub-reads of r for all r ∈ R

(denoted as Sr
1 , . . . , S

r
n, n ≤ ` − k + 1.) (2) we assign a color cri for

every sub-read Sr
i , and (3) we build the de Bruijn graph as above with

the modification that color cri is associated every edge e if the k-mer
corresponding to e is contained in Sr

i . Hence, we view the read colored
de Bruijn graph as a graph G = (V,E) and a binary matrix C, where
there exists a row for each distinct k-mer, and a column for each sub-read
and C(i, j) = 1 if the k-mer associated with edge ei ∈ E is present
in jth sub-read; and C(i, j) = 0 otherwise. We refer to C as the color
matrix. We illustrate a read colored de Bruijn graph in Figure A.1 in the
Supplement. Briefly, we mention that the addition of read coloring to the
de Bruijn graph resolves repeats that are shorter than or equal to the read

length, and longer than or equal to the k-mer length. We discuss this more
in-depth in Subsection 4.1.

3.2 Multi-Colored Bulges

We define a bulge in G as a set of disjoint paths (p1, . . . , pn) which
share a source and sink node, where we refer to paths (p1, . . . , pn) as the
branches. Next, we define a path p = e1 . . . e` (eis (1 ≤ i ≤ `) are edges)
in the read colored de Bruijn graph as color coherent if the sets of colors
corresponding to ei, ei+1, Si and Si+1, are such that Si∩Si+1 6= ∅, for
all i = 1, . . . , `−1. Thus, we refer to multi-colored bulge as a bulge where
the branches are color coherent and also have disjoint lists of colors. We
illustrate a multi-colored bulge in Figure 1. Lastly, we define an embedded
multi-colored bulge in G as a multi-colored bulge that occurs in a branch
of another multi-colored bulge.

4 Methods
In this section, we go over the main steps of LueVari in detail.

4.1 Construction of the Read Colored de Bruijn Graph

We build the read colored de Bruijn graph for reads R by first constructing
the de Bruijn graph for R, computing the sub-reads of R, and creating
the color matrix (in a compressed format). We use the BOSS data
structure [4], which is based on the Burrows-Wheeler Transform (BWT)
[5] for constructing and storing the graph. Here, we will give a brief
overview of this representation and we refer the reader to the original
paper by Bowe et al. [4] for a more thorough explanation of this data
structure.

Our first step in constructing this graph G for a given set of k-mers is
to add dummy k-mers (edges) which ensure that there exists an edge (k-
mer) starting with first k−1 symbols of another edges last k−1 symbols
and thus, that the label of each edge and node G can be recovered. After
this small perturbation of the data, we construct a list of all edges sorted
into right-to-left lexicographic order of their last k− 1 symbols (with ties
broken by the first character). We denote this list as F , and refer to its
ordering as co-lexicographic (colex order). Next, we define L to be the
list of edges sorted co-lexicographically by their starting nodes with ties
broken co-lexicographically by their ending nodes. Thus, we note that two
edges with same label have the same relative order in both lists; otherwise,
their relative order in F is the same as the lexicographic order of their
labels. The sequence of edge labels sorted by their order in list L is called
the edge-BWT (EBWT). Now, we let BF be a bit vector in which every 1
indicates the last incoming edge of each node in L, and let BL be another
bit vector with every 1 showing the position of the last outgoing edge of
each node in L. Given a character c and a node v with co-lexicographic
rank rank(c), we can determine the set of outgoing edges of v, using BL

and then search the EBWT(G) for the position of edge e with label c. We
can find the co-lexicographical rank of outgoing edge of e using BF , and
thus, traverse the graph by repeating this process,.

After we construct the BOSS representation of the de Bruijn graph
on R, we align all k-mers to the union of all the sub-reads using Bowtie
[21] in order to find all the sub-reads that contain each of k-mers. (We
only consider perfect matches). Then we store the k-mers and their
lexicographical order in a map M so it can be used for the construction of
the color matrix. We use Elias-Fano vector encoding [10, 30, 39] to store
C since it permits on-line construction as long as all “1” bits are added
in increasing order of their index in the vector. For example, we cannot
fill column six of C before column five is filled. Therefore, we build the
color matrix by initializing each position to “0” and then updating each
row at a time. We recall that each row corresponds to a k-mer and the rows
are sorted in lexicographical order. Thus, we first find its lexicographical

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

“main” — 2018/4/16 — page 4 — #4

4 Alipanahi et al.

EBWT: TCGGGGTGTTTTTCGAGGGT$AAAA
BF: 110111110111111111011111
BL: 1111101111111010111111111
C: 011001010010000001001
 101010100100000011000
 000110001001100010100
 000100000000011110010

R1: ATGGACTTAGTCC
R2: ATGGACGTAGTCC
R3: ATGGGCGTAGTCC
R4: ATGGG-GTAGTCC

ATGG

(b)
(a) TGGA

GGAC

GACT

GACG

ACTT

ACGT

CTTA

CGTA

TTAG

GTAG

TAGT

TGGG

GGGC

GGGG

GGCG

GGGT

GCGT

GGTA

(c)

Fig. 1. In this example, we illustrate a complex multi-colored bulge that arises from the existence of multiple SNPs in a single gene. In (a), we show the reads with multiple variations. In
(b), we illustrate the de Bruijn graph which was constructed for the set of reads in (b). Lastly, in (c) we give the succinct representation of read-colored de Bruijn graph.

ordering of a k-mer sk using M , which we denote as i, in order to find the
row inC corresponding to sk . Using the alignment of k-mers to sub-reads,
we store the indices of the sub-reads that contain sk in a vector Ask . We
sort Ask and update the ith row of C in this order, i.e., C(i, j) = 1 for all
jth sub-reads containing the ith sk . We store and sort the indices in this
manner to ensure that we meet the construction requirement of Elias-Fano.
After we construct Ask in a compressed format, we append it to growing
color matrix C. We continue with this process until all k-mers have been
explored.

4.2 Search for Multi-Colored Bulges

Next, we traverse G in a read-coherent manner in order to determine all
multi-colored bulges. In the first step of this traversal we iterate through
all nodes in G and determine those that are potential source nodes of a
multi-colored bulges, meaning that the out-degree is greater than one and
the sets of colors of the outgoing edges are disjoint. Thus, given a node v

with index i (in colex order), we determine whether v is a source node as
follows. We first calculate out-degree of v using BL by finding i-th ‘1’ bit
in BL, and counting the number of preceding ‘0’ bits BL. If the number
of ‘0’ bits is ` then the out-degree of v is `+1. If the out-degree of v is not
greater than one then we do not consider it further; otherwise, we determine
the colors of its outgoing edges. We recall that the lexicographical order of
the edges (k-mers) corresponds to their row index in the color matrix C.
Therefore, if v has outgoing edges e1 and e2 with lexicographical order
of x and y, respectively then we can determine the colors of e1 by finding
all positions ` where C(x, `) = 1 and those for e2 by finding all positions
`′ where C(y, `′) = 1. If these two sets are disjoint then v is a potential
source node.

Next, we perform (modified) depth first search at each potential source
node v to find one or more potential sink nodes. We modify the standard
depth first search algorithm by adding a constraint to ensure all paths are
color coherent, and by storing multi-colored bulges during the traversal.
We ensure the paths of the search are color coherent by determining the
intersection of the set of colors of the next outgoing edge with those of
the previous one at each iteration, and terminating if there this intersection
is empty. Further, we determine the in-degree of v at each iteration2, and
store v as a potential sink node (along with the source node and branches)
if the degree is greater than one. We note that we do not stop the traversal
after encountering a potential sink node but instead, continue until all nodes
reachable from v have been visited.

2 This is performed in an analogous way as described to find the out-
degree; however, in this case we use BF rather than BL.

If we encounter a potential source node u while traversing a path pv
starting at v then we determine whether u has been previously visited. If
it has, then we search for u in the set of multi-colored bulges. If u is a
source node of a multi-colored bulge with branches {pu1,…,pu`} and sink
node tu, then we do not traverse pu1,…,pu`. Instead, we add each path
in {pu1,…,pu`} to pv and continue traversing from tu. We note that v
will have ` branches {pv+pu1,…, pv+pu`} after concatenating the paths.
If u has not been previously visited then depth first search is performed,
starting withu as a potential source node, to determine whether there exists
a multi-colored bulge with source node u. If there does not exist such a
bulge then we resume the prior depth first search where v was the starting
node. Otherwise, we store the multi-colored bulge (with source node u,
set of branches {pu1,…, pu`}, and sink node tu), process the bulge in an
analogous manner as just described, and resume the depth first search at
tu. This ensures that we will detect all complex multi-colored bulges.

We illustrate this traversal using an example of a complex multi-colored
bulge in Figure 1. We note that dummy incoming edges and one dummy
outgoing edge (labeled with $) have been added to construct the succinct de
Bruijn graph but since they do not clarify the traversal, we omit them in the
depicted graph. In this example, we iterate through all nodes until we reach
GGAC, which is the 6th node in colex order. In BL, the 6th ‘1’ bit has one
preceding ‘0’ bit which means that GGAC has out-degree 2 since each ‘1’
bit in BL indicates the last outgoing edge. Now we determine if GGAC is a
potential source node by first checking if its outgoing edges have disjoint
color sets. We find the outgoing edges, which are G and T , by finding the
range of EBWT[5, 6]. We determine the lexicographical order of GGACG
which is 10. By considering the 10th column in color matrix CT , we can
identify the sub-read(s) that GGACG comes from, which is only sub-read
2. By doing the same with the other edge GGACT of lexicographical order
11, we identify its supporting sub-read(s), which is sub-read 1. We witness
that the color sets of outgoing edges are disjoint which implies GGAC is a
potential source node. Hence, we start traversing at this node and follow
the edge with label G (GGACG). For finding the destination node of this
edge, we count the preceding edges in colex order. We witness that there
are five edges with label A, two edges with label C in whole graph and
we are at 4th G in EBWT. Thus, we count 1’s in BF [0, . . . , 11] and
determine there are 10. This means that GGACG arrives at the 10th nodes
in colex order that has incoming edges. Since first node ($$$$) has no
incoming edge, GGACG arrives at 11th node in colex order. The node with
colex order 11 is GACG. After finding the destination, we check the read
coherency by finding the following edge, which is GACGT. As mentioned
before, we can find the color set for this edge, which only includes sub-read
2. Since color sets of two consecutive edges have at least one intersection,
traversing continues. Along the way nodes with in-degree greater than one

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

“main” — 2018/4/16 — page 5 — #5

LueVari 5

will be saved as potential sink nodes (similar to what mentioned on BL to
find out-degree, in-degree can be found using BF). In this example, TAGT
is such a node. While traversing the other branch, if this node is visited
again, the bulge will be detected and the start node, branches, and the
end node will be stored. The exact same process will be performed on the
second bulge with start node TGGG. Finally when the algorithm hits node
ATGG, by hitting the already visited start nodes, it will not traverse the
already known multi-colored bulges on nodes GGAC and TGGG again. By
calling them from the list of multi-colored bulges, their branches will be
added to the currently growing branches and by jumping to their end nodes,
traversing finishes faster. Essential to our method is that, even though the
multi-colored bulge at node ATGG comes from a variation of A and G,
the reported branches, covers all embedded SNPs along the way, and for
the complex bulge at start node ATGG, the total of four branches will be
reported, which retrieve all four sub-reads with their SNPs.

4.3 Recovery of SNPs

Next, we process each multi-colored bulge b with branches {p1, . . . , pn}
by recovering the longest color coherent path that occurs prior to the source
node s by starting at s and travelling backward on the incoming nodes as
long as their exists an unambiguous incoming edge, implying there exists
one incoming edge (possibly part of a branch of an embedded multi-colored
bulge) can be added to the current path and have it remain color coherent. If
there exists such an edge then it is added to the current path and the traversal
backward continues; otherwise the traversal is halted and the current path
ps is saved. Similarly, a color coherent outgoing path is obtained from
traversing the graph in a forward direction from the sink node t. We refer
to this resulting path as pt. Lastly, ps is concatenated to each branch in
{p1, . . . , pn}, pt is concatenated to each of these resulting paths, and
their corresponding sequences are emitted. The SNPs in the sequences are
recovered by alignment. This process is continued for all multi-colored
bulges.

5 Results and Discussion
In this section, we compare the performance of LueVari to other SNP
detection methods. In particular, we present the efficiency, sensitivity
and precision of LueVari and the competing methods on simulated data,
and demonstrate the scalability of LueVari by using it to identify distinct
(“fingerprinted”) AMR genes in 34 samples taken from a food production
facility that had previously-identified AMR genes. All experiments were
performed on a 2 Intel(R) Xeon(R) CPU E5-2650 v2 2.60 GHz server
with 1 TB of RAM, and both resident set size and user process time were
reported by the operating system.

5.1 Results on Simulated Data

We note that majority of SNP calling methods output SNPs along
with sequences flanking or containing the variant—the lengths of these
sequences has an important role in SNP detection in metagenomes. The
sequence must be long enough to locate the SNPs (e.g. gene and loci) in a
unambiguous manner. This challenge is compounded in metagenomics
variant detection, where the majority of bacteria is unculturable and
unlikely to contain a reference genome. Therefore, we use the simulated
data to evaluate the accuracy of LueVari and competing methods, as well as,
to compare the relative length of the sequences outputted by the methods.

5.1.1 Accuracy of SNP detection.
We simulated four metagenomics datasets using BEAR, a metagenomics
read simulator [16], in a manner that imitates the characteristics (number
of reads, number of distinct AMR genes, and their copy number) of
real shotgun metagenomics data generated for resistome analysis–namely

those of Noyes et al. [38] and Gibson et al. [14]. We varied the copy
number and number of paired-end reads for each dataset. Hence, in order
to simulate a dataset with copy number x and y number of paired-end
reads, we performed the following steps: (1) we selected 400 AMR genes
from the MEGARes data at random without replacement, (2) we made x

copies of each gene, (3) we added two copies of the E. coli K-12 MG 1655
reference genome, and two copies of the salmonella enterica subspecies I,
serovar Typhimurium (S. typhimurium) reference genome, and lastly, (4)
we simulated y paired-end reads from this resulting set of sequences. We
used a 1% error rate for both these simulations. We note that all paired-end
datasets contained 150 bp reads and 200 bp insert size. For this experiment,
we simulated 270,598, 527,913, 1,110,150 and 2,110,753 paired-end short
reads with 3, 5, 9, and 16 average copy number of the AMR genes,
respectively. In brief, we call these datasets 270K, 500K, 1M and 2M.
Please see the Supplement (Table A.7) for the results of comparison of
sensitivity and precision of the reference free tools on datasets with same
number of reads and varying number of gene copies.

We compared LueVari against DiscoSNP (DiscoSNP++) [46] and
Bubbleparse [22], and note that the most recent version of these was used.
Although MaryGold [37] and Bambus2 [18] are comparable methods, they
are not available for current sequencing technologies. We also show the
comparison of LueVari to SAMtools [24] and GATK [31] in the supplement
(see Table A.4 and Table A.5) but note that these are reference-based
methods. We used the MEGARes database as the reference. For example,
we witnessed that GATK filtered 51.34%, 57.35%, 64.91% and 71.01%
of reads in the 270K, 500K, 1M and 2M datasets, respectively, and thus,
had low sensitivity for these datasets.

We summarize the results of this experiment for the reference-free
methods in Table 1 and Table 2. We calculated the sensitivity and
precision, based on the alignment of outputted sequences to the MEGARes
database. LueVari and DiscoSNP are able to remove k-mers that have low
multiplicity prior to SNP calling. Therefore, we ran DiscoSNP with two
different thresholds: with the default setting (which is 3), and with the
setting that achieve the highest performance (which is 0). For comparison,
we ran LueVari with identical settings. We can see, with a slight penalty on
precision and time, LueVari(0) has the highest sensitivity. Further, filtering
the low abundant k-mers increased the precision of both LueVari and
DiscoSNP; however, the sensitivity of DiscoSNP dropped remarkably (e.g.
from 90.1% to 57.5%) whereas LueVari retained a high sensitivity (greater
than 90% for all samples containing more than 500K reads). LueVari(3)
had the highest sensitivity for three of the four datasets–with the one
exception being the 270K dataset in which the sensitivity of LueVari is
2̃% less than Bubbleparse but has a precision that is 9.8% higher than
Bubbleparse. We report the memory and time usage (CPU time) of all the
methods in Table 2. All methods required less than 40 minutes and 12
GB of RAM on these datasets. DiscoSNP was the most efficient, yet the
sensitivity was significantly lower than LueVari.

One important feature of LueVari is the ability to correctly reconstruct
the sequences containing the SNPs. As shown in Table 1, when we only
considered sequences that have at least 200 bp, we see that the sensitivity
of the competing methods dropped dramatically. LueVari the sensitively
of LueVari remained unchanged. This is an important feature since in
metagenome application, a reference genome is frequently unknown. In
this application, longer sequences are needed in order to unambiguously
compare the SNP profiles between samples.

5.1.2 Comparison of sequence lengths.
We evaluate the ability of LueVari, DiscoSNP (DiscoSNP++) [46], and
Bubbleparse [22] to detect SNPs in a unambiguous manner. To perform this
comparison, we simulated four datasets using BEAR in an identical manner
as described above, varying the SNP rate and copy number. First, we

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

“main” — 2018/4/16 — page 6 — #6

6 Alipanahi et al.

270K 500K 1M 2M

Sensitivity Precision Sensitivity Precision Sensitivity Precision Sensitivity Precision
LueVari(0) 95.6 (95.6) 11.2 96.2 (96.2) 12.5 98.5 (98.5) 5.6 97.5 (97.5) 6.5
DiscoSNP(0) 81.7 (59.1) 14.1 91.2 (63.7) 14.2 90.1 (56.1) 11 86.8 (72.5) 12.5
LueVari(3) 73 (73) 17.9 90.6 (90.6) 16 94.6 (94.6) 7.2 95 (95) 6.3
DiscoSNP(3) 32.8 (0) 26.7 67.5 (0) 8.4 57.5 (0) 15.0 55.6 (0) 15
Bubbleparse 75.18 (43) 8.1 85 (67) 6.5 85.6 (46.2) 4.4 85.6 (49.4) 5.1

Table 1. In this table, we report the sensitivity and precision (reported as percentage) of all methods on the simulated datasets. We note the 270K, 500K, 1M and
2M datasets have 270,598, 527,913, 1,110,150 and 2,110,753 paired-end simulated reads, respectively. k=32 for all experiments except for Bubbleparse in which
k=31 (k can not be even). We report in brackets the the sensitivity when interest is restricted sequences that have length greater than 200 bp.

270K 500K 1M 2M

Time Memory Time Memory Time Memory Time Memory
LueVari(0) 0:10:22 1.09 0:12:17 1.12 0:26:23 1.39 0:39:12 1.63
DiscoSNP(0) 0:00:44 0.153 0:00:55 0.152 0:01:15 0.94 0:01:37 0.74
LueVari(3) 0:04:17 0.398 0:11:34 0.878 0:18:39 1.35 0:31:48 1.62
DiscoSNP(3) 0:00:16 0.152 0:00:30 0.152 0:00:48 0.152 0:01:22 1.43
Bubbleparse 0:01:45 10.92 0:01:43 11.31 0:02:38 11.42 0:05:08 11.44

Table 2. In this table, we give the performance results on the simulated datasets. 270K, 500K, 1M and 2M with 270,598, 527,913, 1,110,150 and 2,110,753
paired-end simulated reads. We report the peak memory in gigabytes (GB), and the running time as hh:mm:ss. k=32 for all experiments except for Bubbleparse in
which k=31 (k can not be even).

low-0.00125 high-0.00125 low-0.005 high-0.005

CRG GF CRG GF CRG GF CRG GF
LueVari 90.19 99.19 100 100 61.76 93.49 83.82 100
DiscoSNP 56.86 92.38 58.82 93.01 14.7 62.03 17.6 71.09
Bubbleparse 0 49.51 0 68.48 0 39.59 0 41.76

Table 3. We give the metrics that describe the length of the sequences outputted by LueVari and competing methods. The low-0.00125 and high-0.00125 datasets
contain a total number of 16 AMR genes with 0.00125 SNP rate. The low-0.05 and high-0.05 datasets contain a total number of 10 AMR genes with 0.05 SNP rate.
k=32 for all experiments except for Bubbleparse in which k=31 (k can not be even).

constructed two datasets with 258,180 and 2,991,107 paired-end sequence
reads with mean copy number of 15 (range [10, 20]) and mean copy number
of 30 (range [25, 35]), respectively. Here, we kept the SNP rate constant
at 0.00125, and selected 16 AMR genes to be in the set. In addition,
we simulated reads from E coli and salmonella in the manner that was
described above. For simplicity we call these samples low-0.00125 and
high-0.00125. Next, we simulated two additional datasets with 245,979
and 2,844,899 paired-end reads with mean coverage 15 (range [10, 20])
and 30 (range [25, 35]), respectively. Here, we set the SNP rate to 0.005,
selected 10 AMR genes, and as in the previous experiment, included reads
simulated from E coli and salmonella. We refer to these datasets as low-
0.005 and high-0.005.

By default DiscoSNP output sequences of length 2k − 1 where k is
the value used to construct the de Bruijn graph, and the recommended
length of sequences for Bubbleparse is 200 bp. Thus, we changed the
parameters of DiscoSNP and Bubbleparse to output the longest possible
sequences containing the identified SNPs. We ran DiscoSNP with -b2,
and -T to ensure that it does not filter branching bubbles (bulges), and
extends bubbles to unitigs/contigs. We ran Bubbleparse with-w 2,4000

to extract sequences around 4,000 nodes.
We report the results in Table 3 and refer the reader to the supplement

for additional details about the results (Figure A.3 and Figure A.4). We
define gene fraction to be the percentage of base pairs in a gene that are
covered by the outputted sequence containing the identified SNP. Thus, we
report the mean gene fraction (denoted as GF), which is mean of the gene
fraction of all sequences (containing an identified SNP) outputted by a
method. In addition, we report the percentage of genes that were correctly
recreated (denoted as CRG), where we define a correctly recreated gene as
one where the corresponding outputted sequence has 100% GF. If there are

multiple unique SNP profiles for a single gene then this metric counts each
profile as an individual gene that should be reconstructed. For example,
if we have a dataset with a gene that has 8 different SNP profiles then
there should be 8 genes outputted with 100% gene fraction—one for each
unique SNP profile.

We see that LueVari identifies the largest mean gene fraction. Hence,
Bubbleparse, DiscoSNP and LueVari had 39.6% and 68.5%, 62% and
93%, and 93.5% and 100% as minimum and maximum GF, respectively.
Furthermore, Bubbleparse, DiscoSNP and LueVari had a CRG as 0%,
between 14.7% and 58.82%, and between 61.76% and 100%, respectively.
These results reflect the algorithmic difference between the methods. In
case of embedded bulges (where there exists a bulge(s) within bulge),
LueVari reports all possible branching paths within a bulge, leading to a
higher CRG. Whereas, competing methods only consider a single path
within a bulge. This reflects the results in Table 3; the performance of
DiscoSNP and Bubbleparse was degraded with a higher SNP rate which
causes greater branching within the de Bruijn graph. LueVari was the only
method that consistently had high mean gene fraction (greater than 93%),
regardless of the coverage and SNP rate. This is an important feature since
the resistome (and microbiome) consume a small amount of the biological
sample and thus, will have very low coverage and varied polymorphism
rate [38, 14] . Lastly, we note that although the gene fraction of DiscoSNP
was relatively high for two of the four datasets we considered (e.g. 92%
and 93% for low-0.00125 and high-0.00125, respectively) the CRG was
low for all samples, ranging from 15% to 59%.

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

“main” — 2018/4/16 — page 7 — #7

LueVari 7

5.2 Results on Metagenomic Data from Food Production

We demonstrate the ability of LueVari to analyze real shotgun
metagenomic data that were sequenced on an Illumina HiSeq 2500 system.
The samples were selected across a beef production system, which contain
different interventions (such as, high-heat and lactic acid treatment) aimed
at decreasing AMR in consumable beef. Hence, this dataset is used to
explore how microbial communities surrounding beef production facilities
evolve in the presence of different food production interventions that aim
to reduce pathogen load [38]. We ran LueVari on method on the shotgun
metagenomic datasets, first filtering for eukaryote species (hen bovine and
human DNA) and then filtering for k-mers that have low multiplicty, We
report the number of the reads, distinct k-mers, detected bulges, total time
of the pipeline, time for constructing the read-color matrix, time for the
traversing, peak memory and size of the read-color matrix in Table A.6.
As we can see in Table A.6, the parameters affect the traversal time are
color matrix size, number of distinct k-mers, and number of bulges. For
example, the largest traversing time belongs to sample 3, with largest
number of bulges (23,782), largest color matrix (5.2 GB) and second
greatest number of distinct k-mers (40,759,656). The size of color matrix
depends on number of reads, number of distinct k-mers (size of de Bruijn
graph) and total number of k-mers, which indicates the sparseness of the
matrix (this value is not reported in the table). We emphasize that both the
number of reads and number of k-mers of sample 1 are greater than those
of sample 3, and still the color matrix of sample 3 is larger, which is due
to a greater total number of k-mers on sample 3. In other words, the color
matrix of sample 3 is more condensed. As one can see in Table A.6, with
less than 21 GB of memory, and 6 GB of disk space, LueVari can scale for
large datasets (more than 55 million read) in less than 19 hours.

References
[1]T.-H. Ahn, J. Chai, and C. Pan. Sigma: Strain-level inference of genomes

from metagenomic analysis for biosurveillance. Bioinformatics, 31(2):170–177,
2015.

[2]I. Astrovskaya et al. Inferring viral quasispecies spectra from 454
pyrosequencing reads. BMC Bioinformatics, 12(Suppl 6):S1, 2011.

[3]A. Bankevich et al. SPAdes: a new genome assembly algorithm and its
applications to single-cell sequencing. J Comp Bio, 19(5):455–477, 2012.

[4]A. Bowe et al. Succinct de Bruijn graphs. In Proc. WABI, pp. 225–235, 2012.
[5]M. Burrows and D.J. Wheeler. A block sorting lossless data compression

algorithm. Technical Report 124, Digital Equipment Corporation, 1994.
[6]J. Catchen et al. building and genotyping loci de novo from short-read sequences.

Nature Biotech, 31(5):642–646, 2011.
[7]R. Chikhi and G. Rizk. Space-efficient and exact de Bruijn graph representation

based on a Bloom filter. Alg Mol Bio, 8(22), 2012.
[8]T. C. Conway and A. J. Bromage. Succinct data structures for assembling large

genomes. Bioinformatics, 27(4):479âŁ“486, 2011.
[9]B. E Dutilh et al. Reference-independent comparative metagenomics using

cross-assembly: crAss. Bioinformatics, 28(24):3225–3231, 2012.
[10]P. Elias. Efficient storage and retrieval by content and address of static files. J

of ACM, 21(2):246–260, 1974.
[11]J.M. Eppley et al. Strainer: software for analysis of population variation in

community genomic datasets. BMC Bioinformatics, 8(1):398, 2007.
[12]S.N. Gardner et al. SNP detection and phylogenetic analysis of genomes without

genome alignment or reference genome. Bioinformatics, 31(17):2877–2878,
2015.

[13]J.S. Ghurye et al. Metagenomic Assembly: Overview, Challenges and
Applications. Yale J Biol Med, 89(3):353–362, 2016.

[14]M.K. Gibson et al. Improved annotation of antibiotic resistance determinants
reveals microbial resistomes cluster by ecology. ISME, 9(1):207–216, 2014.

[15]Z. Iqbal et al. De novo assembly and genotyping of variants using colored de
bruijn graphs. Nature Genetics, 44(2):226–232, 2012.

[16]S. Johnson et al. A better sequence-read simulator program for metagenomics.
BMC Bioinformatics, 15(Suppl 9):S14, 2014.

[17]Nordström KJV. et al. Mutation identification by direct comparison of whole-
genome sequencing data from mutant and wild-type individuals using k-mers .
Nature Biotech, 31:325–330, 2013.

[18]S. Koren et al. Bambus 2: scaffolding metagenomes. Bioinformatics,
27(21):2964–2971, 2011.

[19]V. Kuleshov et al. Synthetic long-read sequencing reveals intraspecies diversity
in the human microbiome. Nature Biotech, 34(1):64–69, 2016.

[20]S. Lakin et al. MEGARes: an antimicrobial resistance database for high
throughput sequencing. Nucleic Acids Res, 45(D1):D574–D580, 2017.

[21]B. Langmead et al. Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol, 10, 2008.

[22]R.M. Leggett et al. Identifying and classifying trait linked polymorphisms in non-
reference species by walking coloured de Bruijn graphs. PLOS ONE, 8:60058–
10, 2013.

[23]D. Li et al. MEGAHIT: an ultra-fast single-node solution for large and
complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics,
31(10):1674, 2015.

[24]H. Li et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics,
25(16):2078–2079, 2009.

[25]Z. Li et al. Comparison of the two major classes of assembly algorithms: overlap-
layout-consensus and de Bruijn graph. Brief Funct Genomics, 11(1):25–37,
2012.

[26]C. Luo et al. ConStrains identifies microbial strains in metagenomic datasets.
Nature Biotechnology, 33(10):1045–1052, 2015.

[27]R. Luo et al. SOAPdenovo2: an empirically improved memory-efficient short-
read de novo assembler. GigaScience, 1(1):1, 2012.

[28]N. Maillet et al. Compareads: comparing huge metagenomic experiments. BMC
Bioinformatics, 13(19):1, 2012.

[29]N. Maillet et al. COMMET: comparing and combining multiple metagenomic
datasets. In In Proc of IEEE BIBM, pp. 94–98, 2014.

[30]F.R. Mario. On the number of bits required to implement an associative memory.
Massachusetts Institute of Technology, Project MAC, 1971.

[31]A. McKenna et al. The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res, 20:1297–303,
2010.

[32]M.D. Muggli et al. Succinct colored de Bruijn graphs. Bioinformatics, p. To
appear, 2017.

[33]E.W Myers. The fragment assembly string graph. Bioinformatics, 21(Suppl
2):ii79–ii85, 2005.

[34]T. Namiki et al. MetaVelvet: an extension of Velvet assembler to de novo
metagenome assembly from short sequence reads . Nucleic Acids Research,
40(20):e155, 2012.

[35]S. Nayfach and K.S. Pollard. Population genetic analyses of metagenomes reveal
extensive strain-level variation in prevalent human-associated bacteria. bioRxiv,
p. 031757, 2015.

[36]S.M. Nicholls et al. Advances in the recovery of haplotypes from the
metagenome. bioRxiv, p. 067215, 2016.

[37]J.F. Nijkamp et al. Exploring variation-aware contig graphs for (comparative)
metagenomics using MaryGold. Bioinformatics, 29(22):2826–2834, 2013.

[38]N.R. Noyes et al. Resistome diversity in cattle and the environment decreases
during beef production. eLife, 5:e13195, 2016.

[39]D. Okanohara and K/ Sadakane. Practical entropy-compressed rank/select
dictionary. In Proc of ALENEX, pp. 60–70, 2007.

[40]M.C.F. Prosperi and M. Salemi. QuRe: software for viral quasispecies
reconstruction from next-generation sequencing data. Bioinformatics,
28(1):132–133, 2012.

[41]A. Rimmer et al. Integrating mapping-, assembly-and haplotype-based
approaches for calling variants in clinical sequencing applications. Nature
Genetics, 46(8):912–918, 2014.

[42]G.G.Z Silva et al. FOCUS: an alignment-free model to identify organisms in
metagenomes using non-negative least squares. PeerJ, 2:e425, 2014.

[43]J.T. Simpson and R. Durbin. Efficient construction of an assembly string graph
using the fm-index. Bioinformatics, 26(12):i367–i373, 2010.

[44]E.J. Stewart. Growing unculturable bacteria. J Bacter, 194:4151–4160, 2012.
[45]V.I. Ulyantsev et al. MetaFast: fast reference-free graph-based comparison of

shotgun metagenomic data. Bioinformatics, 32(18):2760–7, 2016.
[46]R. Uricaru et al. Reference-free detection of isolated SNPs. Nucleic Acids

Research, 43(2):e11, 2015.
[47]M. Willmann and S. Peter. Translational metagenomics and the human

resistome: confronting the menace of the new millennium. J Mol Med,
95(1):41–51, 2017.

[48]C. Ye et al. Exploiting sparseness in de novo genome assembly. BMC
Bioinformatics, Suppl 6:S1, 2012.

[49]R. Younesi and MacLean. D. Using 2k+2 bubble searches to find single
nucleotide polymorphisms in k-mer graphs . Bioinformatics, 1:171–182, 2015.

[50]O. Zagordi et al. ShoRAH: estimating the genetic diversity of a mixed sample
from next-generation sequencing data. BMC Bioinformatics, 12(1):1, 2011.

[51]M. Zojer et al. Variant profiling of evolving prokaryotic populations. PeerJ,
5:e2997, 2017.

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

“main” — 2018/4/16 — page 0 — #8

0 Alipanahi et al.

A.1 Supplement

A.1.1 Illustration of the Read Colored De Bruijn Graph

In Figure A.1 we illustrate concepts related to the read colored de Bruijn graph, and their role in resolving cycles.

ACATT CATTG ATTGG TTGGA TGGAC GGACA GACAT GGACC GACCT ACCTT CCTTG CTTGG

ACATTGGACATTGGACATTGG
ACATTGGACCTTGGACATTGG

R1:
R2:

(a) (b)

(c)

{ACATT,CATTG,ATTGG,TTGGA,TGGAC,GGACA,GACAT}
{ACATT,CATTG,ATTGG,TTGGA,TGGAC,GGACA,GACAT}
{ACATT,CATTG,ATTGG}
{ACATT,CATTG,ATTGG,TTGGA,TGGAC,GGACC,GACCT,
 ACCTT,CCTTG,CTTGG}
{TTGGA,TGGAC,GGACA,GACAT,ACATT,CATTG,ATTGG}

S1:
 S2::
S3:
S4:

S5:

ACAT CATT ATTG TTGG

{ACATT,CATTG,ATTGG,TTGGA,TGGAC,GGACA,GACAT,GGACC,GACCT,ACCTT,CCTTG,CTTGG}

TGGA GGAC GACA

GACC

ACCTCCTT

CTTG

(d)

(e)

 1 1 1 1 1 1 1 0 0 0 0 0
 1 1 1 1 1 1 1 0 0 0 0 0
 1 1 1 0 0 0 0 0 0 0 0 0
 1 1 1 1 1 0 0 1 1 1 1 0
 1 1 1 1 1 1 1 0 0 0 0 0

S1
S2
S3
S4
S5

Fig. A.1. In(a) we illustration of two reads R1 and R2 representing a SNP (shown in grey). In (b), we show the sub-reads of R1 and R2; S1, S2, and S3 originate from R1, and S4 and S5
originate from R2. In (c), we give the k-mers that were constructed from R1 and R2. In (d), we show the de Bruijn graph constructed from the set of k-mers. And lastly, in (e), we show
the color matrix constructed from the sub-reads and de Bruijn graph. If we traverse the read colored de Bruijn graph in a color coherent manner then ACATTGGACATTGGACATTGG and
ACATTGGACCTTGGACATTGG are recovered. We note that we show the transpose of color matrix to save space.

A.1.2 Gene Fraction Histogram for LueVari

In Figure A.2 we give a histogram of the gene fraction of the sequences outputted by LueVari.

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

“main” — 2018/4/16 — page 1 — #9

LueVari 1

Fig. A.2. In this figure, we give a histogram of the gene fraction of the sequences outputted by LueVari. The y-axis gives the frequency in log scale. The x-axis gives the percentage of the
gene that was covered by the sequence containing the detected SNPs. We note that this illustrates one of the main benefits of LueVari, which is that it allows the location of SNPs to be
identified without disambiguity.

A.1.3 Comparison of Gene fractions

We compared LueVari gene fraction with DiscoSNP and Bubblepars–two other reference free SNP callers, in four experiments. low-0.00125 and high-
0.00125 refer to simulated metagenomic read with SNP rate of 0.00125 and mean coverage of 15 and 30 respectively. Accordingly low-0.005 and
high-0.005 refer to simulated metagenomic read with SNP rate of 0.005 and mean coverage of 15 and 30 respectively. As one can see mean gene fraction
of LueVari is the highest among all tools. See graphs A.3 and A.4.

low-0.00125 high-0.00125
0.0

0.25

0.5

0.75

1.0

1.25

G
en

e
Fr

ac
tio

n

LueVari
DiscoSNP
Bubbleparse

Fig. A.3. Mean gene fraction of three reference free tools on low-0.00125 and high-0.00125.

A.1.4 Comparison Between Reference-Guided Methods

We used MEGARes dataset as the reference for GATK and SAMtools since they are reference-guided methods, this is an added advantage to the other
methods that do not have a reference. Tables A.4 and A.5

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

“main” — 2018/4/16 — page 2 — #10

2 Alipanahi et al.

low-0.00125 high-0.00125
0.0

0.25

0.5

0.75

1.0

1.25

G
en

e
Fr

ac
tio

n
LueVari
DiscoSNP
Bubbleparse

Fig. A.4. Mean gene fraction of three reference free tools on low-0.005 and high-0.005.

270K 500K 1M 2M

Sensitivity Precision Sensitivity Precision Sensitivity Precision Sensitivity Precision
LueVari(0) 95.6 11.2 96.2 12.5 98.4 5.6 97.5 6.5
DiscoSNP(0) 81.7 14.1 91.2 14.2 90.1 11 86.8 12.5
LueVari(3) 73 17.9 90.6 16 94.6 7.2 95 6.3
DiscoSNP(3) 32.8 26.7 67.5 8.4 57.5 15 55.6 15
Bubbleparse 75.2 8.1 85 6.5 85.6 4.4 85.6 5.1
GATK 6.6 100 6.9 61.1 2.3 37.5 2.5 33.3
SAMtools 83.2 23.8 93.7 21.3 81 7.8 92.5 7.5

Table A.4. We show the accuracy of LueVari, reference-free SNP callers, and reference-guided SNP callers. We note the 270K, 500K, 1M and 2M datasets have
270,598, 527,913, 1,110,150 and 2,110,753 paired-end simulated reads, respectively. We report the sensitivity and precision as percentage. k=32 for all experiments
except for Bubbleparse in which k=31 (k can not be even)

270K 500K 1M 2M

Time Memory Time Memory Time Memory Time Memory
LueVari(0) 0:10:22 1.09 0:12:17 1.12 0:26:23 1.39 0:39:12 1.63
DiscoSNP(0) 0:00:44 0.15 0:00:55 0.15 0:01:15 0.94 0:01:37 0.74
LueVari(3) 0:04:17 0.40 0:11:34 0.88 0:18:39 1.35 0:31:48 1.62
DiscoSNP(3) 0:00:16 0.15 0:00:30 0.152 0:00:48 0.15 0:01:22 1.43
Bubbleparse 0:01:45 10.92 0:01:43 11.31 0:02:38 11.42 0:05:08 11.44
GATK 0:02:22 1.08 0:02:47 2.18 0:02:56 3.2 0:05:08 2.18
SAMtools 0:00:18 0.12 0:00:29 0.12 0:04:16 0.725 0:08:04 1.11

Table A.5. We illustrate the comparison between all competing methods. 270K, 500K, 1M and 2M with 270,598, 527,913, 1,110,150 and 2,110,753 paired-end
simulated reads. We report the peak memory in gigabytes (GB), and the running time as hh:mm:ss. k=32 for all experiments except for Bubbleparse in which k=31
(k can not be even)

A.1.5 Results of LueVari on real datasets selected across a beef production system

We ran LueVari to identify SNPs in AMR genes in 34 samples taken from a food production facility that had previously-identified AMR genes. All
experiments were performed on a 2 Intel(R) Xeon(R) CPU E5-2650 v2 2.60 GHz server with 1 TB of RAM, and both resident set size and user process
time were reported by the operating system.

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

“main” — 2018/4/16 — page 3 — #11

LueVari 3

ID Type Location Reads k-mers Bulges Traverse Time Color Time Total Time Color Matrix Memory

1 Fecal Arrival 55,242,003 42,634,941 10,279 03:22:32 00:07:50 14:27:31 4,668.35 17.95
2 Fecal Arrival 44,035,851 6,398,385 3,947 00:24:19 00:06:51 05:01:57 736.05 14.19
3 Fecal Arrival 52,833,978 40,759,656 23,782 07:14:10 00:10:12 18:26:17 5,200.4 20.25
4 Fecal Arrival 54,930,129 27,250,005 6,592 01:33:39 00:10:59 08:58:49 2,818.48 17.62
5 Fecal Arrival 54,631,823 33,535,641 7,367 02:22:51 00:10:04 11:22:40 3,323.67 17.74
6 Soil Arrival 40,026,007 11,646,311 2,233 00:31:27 00:06:05 05:42:52 1,229.17 12.65
9 Soil Arrival 51,173,157 11,920,881 6,388 01:15:53 00:10:06 08:01:59 1,336.16 16.64
22 Fecal Arrival 57,094,174 24,601,684 14,745 03:37:34 00:12:30 12:44:03 2,876.48 18.48
23 Fecal Arrival 22,698,431 6,947,493 998 00:06:47 00:03:02 02:51:18 614.9 9.08
24 Soil Arrival 41,494,968 25,299,886 5,844 01:13:50 00:49:28 08:43:09 2,524.29 13.41
25 Soil Arrival 58,579,293 20,844,208 6,622 01:28:27 00:10:20 09:24:18 2,246.48 19.05
26 Fecal Arrival 36,803,397 17,115,596 2,708 00:30:12 00:03:38 04:49:38 1,549.48 11.19
27 Soil Arrival 44189400 30,657,274 6,005 01:37:29 00:07:08 10:09:55 3,184.84 14.38
33 Fecal Holding 51,103,450 11,022,596 4,222 00:42:28 00:12:56 07:18:44 1,197.94 16.61
34 Fecal Exit 53,158,172 12,713,564 3,915 00:46:22 00:36:35 07:47:07 1,389.15 17.32
35 Soil Arrival 44,192,866 5,816,523 5,642 01:14:18 00:16:34 07:13:20 760.72 14.31
50 Fecal Exit 39,463,395 13,879,127 3,726 00:30:10 00:10:11 05:01:02 1,524.37 12.94
51 Soil Exit 53,502,945 12,476,454 4,896 00:56:36 00:13:20 07:44:54 1,435.25 17.45
82 Water Holding 36,501,759 3,550,203 1,534 00:11:28 00:17:22 03:52:40 416.63 11.18
83 Fecal Holding 16,511,213 2,472,929 777 00:03:33 00:02:28 01:26:51 235.36 6.82
85 Fecal Exit 16,954,069 2,608,952 650 00:02:48 00:03:24 01:31:11 252.36 7.05
86 Fecal Holding 21,417,145 5,396,458 1,470 00:06:36 00:07:19 02:00:17 566.00 7.73
87 Fecal Holding 18,706,201 1,251,940 818 00:03:05 00:01:47 01:34:16 146.89 7.67
88 Fecal Holding 17,169,647 1,055,167 713 00:02:23 00:03:23 01:18:48 140.81 7.27
89 Fecal Exit 12,844,115 807,467 311 00:00:56 00:00:34 00:55:00 90.52 2.90
90 Fecal Holding 16,433,171 743,280 376 00:01:46 00:00:54 01:05:00 91.93 6.84
91 Fecal Holding 17,206,031 1,442,855 1,011 00:03:55 00:05:46 01:30:28 178.70 7.30
92 Fecal Exit 11,136,889 688,444 375 00:01:06 00:05:56 00:56:04 94.39 2.56

102 Soil Exit 41,320,307 9,643,208 2,334 00:24:38 00:33:41 06:49:54 1,098.3 13.40
105 Soil Exit 18,258,328 4,171,382 655 00:04:00 00:02:23 01:31:46 390.56 7.09
106 Fecal Exit 21,703,330 1,187,703 812 00:03:18 00:04:27 01:46:28 152.21 6.96
107 Fecal Exit 24,090,178 1,462,679 821 00:04:39 00:32:45 03:15:21 198.82 5.98
108 Fecal Exit 36,055,457 3,913,005 2,857 00:15:56 00:04:34 03:13:13 466.36 11.17
120 Sponges Truck 55,889,892 14,525,103 9,287 01:52:21 01:35:31 11:22:03 1,813.58 17.97

Table A.6. Performance of LueVari on real data samples of Noyes et al. [38]. ID, Type and the Location that each sample collected from is mentioned in first three
columns. Number of Reads in each sample, number of distinct k-mers with frequency greater than or equal to 12, and number of found Bulges are mentioned
in columns four to six. Time for Traversing the graph, time for construction of Color Matrix and Total Time are reported in columns seven to nine in format of
hh:mm:ss. Size of the Color Matrix on disc is indicated in tenth column (MB), and on last column peak Memory for the whole pipeline is reported (GB).k=32 for
all experiments except for Bubbleparse in which k=31 (k can not be even)

A.1.6 Comparison of sensitivity and precision on simulated datasets with same number of reads and different copy number
of the genes

In this set of experiments we simulated three datasets (the same way as what was explained in section 5.1.1), each with 300,000 paired-end reads and
varying copy number of the genes. The copy numbers of the genes in these datasets are two, five and ten. We show them in table as 2, 5 and 10 respectively.
As one can see in table A.7, on all experiments, LueVari has the highest sensitivity ranging from 94% to 100%.

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

“main” — 2018/4/16 — page 4 — #12

4 Alipanahi et al.

2 5 10

LueVari DiscoSNP Bubbleparse LueVari DiscoSNP Bubbleparse LueVari DiscoSNP Bubbleparse
Sensitivity (%) 100 50 72 100 57.14 76.19 94 63.15 52.63
Precision (%) 2.7 1.7 2.1 2.5 1.8 2 2.2 1.9 1.3

Table A.7. We illustrate the comparison between competing methods on datasets 2, 5 and 10 each with 300,000 paired end reads and the gene copy number of 2, 5
and 10 respectively. k = 32 for all experiments except for Bubbleparse in which k=31 (k can not be even). In all experiments all tools were run with the setting that
achieve the highest performance (the threshold for filtering weak k-mers is 0).

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 16, 2018. ; https://doi.org/10.1101/156174doi: bioRxiv preprint

https://doi.org/10.1101/156174
http://creativecommons.org/licenses/by-nc-nd/4.0/

