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Summary 

1. Passive acoustic sensing has emerged as a powerful tool for quantifying 

anthropogenic impacts on biodiversity, especially for echolocating bat species. 

To better assess bat population trends there is a critical need for accurate, 

reliable, and open source tools that allow the detection and classification of bat 

calls in large collections of audio recordings. The majority of existing tools are 

commercial or have focused on the species classification task, neglecting the 

important problem of first localizing echolocation calls in audio which is 

particularly problematic in noisy recordings.  

2. We developed a convolutional neural network (CNN) based open-source pipeline 

for detecting ultrasonic, full-spectrum, search-phase calls produced by 

echolocating bats (BatDetect). Our deep learning algorithms (CNNFULL and 

CNNFAST) were trained on full-spectrum ultrasonic audio collected along road-

transects across Romania and Bulgaria by citizen scientists as part of the iBats 

programme and labelled by users of www.batdetective.org. We compared the 

performance of our system to other algorithms and commercial systems on 

expert verified test datasets recorded from different sensors and countries. As an 

example application, we ran our detection pipeline on iBats monitoring data 

collected over five years from Jersey (UK), and compared results to a widely-

used commercial system. 

3. Here, we show that both CNNFULL and CNNFAST deep learning algorithms have a 

higher detection performance (average precision, and recall) of search-phase 

echolocation calls with our test sets, when compared to other existing algorithms 
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and commercial systems tested. Precision scores for commercial systems were 

reasonably good across all test datasets (>0.7), but this was at the expense of 

recall rates. In particular, our deep learning approaches were better at detecting 

calls in road-transect data, which contained more noisy recordings. Our 

comparison of CNNFULL and CNNFAST algorithms was favourable, although 

CNNFAST had a slightly poorer performance, displaying a trade-off between speed 

and accuracy. Our example monitoring application demonstrated that our open-

source, fully automatic, BatDetect CNNFAST pipeline does as well or better 

compared to a commercial system with manual verification previously used to 

analyse monitoring data.  

4. We show that it is possible to both accurately and automatically detect bat 

search-phase echolocation calls, particularly from noisy audio recordings. Our 

detection pipeline enables the automatic detection and monitoring of bat 

populations, and further facilitates their use as indicator species on a large scale, 

particularly when combined with automatic species identification. We release our 

system and datasets to encourage future progress and transparency.  

Keywords: acoustic identification, audio detection, bat echolocation, citizen science, 

convolutional neural networks, deep learning, full-spectrum sound analysis.  
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Introduction 

There is a critical need for robust and accurate tools to scale up biodiversity monitoring 

and to manage the impact of anthropogenic change (Cardinale et al. 2012; Turner 

2014). Modern hardware for passive biodiversity sensing such as camera trapping and 

audio recording now enables the collection of vast quantities of data relatively 

inexpensively. In recent years, passive acoustic sensing has emerged as a powerful 

tool for understanding trends in biodiversity (Sueur et al. 2009; Blumstein et al. 2011; 

Marques et al. 2013; Penone et al. 2013). Monitoring of bat species and their population 

dynamics can act as an important indicator of ecosystem health as they are particularly 

sensitive to habitat conversion and climate change (Jones et al. 2013). Close to 80% of 

bat species emit ultrasonic pulses, or echolocation calls, to search for prey, avoid 

obstacles, and to communicate (Schnitzler, Moss & Denzinger 2003). Acoustic 

monitoring offers a passive, non-invasive, way to collect data about echolocating bat 

population dynamics and the occurrence of species, and it is increasingly being used to 

survey and monitor bat populations (Jones et al. 2013; Barlow et al. 2015; Newson, 

Evans & Gillings 2015). 

Despite the obvious advantages of passive acoustics for monitoring echolocating 

bat populations, its widespread use has been hampered by the challenges of robust 

identification of acoustic signals, generation of meaningful statistical population trends 

from acoustic activity, and engaging a wide audience to take part in monitoring 

programmes (Walters et al. 2013). Recent developments in statistical methodologies for 

estimating abundance from acoustic activity (Marques et al. 2013; Lucas et al. 2015; 

Stevenson et al. 2015), and the growth of citizen science networks for bats (Barlow et 
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al. 2015; Newson, Evans & Gillings 2015) mean that efficient and robust audio signal 

processing tools are now a key priority. However, tool development is hampered by a 

lack of large scale species reference audio datasets, intraspecific variability of bat 

echolocation signals, and radically different recording devices being used to collect data 

(Walters et al. 2013). 

To date, most full-spectrum acoustic identification tools for bats have focused on 

the problem of species classification from search-phase echolocation calls (Walters et 

al. 2013). Existing methods typically extract a set of audio features (such as call 

duration, mean frequency, and mean amplitude) from high quality search-phase 

echolocation call reference libraries to train machine learning algorithms to classify 

unknown calls to species (Parsons & Jones 2000; Russo & Jones 2002; Skowronski & 

Harris 2006; Armitage & Ober 2010; Walters et al. 2012; Walters et al. 2013; Zamora-

Gutierrez et al. 2016). Instead of using manually defined features, another set of 

approaches attempt to learn representation directly from spectrograms (Stowell & 

Plumbley 2014; Stathopoulos et al. 2017). Localising audio events in time (defined here 

as ‘detection’), is an important challenge in itself, and is often a necessary pre-

processing step for species classification (Stowell et al. 2016). Additionally, 

understanding how calls are detected is critical to quantifying any biases which may 

impact estimates of species abundance or occupancy (Clement et al. 2014b; Lucas et 

al. 2015). For example, high levels of background noise, often found in highly disturbed 

anthropogenic habitats such as cities, may have a significant impact on the ability to 

detect signals in recordings and lead to a bias in population estimates.  
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Detecting search-phase calls by manual inspection of spectrograms tends to be 

subjective, highly dependent on individual experience, and its uncertainties are difficult 

to quantify (Skowronski & Fenton 2008). There are a number of automatic detection 

tools now available which use a variety of methods, including amplitude threshold 

filtering, locating areas of smooth frequency change, detection of set search criteria, or 

based on a cross-correlation of signal spectrograms with a reference spectrogram (see 

review in Walters et al. 2013). While there are some studies that analyse the biases of 

automated detection (and classification) tools (Jennings, Parsons & Pocock 2008; 

Adams et al. 2012; Clement et al. 2014a; Fritsch & Bruckner 2014; Russo & Voigt 2016; 

Rydell et al. 2017), this is generally poorly quantified, and in particular, there is very little 

published data available on the accuracy of many existing closed source commercial 

systems. Despite this, commercial systems are commonly used in bat acoustic survey 

and monitoring studies, albeit often with additional manual inspection (Barlow et al. 

2015; Newson, Evans & Gillings 2015). This reliance on poorly documented algorithms 

is scientifically undesirable, and manual detection of signals is clearly not scalable for 

national or regional survey and monitoring. In addition, there is the danger that manual 

detection and classification introduces a bias towards the less noisy and therefore more 

easily identifiable calls. To address these limitations, a freely available, transparent, 

fast, and accurate detection algorithm that can also be used alongside other 

classification algorithms is highly desirable.  

Here, we develop an open source system for automatic bat search-phase 

echolocation call detection (i.e. localisation in time) in noisy, real world, recordings. We 

use the latest developments in machine learning to directly learn features from the input 
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audio data using supervised deep convolutional neural networks (CNNs) (LeCun et al. 

1998). CNNs have been shown to be very successful for classification and detection of 

objects in images (Krizhevsky, Sutskever & Hinton 2012; Girshick et al. 2014). They 

have also been applied to various audio classification tasks (Piczak 2015; Hershey et al. 

2016; Salamon & Bello 2016), along with human speech recognition (Hinton et al. 2012; 

Hannun et al. 2014). Although CNNs are now starting to be used for bioacoustic signal 

detection and classification tasks in theoretical or small-scale contexts (e.g. bird call 

detection) (Goeau et al. 2016), to date there have been no application of CNN-based 

tools for bat monitoring. This is mainly due to a lack of sufficiently large labelled bat 

audio datasets for use as training data. To overcome this, we use data collected and 

annotated by thousands of citizen scientists as part of our Indicator Bats Programme 

(Jones et al. 2013) and Bat Detective (www.batdetective.org). We validate our system 

on three different challenging test datasets from Europe which represent realistic use 

cases for bat surveys and monitoring programmes, and we present an example real-

world application of our system on five years of monitoring data collected in Jersey 

(UK).  

 

Materials and Methods 

ACOUSTIC DETECTION PIPELINE 

We created a detection system to determine the temporal location of any search-phase 

bat echolocation calls present in ultrasonic audio recordings. Our detection pipeline 

consisted of four main steps (Figure 1) as follows: (1) Fast Fourier Transform Analysis - 

Raw audio (Figure 1a) was converted into a log magnitude spectrogram (FFT window 
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size 2.3 milliseconds, overlap of 75%, with Hanning window), retaining the frequency 

bands between 5kHz and 135kHz (Figure 1b). Recordings with a sampling rate of 

44.1kHz, time expansion factor of 10, and 2.3ms FFT window, resulted in a window size 

of 1,024 samples. We used spectrograms rather than raw audio for analysis, as it 

provides an efficient means of dealing with audio that has been recorded at different 

sampling rates. Provided the frequency and time bins of the spectrogram are of the 

same resolution, audio with different sampling rates can be input into the same network.  

(2) De-noising – We used the de-noising method of (Aide et al. 2013) to filter out 

background noise by removing the mean amplitude in each frequency band (Figure 1c), 

as this significantly improved performance. (3) Convolutional Neural Network Detection 

– We created a convolutional neural network (CNN) that poses search-phase bat 

echolocation call detection as a binary classification problem. Our CNNFULL consisted of 

three convolution and max pooling layers, followed by one fully connected layer (see 

Supplementary Information Methods for further details). We halved the size of the input 

spectrogram to reduce the input dimensionality to the CNN which resulted in an input 

array of size of 130 frequency bins by 20 time steps, corresponding to a, fixed length, 

detection window size of 23ms. We applied the CNN in a sliding window fashion, to 

predict the presence of a search-phase bat call at every instance of time in the 

spectrogram (Figure 1d). As passive acoustic monitoring can generate large quantities 

of data, we required a detection algorithm that would run faster than real time. While 

CNNs produce state of the art results for many tasks, naïve application of them for 

detection problems at test time can be extremely computationally inefficient (Girshick et 

al. 2014). So, to increase the speed of our system we also created a second, smaller 
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CNN which included fewer model weights that can be run in a fully convolutional 

manner (CNNFAST) (Supplementary Information Methods, Supplementary Information 

Figure S1). (4) Call Detection Probabilities – The probabilistic predictions produced by 

the sliding window detector tended to be overly smooth in time (Figure 1d). To localise 

the calls precisely, we converted the probabilistic predictions into individual detections 

using a non-maximum suppression to return the local maximum for each peak in the 

output prediction (Figure 1e). These local maxima corresponded to the predicted 

locations of the start of each search-phase bat echolocation call, with associated 

probabilities, and were exported as text files. 

 

ACOUSTIC TRAINING DATASETS 

We trained our BatDetect CNNs using a subset of full-spectrum time-expanded (TE) 

ultrasonic acoustic data recorded between 2005-2011 along road-transects by citizen 

scientists as part of the Indicator Bats Programme (iBats) (Jones et al. 2013) (see 

Supplementary Information Methods for detailed data collection protocols). During 

surveys, acoustic devices (Tranquility Transect, Courtplan Design Ltd, UK) were set to 

record using a TE factor of 10, a sampling time of 320ms, and sensitivity set on 

maximum, giving a continuous sequence of ‘snapshots’, consisting of 320ms of silence 

(sensor listening) and 3.2s of TE audio (sensor playing back x 10). As sensitivity was 

set at maximum, and no minimum amplitude trigger mechanism was used on the 

recording devices, our recorded audio data contained many instances of low amplitude 

and faint bat calls, as well as other night-time ‘background’ noises such as other biotic, 

abiotic, and anthropogenic sounds.  
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We generated annotations of the start time of search-phase bat echolocation 

calls in the acoustic recordings by uploading the acoustic data to the Zooniverse citizen 

science platform (www.zooniverse.org) as part of the Bat Detective project 

(www.batdetective.org), to enable public users to view and annotate them. The audio 

data were first split up into 3.84s long sound clips to include the 3.2s of TE audio and 

buffered by sensor-listening silence on either side. We then uploaded each sound clip 

as both a wav file and a magnitude spectrogram image (represented as a 512x720 

resolution image) onto the Bat Detective project website. As the original recordings 

were time-expanded, therefore reducing the frequency, sounds in the files were in the 

audible spectrum and could be easily heard by users. Users were presented with a 

spectrogram and its corresponding audio file, and asked to annotate the presence of bat 

calls in each 3.84s clip (corresponding to 320ms of real-time recordings) 

(Supplementary Information Figure S2). After an initial tutorial (Supplementary 

Information Video 1), users were instructed to draw bounding boxes around the 

locations of bat calls within call sequences and to annotate them as being either: (1) 

search-phase echolocation calls; (2) terminal feeding buzzes; or (3) social calls. Users 

were also encouraged to annotate the presence of insect vocalisations and non-biotic 

mechanical noises.  

Between Oct 2012 and Sept 2016, 2,786 users (including only the number of 

users which had registered with the site and did more than five annotations) listened to 

127,451 unique clips and made 605,907 annotations. 14,339 of these clips were 

labelled as containing a bat call, with 10,272 identified as containing search-phase 

echolocation calls. Due to the inherent difficultly of identifying bat calls and the 
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inexperience of some of our users, we observed a large number of errors in the 

annotations provided. To overcome this problem, we visually inspected a subset of the 

annotations from our most active users and found that they produced high quality 

annotations. As a result, we choose annotations from the top user who had viewed 

46,508 unique sound clips and had labelled 3,364 clips as containing bat search-phase 

echolocation calls (a representative sample is shown in Supplementary Information 

Figure S3). From this we randomly selected a training set of 2,812 clips, consisting of 

4,782 individual search-phase echolocation call annotations from Romania and 

Bulgaria, with which to train the CNNs (corresponding to data from 347 road-transect 

sampling events of 137 different transects collected between 2006 and 2011) (Figure 

2a). Data were chosen from these countries as they contain the majority of the most 

commonly occurring bat species in Europe (IUCN 2017). This training set was used for 

all experiments. The remaining annotated clips from the same user were used to create 

one of our test sets, iBats Romania and Bulgaria (Figure 2a and see below). 

Occasionally, call harmonics and the associated main call were sometimes labelled with 

different start times in the same audio clip. To address this problem, we automatically 

merged annotations that occurred within 6 milliseconds of each other, making the 

assumption that they belonged to the same call.  

 

ACOUSTIC TESTING DATASETS AND EVALUATION 

To evaluate the performance of the detection algorithms, we created three different test 

datasets of approximately the same size (number and length of clips) (Figure 2a-b, 

Supplementary Information Table S1). These datasets were chosen to represent three 

different realistic use cases commonly used for bat surveys and monitoring programmes 
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and included data collected both along road-transects (resulting in noisier audio), and 

using static ultrasonic detectors. The test sets were as follows: (1) iBats Romania and 

Bulgaria - audio recorded from the same region, by the same individuals, with the same 

equipment, and sampling protocols as the training set, corresponding to 161 sampling 

events of 81 different transect routes; (2) iBats UK - audio recorded from a different 

region (corresponding to data from 176 sampling events of 111 different transects 

recorded between 2005-2011 in the United Kingdom, chosen randomly), by different 

individuals, using the same equipment type, and identical sampling protocols as part of 

the iBats programme (Jones et al. 2013) as the training set; and (3) Norfolk Bat Survey - 

audio recorded from a different region (Norfolk, UK), by different individuals, using 

different equipment types (SM2BAT+ Song Meter, Wildlife Acoustics) and different 

protocols (static devices from random sampling locations) as part of the Norfolk Bat 

Survey (Newson, Evans & Gillings 2015) in 2015. These data corresponded to 381 

sampling events from 246 static recording locations (1km2 grid cells), randomly chosen. 

The start times of the search-phase echolocation calls in these three test sets were 

manually extracted. For ambiguous calls, we consulted two experts, each with over 10 

years of experience with bat acoustics.  

As these data contained a significantly greater proportion of negative (non-bat 

calls) as compared to positive examples (bat calls), standard error metrics used for 

classification such as overall accuracy were not suitable for evaluating detection. 

Instead, we report the interpolated average precision and recall of each method 

displayed as a precision-recall curve (Everingham et al. 2010). Precision was calculated 

as the number of true positives divided by the sum of both true and false positives. We 
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consider a detection to be a true positive if it occurred within 10ms of the expert 

annotated start time of the search-phase echolocation call. Recall was measured as the 

overall fraction of calls that were present in the audio that were correctly detected. 

Curves were obtained by thresholding the detection probabilities from zero to one and 

recording the precision and recall at each threshold. Algorithms that did not produce a 

continuous output were represented as a single point on the precision-recall curves. We 

also report recall at 0.95 precision, a metric that measures the fraction of calls that were 

detected while accepting a false positive rate of 5%. Thus a detection algorithm gets a 

score of zero if it was not capable of retrieving any calls with a precision greater than 

0.95.  

We compared the performance of both BatDetect CNNs to three existing closed-

source commercial detection systems: (1) SonoBat (version 3.1.7p) (Szewczak 2010); 

(2) SCAN’R version 1.7.7. (Binary Acoustic Technology 2014); and (3) Kaleidoscope 

(version 4.2.0 alpha4) (Wildlife Acoustics 2012). For SonoBat, calls were extracted in 

batch mode. We set a maximum of 100 calls per file (there are never more than 20 

search-phase calls in a test file), and set ‘acceptable call quality’ and ‘skip calls below 

this quality’ parameters both to zero, and used an auto filter of 5KHz. For SCAN’R, we 

used standard settings as follows: setting minimum and maximum frequency cut off at 

10 kHz and 125 kHz, respectively; minimum call duration at 0.5 ms; and minimum 

trigger level of 10 dB. We used Kaleidoscope in batch mode, setting ‘frequency range’ 

to 15-120kHz, ’duration range’ to 0-500ms, ‘maximum inter-syllable’ to 0ms, and 

‘minimum number of pulses’ to 0. We also compared two other detection algorithms that 

we implemented ourselves, which are representative of typical approaches used for 
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detection in audio files and in other bat acoustic classification studies: (4) Segmentation 

- an amplitude thresholding segmentation method (Lasseck 2014), this is related to the 

approach of (Bas, Bas & Julien 2017); and (5) Random Forest – a random forest-based 

classifier (Breiman 2001). Where relevant, the algorithms for (4) and (5) used the same 

processing steps as the BatDetect CNNs. For the Segmentation method, we 

thresholded the amplitude of the input spectrogram resulting in a binary segmentation. 

Regions that were greater than the threshold St, and bigger than size Sr, were 

considered as positive instances. We chose the values of St and Sr on the iBats 

(Romania and Bulgaria) test dataset that gave the best test results to quantify its best 

case performance. For the Random Forest algorithm, we used the raw amplitude values 

from the gradient magnitude of the log magnitude spectrogram as features. We 

compared the total processing time for each of our own algorithms, and timings were 

calculated on a desktop with an Intel i7 processor, 32Gb of RAM, and a Nvidia GTX 

1080 GPU. With the exception of the BatDetect CNNFULL, which used a GPU at test 

time, all the other algorithms were run on the CPU. 

 

ECOLOGICAL MONITORING APPLICATION 

To demonstrate the performance of our method in a large-scale ecological monitoring 

application, we compared the number of bat search-phase echolocation calls found 

using our BatDetect CNNFAST algorithm to those produced from a commonly used 

commercial package using SonoBat (version 3.1.7p) (Szewczak 2010) as a baseline, 

using monitoring data collected in iBats programme in Jersey, UK from 2011-2015. 

Audio data was collected twice yearly (July and August) from 11 road-transect routes of 

approximately 40km by volunteers using the iBats protocols (Supplementary 
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Information, Supplementary Methods), corresponding to 5.7 days of continuous TE 

audio over five years (or 13.75 hours of real-time data). For the BatDetect CNNFAST 

analysis, we ran the pipeline as described above, using a conservative probabilistic 

threshold of 0.90 (so as to only include high precision predictions). Computational 

analysis timings for the CNNFAST for this dataset were calculated as before. For the 

comparison to SonoBat, we used the results from an existing real-world analysis in a 

recent monitoring report (Walters, Browning & Jones 2016), where the audio files were 

first split into 1 min recordings, and then SonoBat was used to detect search-phase 

calls and to fit a frequency-time trend line to the shape of the call (Walters, Browning & 

Jones 2016). All fitted lines were visually inspected and calls where the fitted line 

included background noise or echoes, were rejected. Typically, monitoring analyses 

group individual calls into sequences (a bat pass) before analysis. To replicate that here 

in both analyses, individual calls were assumed to be part of the same call sequence 

(bat pass) if they occurred within the same 3.84s sound clip and if the sequence 

continued into subsequent sound clips. We compared number of bat calls and passes 

detected per transect sampling event across the two analyses methods using 

generalized linear mixed models (GLMM) using lme4 (Bates et al. 2015) in R v. 3.3.3 (R 

Development Core Team 2009) in order to control for the spatial and temporal non-

independence of our survey data (Poisson GLMM including analysis method as a fixed 

effect and sampling event, transect route and date as random effects).  

 

Results 

ACOUSTIC DETECTION PERFORMANCE 
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Both versions of our BatDetect CNN algorithm outperformed all other algorithms 

and commercial systems tested, with consistently higher average precision scores and 

recall rates across the three different test datasets (Table 1, Figure 3a-c). In particular, 

the CNNs detected a substantially higher proportion of search-phase calls at 0.95 

precision (maximum 5% false positives) (Table 1). All the other algorithms 

underestimated the number of search-phase echolocation calls in each dataset, except 

Segmentation, which produced high recall rates but with low precision (a high number of 

false positives). The CNNs relative improvement compared to other methods was 

higher on the road transect datasets (iBats Romania & Bulgaria; iBats UK; Table 1, 

Figure 3a-b). Overall the performance of CNNFAST was slightly worse than the larger 

CNNFULL across all test datasets, apart from a higher recall rates at 0.95 precision in the 

static Norfolk Bat Survey dataset (Figure 3c, Table 1). Precision scores for all 

commercial systems (SonoBat, SCAN’R and Kaleidoscope) were reasonably good 

across all test datasets (>0.7) (Figure 3a-c). However, this was at the expense of recall 

rates, which were consistently lower than for the CNNs and Random Forest, where the 

maximum recall rates were 44-60% of known calls detected (Figure 3c). The recall rates 

fell to a maximum of 25% of known calls for the road transect datasets (Figure 3a-b).  

CNNFULL, CNNFAST, Random Forest, and the Segmentation algorithms took 53, 

9.5, 11, and 17 seconds respectively, to run the full detection pipeline on the 3.2 

minutes of full spectrum iBats Romania and Bulgaria test dataset. Compared to 

CNNFULL there was therefore a significant decrease in the time required to perform 

detection using CNNFAST, which was also the fastest of our methods overall. Notably, 
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close to 50% of the CNN runtime was spent generating the spectrograms for detection, 

making this the most computationally expensive stage in the pipeline.  

 

ECOLOGICAL MONITORING APPLICATION 

Our BatDetect CNNFAST algorithm detected a significantly higher number of bat 

echolocation search-phase calls per transect sampling event, across 5 years of road 

transect data from iBats Jersey, compared to using SonoBat (CNNFAST mean=107.69, 

sd=48.01; SonoBat mean=64.95, sd=28.53, Poisson GLMM including sampling event, 

transect route and date as random effects p<2e-16, n=216) (Figure 4, Supplementary 

Information Table S2). The differences between the two methods for bat passes was 

much smaller per sampling event, although CNNFAST still detected significantly more 

passes per transect recording (CNNFAST mean=29.57, sd=11.26; SonoBat mean=27.27, 

sd=10.85; Poisson GLMM including sampling event, transect route and date as random 

effects p=0.00143, n=216) (Figure 4, Supplementary Information Table S2). Running 

only on the CPU, the CNNFAST algorithm took 24s to process each full transect of time-

expanded audio (over 150 times real time). 

 

Discussion 

The BatDetect deep learning algorithms show a higher detection performance 

(average precision and recall) for search-phase echolocation calls with the test sets, 

when compared to other existing algorithms and commercial systems. In particular, our 

algorithms were better at detecting calls in road-transect data, which tend to contain 

more noisy recordings, suggesting that these are extremely useful tools for measuring 
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bat abundance and occurrence in such datasets. Road-transect acoustic monitoring is a 

useful technique to assess bat populations over large areas and programmes have now 

been established by government and non-government agencies in many different 

countries (e.g., Roche et al. 2011; Jones et al. 2013; Whitby et al. 2014; Loeb et al. 

2015; Azam et al. 2016). Noisy sound environments are also likely to be a problem for 

other acoustic bat monitoring programmes. For example, with the falling cost and wider 

availability of full-spectrum audio equipment, the range of environments being 

acoustically monitored is increasing, including noisy urban situations (Lintott et al. 2015; 

Merchant et al. 2015). Individual bats further from the microphone are less likely to be 

detected as their calls are fainter, and high ambient noise levels increase call masking 

and decrease call detectability. Additionally, a growth in open-source sensor equipment 

for bat acoustics using very cheap MEMs microphones (Whytock & Christie 2017) may 

also require algorithms able to detect bats in lower quality recordings, which may have a 

lower signal to noise ratio or a reduced call band-width due to frequency-dependent 

loss. Our open-source, well documented algorithms enable biases and errors to be 

directly incorporated into any acoustic analysis of bat populations and dynamics (e.g. 

occupancy models (e.g., Clement et al. 2014b). The detections with BatDetect can be 

directly used as input for population monitoring programmes when species identification 

is difficult such as the tropics, or to other CNN systems to determine bat species identity 

when sound libraries are available.  

Our result that deep learning networks consistently outperformed other 

baselines, is consistent with the suggestion that CNNs offer substantially improved 

performance over other supervised learning methods for acoustic signal classification 
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(Goeau et al. 2016). The major improvement of both CNNs over Random Forest and 

the three commercial systems was in terms of recall, i.e. increasing the proportion of 

detected bat calls in the test datasets. Although the precision of the commercial 

systems was often relatively high, the CNNs were able to detect much fainter and 

partially noise-masked bat calls that were missed by the other methods, with fewer false 

positives, and very quickly, particularly with CNNFAST. Previous applications of deep 

learning networks to bioacoustic and environmental sound recognition have used small 

and high-quality datasets (e.g., Goeau et al. 2016; Salamon & Bello 2016). However, 

our results show that, provided they are trained with suitably large and varied training 

data, deep learning networks have good potential for applied use in real-world 

heterogeneous datasets that are characteristic of acoustic wildlife monitoring (involving 

considerable variability in both environmental noise and distance of animal from 

sensor). Our comparison of CNNFULL and CNNFAST detectors was favourable, although 

CNNFAST had a slightly poorer performance showing a trade-off between speed and 

accuracy. This suggests that CNNFAST could potentially be adapted to work well with on-

board low power devices (e.g. Intel’s Edison device) to deliver real-time detections. 

Avoiding the spectrogram generation stage entirely and using the raw audio samples as 

input (van den Oord et al. 2016), could also speed up performance of the system in the 

future, as currently over 50% of the CNN test time is taken up by computing 

spectrograms. 

While our results have been validated on European bats, no species or region-

specific knowledge, or particular acoustic sensor system is directly encoded into our 

system, making it possible to easily generalise to other systems (e.g. frequency division 
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recordings), regions and species with additional training data. Despite this flexibility, this 

version of our deep network may be currently biased towards common species found 

along roads, although the algorithms did perform well on static recordings on a range of 

common and rare species in a range of habitats in the Norfolk Bat Survey (Newson, 

Evans & Gillings 2015). Nevertheless, in future, extending the training dataset to include 

annotated bat calls from verified species-call databases to increase geographic and 

taxonomic coverage, will further improve the generality of our detection tool. Other 

improvements to the CNN detectors could also be made to lessen taxonomic bias. For 

example, some bat species have search phase calls longer than the fixed input time 

window of 23ms of both CNNs (e.g. horseshoe bats). This may limit our ability currently 

to detect species with these types of calls. One future approach would be to resize the 

input window (Girshick et al. 2014), thus discarding some temporal information, or to 

use some form of recurrent neural network such as a Long Short-Term Memory (LSTM) 

(Hochreiter & Schmidhuber 1997) that can take a variable length sequence as input. 

There are many more unused annotations in the Bat Detective dataset that could 

potentially increase our training set size. However, we found some variability in the 

quality of the citizen science user annotations, as in other studies (Kosmala et al. 2016). 

To make best use of these annotations, we need user models for understanding which 

annotations and users are reliable (Welinder et al. 2010; Swanson et al. 2016). The Bat 

Detective dataset also includes annotations of particular acoustic behaviours (feeding 

buzzes and social calls), which in future can be used to train detection algorithms for 

different acoustic behaviours (e.g., Prat, Taub & Yovel 2016). 
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During our evaluation on large-scale ecological monitoring data from Jersey 

(Walters, Browning & Jones 2016), we demonstrated that our open-source BatDetect 

CNNFAST pipeline performs as well or better (controlling for spatial and temporal non-

independence) compared with an existing widely-used commercial system (SonoBat) 

that had been manually filtered. Interestingly, although the CNNFAST consistently 

detected more of the faint and partially-masked calls, most bat passes are likely to still 

contain at least one call that is clearly-recorded enough to be detected by SonoBat, 

meaning that the total number of detected bat passes is similar across the two methods. 

Additionally, our system achieves a massive reduction in the time involved in audio 

processing - several minutes compared to several days of person-hours (Walters, 

Browning & Jones 2016). This increase in performance both in terms of speed and 

accuracy is crucial for future large scale monitoring programmes. Further improvements 

to our system may come from a better understanding of the patterns of search-phase 

calls within sequences (Kershenbaum et al. 2016). In our example, we used a very 

simple heuristic to merge individual bat calls into bat passes, but ideally we would also 

be able to learn this from labelled training data.  

 

Conclusion 

Our BatDetect search-phase bat call detector significantly outperforms existing methods 

for localising the position of bat search-phase calls, particularly in noisy audio data. It 

could be combined with automatic bat species classification tools to scale up the 

monitoring of bat populations over large geographic regions. In addition to making our 
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system available open source, we also provide three expertly annotated test sets that 

can be used to benchmark future detection algorithms.  
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Table 1. Average precision and recall results for bat search-phase call detection 

algorithms across three different test sets iBats Romania and Bulgaria; iBats UK; 

and Norfolk Bat Survey. Large numbers indicate better performance. Recall results 

are reported at 0.95 precision, where zero indicates that the detector algorithm was 

unable to achieve a precision greater than 0.95 at any recall level. The results for the 

best performing algorithm are underlined. Details of the test datasets and detection 

algorithms are given in the text. 

 

  Detection Algorithms 

    BatDetect 

Average 
Precision 

Sono-
Bat 

SCAN’R Kaleido-
scope 

Segment Random 
Forest 

CNNFAST CNNFULL 

iBats (R&B) 0.265 0.239 0.189 0.299 0.674 0.863 0.895 

iBats (UK) 0.200 0.142 0.144 0.324 0.648 0.781 0.866 

NBP 
(Norfolk) 

0.473 0.456 0.553 0.506 0.630` 0.861 0.882 

Recall at 0.95       

iBats (R&B) 0 0.251 0 0 0.568 0.777 0.818 

iBats (UK) 0 0 0 0 0.324 0.570 0.670 

NBP 
(Norfolk) 

0.184 0.470 0 0 0.049 0.781 0.754 
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Figure Legends 

Figure 1 – Detection pipeline for search-phase bat echolocation calls. (a) Raw 

audio files are converted into a spectrogram using a Fast Fourier Transform (b). Files 

are de-noised (c), and a sliding window Convolutional Neural Network (CNN) classifier 

(d, yellow box) produces a probability for each time step. Individual call detection 

probabilities using non-maximum suppression are produced (e, green boxes), and the 

time in file of each prediction along with the classifier probability are exported as text 

files.  

 

Figure 2 – Spatial distribution of the BatDetect CNNs training and testing 

datasets. (a) Location of training data for all experiments and one test dataset in 

Romania and Bulgaria (2006-2011) from time-expanded (TE) data recorded along road 

transects by the Indicator Bats Programme (iBats) (Jones et al. 2013), where red and 

black points represent training and test data, respectively. (b) Locations of additional 

test datasets from TE data recorded as part of iBats car transects in the UK (2005-

2011), and from real-time recordings from static recorders from the Norfolk Bat Survey 

from 2015 (inset). Points represent the start location of each snapshot recording for 

each iBats transect or locations of static detectors for the Norfolk Bat Survey.  

 

Figure 3 – Precision-recall curves for bat search-phase call detection algorithms 

across three testing datasets; (a) iBats Romania and Bulgaria; (b) iBats UK; and 

(c) Norfolk Bat Survey. Curves were obtained by sweeping the output probability for a 

given detector algorithm and computing the precision and recall at each threshold. The 
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commercial systems or algorithms that did not return a continuous output or probability 

(SCAN’R, Segment, and Kaleidoscope) were depicted as a single point. 

 

Figure 4 – Comparison of the predicted bat detections (calls and passes) for two 

different acoustic systems using monitoring data collected from Jersey, UK. 

Acoustic systems used were SonoBat (version 3.1.7p) (Szewczak 2010) using analysis 

in (Walters, Browning & Jones 2016), and BatDetect CNNFAST using a probability 

threshold of 0.90. Detections are shown within each box plot, where the black line 

represents the mean across all transect sampling events from 2011-2015, boxes 

represent the middle 50% of the data, whiskers represent variability outside the upper 

and lower quartiles, with outliers plotted as individual points. See text for definition of a 

bat pass.  
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Figure 1. 
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Figure 2. 
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Figure 3.  
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Figure 4.   
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Supplementary Information 

 

Supplementary Methods  

Figure S1 - CNNFAST network architecture description. 

Figure S2 - Spectrogram annotation interface from Bat Detective 

(www.batdetective.org).  

Video S1 – Overview of our system, Bat Detective annotation steps, and sample 

results. 

Figure S3 – Example search-phase bat echolocation calls from iBats Romania & 

Bulgaria training dataset.  

Table S1 - Description of BatDetect CNNs test datasets 
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