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Abstract 
 
Background 
One of the main challenges in metagenomics is the identification of microorganisms in 
clinical and environmental samples. While an extensive and heterogeneous set of 
computational tools is available to classify microorganisms using whole genome shotgun 
sequencing data, comprehensive comparisons of these methods are limited. In this study, 
we use the largest (n=35) to date set of laboratory-generated and simulated controls 
across 846 species to evaluate the performance of eleven metagenomics classifiers. We 
also assess the effects of filtering and combining tools to reduce the number of false 
positives. 
 
Results 
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Tools were characterized on the basis of their ability to (1) identify taxa at the genus, 
species, and strain levels, (2) quantify relative abundance measures of taxa, and (3) 
classify individual reads to the species level. Strikingly, the number of species identified 
by the eleven tools can differ by over three orders of magnitude on the same datasets. 
However, various strategies can ameliorate taxonomic misclassification, including 
abundance filtering, ensemble approaches, and tool intersection. Indeed, leveraging tools 
with different heuristics is beneficial for improved precision. Nevertheless, these 
strategies were often insufficient to completely eliminate false positives from 
environmental samples, which are especially important where they concern medically 
relevant species and where customized tools may be required. 
 
Conclusions 
The results of this study provide positive controls, titrated standards, and a guide for 
selecting tools for metagenomic analyses by comparing ranges of precision and recall. 
We show that proper experimental design and analysis parameters, including depth of 
sequencing, choice of classifier or classifiers, database size, and filtering, can reduce false 
positives, provide greater resolution of species in complex metagenomic samples, and 
improve the interpretation of results. 
 
Keywords 
Metagenomics, shotgun sequencing, taxonomy, classification, comparison, ensemble 
methods, meta-classification, pathogen detection 
 
Background 
 
Sequencing has helped researchers identify microorganisms with roles in such diverse 
areas as human health [1], the color of lakes [2], and climate [3,4]. The main objectives 
when sequencing a metagenomic community are to accurately detect, identify, and 
describe its component taxa fully and accurately. False positives, false negatives, and 
speed of analysis are critical concerns, in particular when sequencing is applied to 
medical diagnosis or tracking infectious agents. 
 
Selective amplification (e.g. 16S, 18S, ITS) of specific gene regions has long been 
standard for microbial community sequencing, but it introduces bias and omits organisms 
and functional elements from analysis. Recent large-scale efforts to characterize the 
human microbiome [5] and a variety of Earth microbiomes [6] used the 16S genes of 
ribosomal RNA (rRNA) as amplicons. Highly conserved regions within these genes 
permit the use of common primers for sequencing [7]. Yet certain species of archaea 
include introns with repetitive regions that interfere with the binding of the most common 
16S primers [8,9] and 16S amplification is unable to capture viral, plasmid, and 
eukaryotic members of a microbial community, which may represent pivotal drivers of an 
individual infection or epidemic [10]. 16S amplification is also often insufficient for 
discrimination at the species and strain levels of classification. Although among closely-
related strains of prokaryotes, conserved genes with higher evolutionary rates than 16S 
rRNA [11] or gene panels could improve discriminatory power, these strategies suffer 
from low adoption and underdeveloped reference databases. 
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While whole genome shotgun sequencing addresses some of the issues associated with 
amplicon-based methods, other challenges arise. Amplification-based methods remain a 
cheaper option, and 16S databases are more extensive than shotgun databases. Also, 
taxonomic annotation of short reads produced by most standard sequencing platforms 
remains problematic, since shorter reads are more likely to map ambiguously to related 
taxa that are not actually present in a sample. Strategies for whole genome shotgun 
classification rely on several methods, including alignment (to all sequences or 
taxonomically unique markers), composition (k-mer analysis), phylogenetics (using 
models of sequence evolution), assembly, or a combination of these methods. Analysis 
tools focusing on estimation of abundance tend to use marker genes, which decreases the 
number of reads classified but increases speed [12]. Tools that classify at the read-level 
have applications beyond taxonomic identification and abundance estimation, such as 
identifying contaminating reads for removal before genome assembly, calculating 
coverage, or determining the position of bacterial artificial chromosome clones within 
chromosomes [13,14].  
 
Environmental surveys of the New York City (NYC) subway system microbiome and 
airborne microbes found that metagenomic analysis tools unable to find a match to any 
reference genome for about half of input reads to any reference genome, demonstrating 
the complexity of the data and limitations of current methods and databases [15,16]. 
Environmental studies also highlight the importance of reliable species identification 
when determining pathogenicity. All analysis tools used in the initial NYC subway study 
detected matches to sequences or markers associated with human pathogens in multiple 
samples, although subsequent analyses by the original investigators, as well as others, 
showed there was greater evidence for related, but non-pathogenic, organisms [17–19]. 
The problem of false positives in metagenomics has been recognized and reported 
[20,21]. Strategies including filtering and combining classifiers have been proposed to 
correct the problem but a thorough comparison of these strategies has not been done. 
Recent publications have focused on detecting and identifying harmful or rare 
microorganisms [19,21,22]. However, when studying common non-pathogenic microbes, 
investigators routinely rely on the accuracy of increasingly rapid analyses from 
metagenomic classifiers [22].  
 
Efforts to standardize protocols for metagenomics, including sample collection, nucleic 
acid extraction, library preparation, sequencing, and computational analysis are 
underway, including large-scale efforts like the Microbiome Quality Control (MBQC) 
[23], the Genome Reference Consortium (GRC), the International Metagenomics and 
Microbiome Standards Alliance (IMMSA) [24], the Critical Assessment of 
Metagenomics Interpretation (CAMI), and others [2,23,25–27]. Comparisons of 
available bioinformatics tools have only recently been published [20,12,27–29]. For 
example, Lindgreen, et al. (2016) evaluated a set of fourteen metagenomics tools, using 
six datasets comprising more than 400 genera, with the analysis limited to phylum and 
genus. A similar study done by Peabody et al. (2015) evaluated algorithms to the species 
level but included only two data sets representing eleven species, without taking into 
account the evolution of the taxonomy of those species [30]. Meanwhile, the number of 
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published tools for the identification of microorganisms continues to increase. At least 
eighty tools are currently available [27], although some are no longer maintained. 
Publications describing new methods tend to include comparisons to only a small subset 
of existing tools, ensuring an enduring challenge of determining which tools should be 
considered “state-of-the-art” for metagenomics analysis.   
 
To address the challenge, we curated and created a set of fourteen laboratory-generated 
and twenty-one simulated metagenomic standards datasets, comprising 846 species, 
including read- and strain-level annotations for a subset of datasets and sequences for a 
new, commercially available DNA standard that includes bacteria and fungi (Zymo 
BioOMICs). We further tested tool agreement using a deeply-sequenced (>100M reads) 
environmental sample, and developed new ensemble “voting” methods for improved 
classification. These data provide an online resource for extant tools and are freely 
available (http://ftp-private.ncbi.nlm.nih.gov/nist-immsa/IMMSA/) for others to use for 
benchmarking future tools or new versions of current tools. 
 
Results 
We compared the characteristics and parameters of a comprehensive set of eleven 
metagenomic tools [13,32–43] (Table 1) representing a variety of classification 
approaches (k-mer composition, alignment, marker). We also present a comprehensive 
evaluation of their performance, using both simulated and biological datasets, across a 
wide range of GC content, complexity, and species similarity characteristics 
(Supplementary Table 1).  
 
Genus, Species, and Subspecies Level Comparisons 
From the platypus [21] to Yersinia pestis [16], false positives can plague metagenomic 
analyses. To evaluate the extent of the problem with respect to specific tools, we 
calculated precision and recall based on detection of the presence or absence of a given 
genus, species, or subspecies, first if detected at any abundance. We calculated precision, 
recall, area under the precision-recall curve (AUPR), and F1 score for each tool across all 
35 datasets for all 846 species. When compared by mean AUPR (mAUPR), all tools 
performed best at the genus level (45.1% ≤ mAUPR ≤ 86.6%, Figure 1a), with small 
decreases in performance at the species level (40.1% ≤ mAUPR ≤ 84.1%, Figure 1b). 
Calls at the subspecies (strain) level showed a more marked decrease on all measures for 
the subset of datasets that included complete strain information (17.3% ≤ mAUPR ≤ 
62.5%, Figure 1c). For k-mer-based tools, adding an abundance threshold improved 
precision and increased the F1 score, which is more affected than AUPR by false 
positives detected at low abundance, bringing them to the same range as marker-based 
tools, which tended to be more precise (Figure 1d-e). 
 
Performance Across Datasets 
Grouping datasets into simulated reads and biological samples revealed that precision is 
notably lower for biological samples that are titrated and then sequenced  
(Supplementary Figure 1). We initially hypothesized that tools would attain lower 
precision with biological data because (1) they detect true contaminants, (2) they detect 
close variants of the reference strain, or (3) simulated data does not fully capture errors, 
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GC content range, and read distribution biases present in biological data. However, 
whether data was simulated had no significant effect on the number of false positives 
detected (Figure 2, with the exception of MetaFlow, which showed a significant trend 
only with outliers, Supplementary Figure 2a). The decrease in precision could instead 
occur because the biological samples contained fewer species on average, but tools 
detected similar numbers of false positives (no significant relationship was found 
between the number of taxa in a sample and false positives for most tools). False 
positives for almost all k-mer-based methods tended to increase with more reads (e.g., 
Supplementary Figure 2b), confirming the relationship between depth and total number 
of misclassified reads. Interestingly, the same relationship does not exist for most marker- 
and alignment-based read callers, suggesting any additional reads that are miscalled are 
miscalled as the same species as read depth increases. BLAST-MEGAN and PhyloSift 
without or with laxer filters were exceptions, but filtering was sufficient to avoid the 
trend. On further examination, the significant relationship between number of taxa and 
read length and false positive counts for MetaPhlAn and GOTTCHA appeared weak for 
MetaPhlAn and entirely due to outliers for GOTTCHA (Supplementary Figure 2c-f), 
indicating such misclassification can be very dataset-specific. 
 
The mAUPR for each sample illustrates wide variation among datasets (Supplementary 
Tables 1 and 2, Supplementary Figure 3). Difficulty in identifying taxa was not directly 
proportional to number of species in the sample, as evidenced by the fact that biological 
samples containing ten species and simulated datasets containing 25 species with log-
normal distributions of abundance were among the most challenging (lowest mAUPR). 
Indeed, some datasets had a rapid decline in precision for almost all tools (e.g. LC5), 
which illustrates the challenge of calling species with low depth coverage and the 
potential for improvement using combined or ensemble methods. 
 
Ensemble Approaches to Determine Number and Identity of Species Present 
To gauge the benefits of combining multiple tools for accuracy and measuring the actual 
number of species present in a sample, a series of tests was used. First, a combination of 
five lower-precision tools (CLARK, LMAT, PhyloSift, Kraken, and NBC) showed the 
overlap between species in the truth sets. These combined results showed that the most 
abundant species identified by the tools was relatively high for subset sizes close to the 
actual number of species (Figure 3a). Overlap in the number of species identified by all 
five tools #	#$%&'%#	'(%)*'+'%(	,-	.//	*00/#

#	#$%&'%#	1)(%2	&03$.2'#'0)
 was evaluated by sorting species according to 

abundance and varying the number of results included in the comparison (Figure 3b). 
For most samples, discrepancies in results between tools were higher and inconsistent 
below the known number of species because of differences in abundance estimates. 
Discrepancies also increased steadily as evaluation size exceeded the actual number of 
species to encompass more false positives. Thus, these data show that the rightmost peak 
in percent overlap in even lower-precision tools approximates the known, true number of 
species (Figure 3c). However, the number of species identified by high-precision tools 
provides a comparable estimate of species diversity and number, with GOTTCHA and 
filtered results for BLAST-MEGAN and Diamond-MEGAN still outperforming the 
combined-tool strategy (Figure 3d).  
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Additional pairwise combinations of tools also show general improvements in taxonomic 
classification, with the overlap between pairs of tools almost always increasing precision 
compared to results from individual tools (Figure 4a). At the species level, combining 
filtered BLAST-MEGAN and Diamond-MEGAN, NBC, or GOTTCHA, and GOTTCHA 
or Diamond-MEGAN increased mean precision to over 95%, while thirty other 
combinations increased precision to over 90%. However, depending on the choice of 
tools, improvement in precision was incremental at best. For example, combining two k-
mer-based methods (e.g., CLARK-S and NBC, with mean precision 26.5%) did not 
improve precision to the level of most of the marker-based tools. Increases in precision 
were offset by decreases in recall, notably when tools with small databases such as NBC 
were added (Figure 4b). Overall, this shows that leveraging tools with different 
heuristics is beneficial for precision. 
 
We next designed a community predictor that combines abundance rankings across all 
tools (see Methods, Scripts). Consensus ranking offered improvement over individual 
tools in terms of mAUPR, which gives an idea of the accuracy of abundance rankings 
(Supplementary Table 2). Unlike pairing tools, this approach can also compensate for 
variations in database completeness among tools for samples of unknown composition, 
since detection at high abundance by only a subset of tools was sufficient for inclusion in 
the filtered results of the community predictor. However, by including every species 
called by any tool, precision inevitably falls.  
 
As alternatives, we designed two “majority vote” ensemble classifiers using the top tools 
by F1 score either including BLAST (the slowest tool) or not. At the genus-level (Figure 
4c), the majority vote BlastEnsemble had the best F1 score due to limited loss in 
precision with improved recall. However, we show that little performance is sacrificed 
using only BLAST-MEGAN or the overlap of BLAST-MEGAN and LMAT.  If one does 
not want to run BLAST for speed reasons, the majority vote DiamondEnsemble is a 
competitive alternative, improving the F1 score over Diamond-MEGAN or GOTTCHA 
alone. At the species-level (Figure 4d), the Blast Ensemble and Diamond Ensemble 
ranked highest, showing that BLAST can be avoided while maintaining comparable 
performance. Finally, pairing tools could occasionally lead to worse performance; for 
example, GOTTCHA combined with CLARK gave lower F1 score than just GOTTCHA 
(Figure 4d). 
 
Classifier Performance by Taxa  
We next sought to discern the consistently hardest species to detect within and across the 
tools; the performance of each classifier by taxa are provided in the supplementary 
material. The most difficult taxa to identify at each taxonomic level (averaged over all 
classifiers) are Archaea (Superkingdom), Acidobacteria (phylum), Acidobacteriia (class), 
Acidobacteriales (order), Crocosphaera (genus), and Acinetobacter sp. NCTC 10304/	
Corynebacterium pseudogenitalium/Propionibacterium sp. 434-HC2 (species).  Common 
taxa such as Proteobacteria/ Firmicutes/ Actinobacteria (phylum) and 
Lactobacillus/Staphylococcus/Streptococcus (species) were frequent false positives. 
Classifiers show bias towards these taxa likely because they are better represented in 
databases than others. In terms of false negatives, it is interesting to note that genera that 
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include highly similar species, such as Bacillus, Bifidobacterium, and Shigella were 
commonly miscalled. 
 
Negative Controls 
Of the methods tested, seven did not include the human genome in their default database. 
For those that did, human DNA was identified as the most abundant species in the 
biological negative controls, sequenced using a human reference material (NA12878) 
spiked into a MoBio PowerSoil extraction kit (Table 2). Most of the tools identified 
additional non-human species, between a mean of 4.67 for GOTTCHA and 1,360 for 
CLARK-S. MetaFlow and BLAST-MEGAN (default filter) provided the only results that 
did not identify additional species. Notably, not all additional species are necessarily false 
positives; previous studies (e.g., [44]) detected biological contaminants in sequencing 
data.  
 
Using pairs of tools with mean precision greater than 95% (n = 17) on the test datasets at 
the genus level, we found Acinetobacter and Escherichia were genera of putative 
sequencing and/or reagent contaminants. Previous studies have also detected 
contamination with both [44]. High-precision pairs at the species level (n = 6) reported 
only Escherichia coli.  
 
We next tested a set of three million simulated negative control sequences that do exist in 
any known species (see Methods, Table 2). Most tools did not identify any species in 
these synthetic control sequences, although PhyloSift, NBC, and LMAT identified false 
positives at low probability scores (PhyloSift) or abundances (NBC and LMAT). The 
identification of Sorangium cellulosum as the most abundant species in all three datasets 
indicates size bias among NBC’s false positives. The S. cellulosum genome is particularly 
large for bacteria at 13M base pairs [45]. Further top ranking species from NBC were 
consistent despite smaller genomes than other organisms in the database, most likely 
because there are more reference sequences available at the subspecies level for these 
common microbes (29 E. coli, and 9 B. cereus in the NBC database). LMAT consistently 
identified human as the most abundant species in all three datasets without any other 
overlap between the datasets, suggesting a bias towards the host reference genome. 
PhyloSift results were variable, with no species consistently reported in all three datasets.  
 
Detection of Pathogenic False Positives 
We next applied similar methods of combining tool predictions in an attempt to rule out 
false positives in two datasets in which Ba cillus anthracis had previously been reported  
by BLAST, MetaPhlAn, and SURPI [16]. Interestingly, all eleven tested tools also 
detected the pathogenic taxa Bacillus anthracis or Bacillus cereus biovar anthracis in at 
least one of the datasets without filtering, although the number of reads and relative 
abundance were low for most tools (Supplementary Table 3). Moreover, the tools still 
reported the organisms after applying tool-suggested filters. Even taking pairs of tools 
with high precision for known samples showed that two of six such pairs still reported 
anthrax, while still more reported either B. anthracis or B. cereus biovar anthracis, 
further underscoring the need for caution even when many tools identify pathogenic 
organisms in a sample. Inference based on plasmids and specific genetic markers can 
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more accurately separate harmless from pathogenic strains, even within the monophyletic 
species of the genus Bacillus. To address this challenge, we have released a new tool that 
can accurately discriminate harmless from pathogenic strains of Bacillus using plasmid 
and specific gene markers [19]. 
 
Relative Abundance  
After defining the parameters for species detection and counting, we calculated the 
accuracy of relative abundance predictions (Figure 5a-b) for titrated and simulated 
samples. Almost all tools could predict the percentage of a species in a sample within a 
few percentage points, yet with higher variance of the predicted value at low abundance. 
GOTTCHA was an exception, performing poorly with log-normally distributed samples 
(Figure 5a, c) despite success with more evenly distributed samples (Figure 5b). 
Although GOTTCHA showed promise in relative abundance estimation on first 
publication [29], our results are consistent with those from Lindgreen, et al. (2016) at 
higher levels of classification (phylum and genus). While the log-modulus examines a 
fold-change, the L1 distance shows the distance between relative abundance vectors by 
dataset 𝑦' − 𝑥')

'78 , where y is the expected profile and x observed profile (Figure 
5d) [46]. Many tools showed greater variation between datasets, as measured by the L1 
distance for simulated datasets, especially BLAST and Diamond. The ensemble methods 
performed the best on the simulated data but had more variation than NBC, MetaPhlAn, 
and CLARK. On the biological samples, DiamondEnsemble was competitive but again 
had greater deviation than CLARK and tended to underestimate the relative abundance 
while CLARK tended to overestimate.   
 
Limits of Detection and Depth of Sequencing 
To quantify the amount of input sequence required for detection, recall was calculated as 
a function of sequencing depth for each input organism, using the Huttenhower HC/LC 
datasets (Figure 6a). Each bin represents 17-69 input organisms, for a total of 197 
organisms in the analysis. In general, k-mer-based methods (CLARK, Kraken, and 
LMAT) produced the highest recall, while other methods required higher sequencing 
depth to achieve equivalent recall. 
 
Yet, depth of sequencing can significantly change the results of a metagenomic study, 
depending on the tool used. Using a deeply-sequenced, complex environmental sample 
from the Gowanus Canal (100M reads), we subsampled the full dataset (to 5, 10, 15, 20, 
30, 40, and 50M reads) to identify the depth at which each tool recovered its maximum 
number of predicted species (Figure 6b). Reinforcing our analysis of limits of detection, 
marker-based tools identified far more species as depth of sequencing increased, an effect 
slightly attenuated by filtering (Figure 6c). Among k-mer-based tools, LMAT showed 
the largest increase, while Kraken, CLARK, and CLARK-S showed more gradual 
increases. Filtering Kraken results decreased the absolute number of species identified 
but increased the slope of the trend. As investigators consider depth of sequencing in 
their studies, they should keep in mind that results will change, depending on the tool 
selected and method of filtering. Based on these results, standardizing sequencing depth 
is extraordinarily important to compare multiple samples within studies or from similar 
studies.	
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Nanopore Reads 
Short, highly accurate reads are the primary focus of most analysis tools but newer, long-
read sequencing methods can offer a lower cost, more portable alternative for 
metagenomics studies [44]. We tested the tools using two titrated MGRG mixtures (five 
and eleven species, respectively) sequenced using one of the first available versions (R6) 
and a newer update (R9) of the MinION from Oxford Nanopore Technologies 
(Supplementary Figure 4). “2D” consensus-called reads from the initial release of the 
MinION attained around 80% alignment accuracy, increasing to around 95% since then. 
Most k-mer- and alignment-based tools identified all component species of the mixture at 
some level of abundance, although also reported false positives among the top five 
results. CLARK and Diamond-MEGAN performed as well with lower quality data, while 
other tools were not as robust. Classification of reads with an average quality score of 
>Q9 improved results for LMAT. Marker-based methods did not perform well, likely in 
part because the datasets were small and failed to cover the expected markers.  
 
Read-level Analysis 
Finally, we used the output from eight tools that delineate results for each individual read 
to measure precision and recall for species identification at the read-by-read level, where 
precision = #	2%.(#	&/.##'+'%(	&022%&*/-

#	2%.(#	&/.##'+'%(
 and recall = #	2%.(#	&/.##'+'%(	&022%&*/-

#	2%.(#	
 with 

classification to species or subspecies (Table 3). Both measures were high for all tools, 
although low recall was observed for some of the datasets, depending on whether the 
species in the dataset were also in a tool’s database. The low recall of some tools can also 
be explained by the low proportion of classified reads after filtering (e.g., Diamond-
MEGAN and NBC). BLAST-MEGAN offered the highest precision, while CLARK-S 
most frequently provided highest recall. An ensemble approach was constructed by 
assigning each read to the most frequently called taxa among the different tools. Setting 
the quorum to one improved recall by 0.43% on average compared with results of best 
tool for each dataset, while maintaining precision comparable to the most precise tool for 
each dataset.  
 
Run-time and Memory 
Speed and memory requirements are often critical factors in the analysis of large-scale 
datasets. We benchmarked all tools on the same computational cluster, using sixteen 
threads to measure relative speed and memory consumption (Figure 7). Among the least 
memory intensive were MetaPhlAn, GOTTCHA, and PhyloSift. However, PhyloSift was 
slow compared to MetaPhlAn, GOTTCHA, MetaFlow, CLARK, and Kraken. BLAST 
and NBC were the slowest tools, taking multiple weeks to run for larger datasets. Taken 
together with precision, recall, and database size, these speed constraints can help guide 
the optimal selection of specific tools (Figure 7c). 
 
Discussion 
Recent studies of microbiomes have used a variety of molecular sequencing methods 
(16S, 18S, ITS, shotgun) to generate data. Many rely on a single classifier, or compare 
the results of a few classifiers, but classifier type and filter use differ among studies 
[16,47–51]. To enable greater comparability among metagenome studies, continuous 
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benchmarking on titrated and varied datasets is needed to ensure the accuracy of these 
tools. 
 
Unlike almost all prior comparisons, our analyses focused on species and strain 
identification, since species is a taxonomic rank more relevant in clinical diagnostics or 
pathogen identification than genus or phylum. Although clinical diagnosis and 
epidemiological tracking often require identification of strains, databases remain poorly-
populated below the level of species [52]. Classification to strain requires algorithms that 
can differentiate genomes and their plasmids with high similarity, as we have shown for 
Bacillus [26], which is particularly challenging when using short reads. Most of the test 
datasets included in this study lacked complete information at the strain level, so we were 
able to calculate precision and recall for only a subset of datasets (n=12). These results 
clearly indicate that specialized approaches are still needed. For example, PanPhlAn [53] 
and MetaPhlAn2 strainer are recent tools designed by the authors of MetaPhlAn for 
epidemiological strain detection, although they focus on relationships between strains in a 
sample for a given species, rather than strain identification of all species in a sample. 
ConStrains [54] instead uses single nucleotide polymorphism profiling and requires 
higher depth of coverage than available for the samples used in this study. 
  
Every database ideally should provide a complete set of all known taxa against which to 
compare. In reality, most species lack reference genomes, with contigs or full genomes 
for only around 300,000 microbial species of a recent estimate of up to 1 trillion extant 
species globally [55]. Large databases also demand greater computational resources, 
another reason that tools classify samples using limited sets of reference genomes. 
However, incomplete databases result in more unclassified reads, or incorrect 
identification of reads as related species. For this study, tools were compared using their 
default or recommended databases, where possible. Thus, our analyses penalize tools if 
their databases are missing genera or species in the truth set for a sample. We considered 
this a fair comparison since database size can affect the results of metagenomic analyses 
significantly (as we demonstrate with the limited NBC database) and certain tools were 
trained on, or provide, a single database.  
 
By considering tools in their entirety, this study does not directly address differences 
between databases, but in the absence of any other guide for specific problems, users of 
these tools usually choose the default database for a given tool. Differences between 
tools’ default databases are shown in Table 1. For example, for full metagenomic 
profiling across all kingdoms of life, BLAST and Diamond offer the most extensive 
databases for eukaryotes, although databases can be constructed for tools like Kraken or 
CLARK to include greater kingdom diversity. One issue we note is that results for web-
based tools that frequently update their databases (e.g., BLAST) vary over time, and may 
not be reproducible between analyses. The high percentage of unidentifiable reads, or 
“microbial dark matter”, in many studies [15,16] underscores the limitations of databases 
currently available, as well the use for de novo assembly of reads to help with the 
uncharacterized microorganisms from the field.  
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Long read technologies, such as the MinION nanopore or PacBio sequencers, can be 
helpful in de novo assembly [56,57] and avoiding ambiguous mapping of reads from 
conserved regions. The results suggest that even relatively low-quality reads (below an 
average base quality of 9) can be used for taxonomic classification, with improvements as 
dataset size and quality increased. Most k-mer-based methods performed well with longer 
reads, while marker-based tools did not.  
 
Conclusions/Best Practices 
These data and results provide useful metrics, data sets (positive and negative controls), 
and best practices for other investigators to use, including well-characterized, titrated 
reference datasets now routinely sequenced by dozens of laboratories. Using the 
simulated datasets, read-level accuracy can be calculated and aid in determining the role 
of read ambiguity in taxonomic identification. Our data showed that read-level precision 
was much higher than organism-level precision for some tools, including Kraken, 
CLARK, and NBC. By varying the filtering threshold for identification and comparing 
F1 scores to AUPR, we showed that the discrepancy occurs because these tools detect 
many taxa at relatively low read counts.   
 
To determine which taxa are actually present in a sample, users can filter their results to 
increase precision and exercise caution in reporting detection of low abundance species, 
which can be problematic to call. For example, an analysis of environmental samples 
collected in the Boston subway system filtered out organisms present at less than 0.1% of 
total abundance and in fewer than two samples [58]. Yet, depending on tool selection, 
this filter would have been insufficient to reject Bacillus anthracis in the NYC subway 
study, despite the absence pathogenic plasmids that distinguish it from closely-related 
species [26]. Therefore, filters must be considered in the context of a given study along 
with orthogonal information like plasmids, genome coverage, markers’ genetic variants, 
presence of related species, and epidemiology. Filters should be used with consideration 
for study design and read depth, as well as the classification tool used. However, 
discarding all taxa at low abundance risks rejecting species that are actually present. For 
instance, highly complex microbial communities found in the adult human gut and in soil 
contain species numbering in the hundreds and tens of thousands, respectively [59,60]. 
Assuming even abundance and depth of coverage, any one species would be represented 
by less than 0.1% of reads. In a real community of variable species abundance, many 
species would compose an even smaller percentage [49].  
 
There are several options to address the ongoing problem of thresholds and low 
abundance species.  First, precision-recall curves using known samples (such as those 
used in this study) can help define the appropriate filtering threshold for a given tool. 
Second, combining predictions from several tools offers an alternative means to improve 
species detection, and multiple ensemble approaches were explored in this study. Finally, 
targeted methods can confirm the presence of rare taxa or specific pathogens. As citizen 
science expands with cheaper and more accessible sequencing technologies [61,62], it is 
important that classifier results are not oversold. 
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Although many approaches are possible, here we explored ensemble methods without 
taking into account the differences in performance of their component tools to avoid 
overfitting weighted schemes. Trained predictors merit further research, including 
variations on that recently proposed by Metwally et al. (2016). Any ensemble method 
requires combining outputs of various tools, a challenge that would benefit by the 
adoption of standardized file formats. The Critical Assessment of Metagenomic 
Interpretation challenge proposed one such unifying format [26]. Inclusion of NCBI 
taxonomy IDs in addition to taxa names, which are more variable and difficult to track 
across database updates, would greatly simplify comparisons.  
 
With significant variation in the performances of the tools demonstrated in this study, 
continual benchmarking using the latest sequencing methods and chemistries is critical. 
Tool parameters, databases, and test dataset features all affect the measures used for the 
comparisons. Benchmarking studies need to be computationally reproducible and 
transparent, and use readily available samples and methods. We showed here that 
filtering and combining tools decreases false positives, but that a range of issues still 
affect the classification of environmental samples, including depth of sequencing, sample 
complexity, and sequencing contamination. Additional benchmarking is necessary for 
analyses such as antibiotic resistance marker identification and functional classification 
as metagenomics moves towards answering fundamental questions beyond species 
composition of samples. Metrics of tool performance can inform the implementation of 
tools across metagenomics research studies, citizen science, and “precision 
metagenomics” in clinical care.   
 
Methods  
Data selection  
A wide range of datasets was selected to answer a variety of questions. Published datasets 
with known species compositions (“truth sets”, see Supplementary Table 1) were 
chosen to measure precision and recall. Additional datasets with known abundances, 
including a subset with even (HC datasets) and log normal (LC datasets) distributions of 
species, facilitated analysis of abundance predictions and limits of detection. The MGRG 
libraries sequenced using Illumina and the MinION nanopore sequencer contain 
equimolar concentrations of DNA from five organisms.  
 
We used two sets of negative controls: biological controls to test for contamination 
during sample preparation, and a simulated set of reads that did not map to any known 
organisms to test for spurious predictions. The biological control was made by spiking 
human NA12878 samples into a MoBio PowerSoil kit and then extracting and 
sequencing the DNA in triplicate. The three simulated negative control datasets we use 
include 100 base pair reads constructed from 17-mers that do not map to any genomes in 
the full NCBI/RefSeq database [36].  
 
Lack of agreement in read classification among the tools, which can arise from 
discrepancies in the databases, classification algorithms, and underlying read ambiguity, 
was investigated. Notably, 100-base pair reads are short enough that some will map to 
several distinct organisms (e.g., from the same genus) within a given error rate. To 
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facilitate a comparison between tools based solely on the database of the tool and internal 
sequence analysis algorithm, datasets of reads that map unambiguously to a single 
species within the NCBI/RefSeq database were used [36]. These six published datasets 
were created using the ART simulator with default error and quality base profiles [63] to 
simulate 100 bp Illumina reads from sets of reference sequences at a coverage of 30X as 
previously described [36]. Each of these unambiguous datasets (“Buc12”, “CParMed48”, 
“Gut20”, “Hou31”, “Hou21” and “Soi50”) represents a distinct microbial habitat based 
on studies that characterized real metagenomes found in the human body (mouth, gut, 
etc.) and in the natural or built environment (city parks/medians, houses, and soil), while 
a seventh dataset “simBA-525” comprised 525 randomly selected species. An extra 
unambiguous dataset “NYCSM20” was created to represent the organisms of the New 
York City subway system as described in the study of Afshinnekoo et al. (2015), using 
the same methodology as in [36]. Together, these eight unambiguous datasets contain a 
total of 657 species. 
 
In the survey of the New York City subway metagenome Afshinnekoo et al., noted that 
two samples (P00134 and P00497) showed reads that mapped to Bacillus anthracis using 
MetaPhlAn2, SURPI, and MegaBLAST-MEGAN. We used the same datasets to test for 
the detection of a pathogenic false positive using the wider array of tools included in this 
study.  
 
Tool Commands  
 
CLARK series  
We ran CLARK and CLARK-S. CLARK is up to two orders of magnitude faster than 
CLARK-S but the latter is capable of assigning more reads with higher accuracy at the 
phylum/genus-level [64] and species-level [36]. Both were run using databases built from 
the NCBI/RefSeq bacterial, archaeal, and viral genomes.  
CLARK was run on a single node using the following commands: 
$ ./set_target.sh <DIR> bacteria viruses (to set the databases at the species level) 
$ ./classify_metagenome.sh -O <file>.fasta -R <result> (to run the classification on the 
file named <file>.fasta given the database defined earlier) 
$ ./estimate_abundance -D <DIR> -F result.csv > result.report.txt (to get the abundance 
estimation report) 
CLARK-S was run on 16 nodes using the following commands:  
$ ./set_target.sh <DIR> bacteria viruses 
$ ./buildSpacedDB.sh (to build the database of spaced 31-mers, using 3 different seeds) 
$ ./classify_metagenome.sh -O <file> -R <result>  -n 16 --spaced 
$ ./estimate_abundance -D <DIR> -F result.csv -c 0.75 -g 0.08  > result.report.txt 
For CLARK-S, distribution plots of assignments per confidence or gamma score show an 
inconsistent peak localized around low values likely due to sequencing errors or noise, 
which suggests 1-3% of assignments are random or lack sufficient evidence. The final 
abundance report was therefore filtered for confidence scores greater or equal to 0.75 ("-c 
0.75") and gamma scores greater or equal to 0.08 ("-g 0.08").  
We note that we used parameters to generate classifications to the level of species for all 
analyses, although classifying only to genus could improve results at that level.  
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Speed measurements were extracted from the log.out files produced for each run. 
 
GOTTCHA  
Since GOTTCHA does not accept input in fasta format, fasta files for simulated datasets 
were converted to fastqs by setting all base quality scores to the maximum.  
The v20150825 bacterial databases 
(GOTTCHA_BACTERIA_c4937_k24_u30_xHUMAN3x.strain.tar.gz for the strain-level 
analyses and GOTTCHA_BACTERIA_c4937_k24_u30_xHUMAN3x.species.tar.gz for 
all others) were then downloaded and unpacked and GOTTCHA run using the command: 
$ gottcha.pl --threads 16 --outdir $TMPDIR/ --input $TMPDIR/$DATASET.fastq --
database $DATABASE_LOCATION 
As for CLARK and CLARK-S, using the genus databases for classifications to genus 
could improve results at that level (although we observed only small differences in our 
comparisons to use of the species databases for a few datasets).  
 
Kraken 
Genomes were downloaded and a database built using the following commands:  
$ kraken-build --download-taxonomy --db KrakenDB 
$ kraken-build --download-library bacteria --db KrakenDB 
$ kraken-build --build --db KrakenDB --threads 30 
$ clean_db.sh KrakenDB 
The database was then loaded into RAM: 
$ sudo sync; echo 3 > /proc/sys/vm/drop_caches  # clear memory buffer 
$ sudo mkdir /ramdisk 
$ sudo mount -t ramfs none /ramdisk 
$ sudo chmod a+rwx /ramdisk 
$ cp -A KrakenDB /ramdisk 
Finally, Kraken was run on fasta and fastq input files using 30 nodes and a RAMDisk 
$ time kraken --db /ramdisk/KrakenDB --threads 30 --fast[a/q]-input  [input file] > 
[unfiltered output] 
Results were filtered using a threshold of 0.2, which had been shown to provide a 
precision of ~99.1 and sensitivity ~72.8 ().  
$ time kraken-filter --db /ramdisk/KrakenDB --threshold 0.2 [unfiltered output] > 
[filtered output] 
Both filtered and unfiltered reports were generated using  
$ kraken-report --db /ramdisk/KrakenDB  [filtered/unfiltered output] >  [report] 
 
LMAT 
We used the larger of the available databases, lmat-4-14.20mer.db, with the command 
$ run_rl.sh --db_file=/dimmap/lmat-4-14.20mer.db --query_file=$file --threads=96 --
odir=$dir --overwrite 
 
MEGAN 

• BLAST 
We downloaded the NCBI BLAST executable (v2.2.28) and NT database (nucleotide) 
from ftp://ftp.ncbi.nlm.nih.gov/blast/. We searched for each unpaired read in the NT 
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database using the Megablast mode of operation and an e-value threshold of 1e-20. The 
following command appended taxonomy columns to the standard tabular output format: 
    $ blastn –query <sample>.fasta -task megablast -db NT -evalue 1e-20 \ 
     -outfmt '6 std staxids scomnames sscinames sskingdoms'" \ 
     > <sample>.blast 
We downloaded and ran MEGAN (v5.10.6) from http://ab.inf.uni-
tuebingen.de/software/megan5/. We ran MEGAN in non-interactive (command line) 
mode as follows: 
$ MEGAN/tools/blast2lca --format BlastTAB –topPercent 10 \ 
     --input <sample>.blast --output <sample>_read_assignments.txt 
This MEGAN command returns the lowest common ancestor (LCA) taxon in the NCBI 
Taxonomy for each read. The topPercent option (default value 10) discards any hit with a 
bitscore less than ten percent of the best hit for that read. 
We used a custom Ruby script (provided), summarize_megan_taxonomy_file.rb, to sum 
the per-read assignments into cumulative sums for each taxon. The script enforced the 
MEGAN parameter, Min Support Percent = 0.1, which requires that at least this many 
reads (as a percent of the total reads with hits) be assigned to a taxon for it to be reported. 
Taxa with fewer reads are assigned to the parent in the hierarchy. Output files were given 
the suffix “BlastMeganFiltered” to indicate that an abundance threshold (also called a 
filter in this manuscript) was applied. We produced a second set of output files using 0.01 
as the minimum percentage and named with the suffix “BlastMeganFilteredLiberal.” 	

• DIAMOND 
DIAMOND (v0.7.9.58) was run using the nr database downloaded on 2015-11-20 from 
NCBI (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/). We tried both normal and --sensitive 
mode, with very similar results and present the results for the normal mode. The 
command to execute DIAMOND with input file sample_name.fasta is as follows, and 
generates an output file named sample_name.daa 
diamond blastx -d /path/to/NCBI_nr/nr -q sample_name.fasta -a sample_name  -p 16 
 
MEGAN (v5.10.6) (obtained as described above) was used for read-level taxonomic 
classification in non-interactive mode: 
megan/tools/blast2lca --input sample_name.daa --format BlastTAB --topPercent 10 --
gi2taxa megan/GI_Tax_mapping/gi_taxid-March2015X.bin  --output 
sample_name.read_assignments.txt 
 
A custom Ruby script (provided in supplement and described above) was used to sum the 
per-read assignments into cumulative sums for each taxon.  
 
MetaFlow  
MetaFlow is an alignment-based program using BLAST for fasta files produced by 
Illumina or 454 pyrosequencing (all fastqs for this study were converted to fastas to run 
MetaFlow). Any biological sample that was not sequenced with one of these technologies 
was not run or analyzed by MetaFlow. We ran MetaFlow using the recommended 
parameters as described in the available tutorial 
(https://github.com/alexandrutomescu/metaflow/blob/master/TUTORIAL.md). We first 
installed the default microbial database from NBCI/RefSeq and built the associated 
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BLAST database. Using the provided script “Create_Blast_DB.py”, the genomes are 
downloaded and stored in the directory “NCBI” in the working directory and the BLAST 
database is created with the command: .  
$ makeblastdb -in NCBI_DB/BLAST_DB.fasta -out NCBI_DB/BLAST_DB.fasta -
dbtype nucl 
Classification of each sample (<sample>.fasta) then proceeded through the following 
steps: 
1) BLAST alignment 
$ blastn -query <sampleID>.fasta -out <sampleID>.blast -outfmt 6 -db 
NCBI_DB/BLAST_DB.fasta -num_threads 10 
We converted the sample file into FASTA file if the sample file was in FASTQ format 
and used the default settings to align the reads with BLAST.  
2) LGF file construction 
$ python BLAST_TO_LGF.py <sampleID>.blast NCBI_DB/NCBI_Ref_Genome.txt 
<avg_length> <seq_type> 
The graph-based representation from the BLAST alignments is built into a LGF (Lemon 
Graph Format) file. This operation takes as input the average length (<avg_length>) of 
the reads and the sequencing machine (<seq_type>, 0 for Illumina and 1 for 454 
pyrosequencing).  
3) MetaFlow 
$ ./metaflow -m <sampleID>.blast.lgf -g NCBI_DB/NCBI_Ref_Genome.txt -c 
metaflow.config 
The MetaFlow program is finally run using as input the LGF file (from the previous 
step), the database metadata (i.e., genome length) and a configuration file. We used the 
default settings for the configuration but lowered the minimum threshold for abundance 
to increase the number of detected organisms from 0.3 to 0.001). The program outputs all 
the detected organisms with their related abundance and relative abundance. 
  
MetaPhlAn2 
MetaPhlAn2 was run using suggested command under “Basic usage” with the provided 
database (v20) and the latest version of bowtie2 (bowtie2-2.2.6): 
$ metaphlan2.py metagenome.fasta --mpa_pkl ${mpa_dir}/db_v20/mpa_v20_m200.pkl -
-bowtie2db ${mpa_dir}/db_v20/mpa_v20_m200 --input_type fasta > 
profiled_metagenome.txt 
 
NBC 
All datasets were analyzed through the web interface using the original bacterial 
databases [42], but not the fungal/viral or other databases [65].  
Results were further filtered for the read-level analysis because every read is classified by 
default, using a threshold=-23.7*Read_length+490 (suggested by 
http://nbc.ece.drexel.edu/FAQ.php).  
 
PhyloSift 
PhyloSift was run using 
$ phylosift all [--paired] <fasta or fastq>.gz  
Results were filtered for assignments with > 90% confidence.  
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Analysis 
 
Taxonomy IDs 
For those tools that do not provide taxonomy IDs, taxa names were converted using the 
best matches to NCBI names before comparison of results to other tools and truth sets. A 
conversion table is provided in the supplementary materials (Supplementary File 2).  
 
Precision-recall  
Precision was calculated as #	#$%&'%#	'(%)*'+'%(	&022%&*/-

#	#$%&'%#	'(%)*'+'%(
 and recall as 

#	#$%&'%#	'(%)*'+'%(	&022%&*/-
#	#$%&'%#	')	*9%	*21*9	#%*

. We calculated precision-recall curves by successively filtering 
out results based on abundances to increase precision and recalculating recall at each 
step, defining true and false positives in terms of the binary detection of species. The area 
under the precision recall curve (AUPR) was calculated using the lower trapezoid method 
[66]. For subspecies, classification at varying levels complicated the analysis (e.g., 
Salmonella enterica subsp. enterica, Salmonella enterica subsp. enterica serovar 
Typhimurium, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2). We 
accorded partial credit if higher levels of subspecies classification were correct but the 
lowest were not by expanding the truth sets to include all intermediate nodes below 
species.   
 
Negative binomial model 
Negative binomial regression was used to estimate the contributions of dataset features to 
the number of false postives called by each tool. Using all forty datasets, false positive 
rate was modeled as false positives ~ ß0+ß1(X1)+ß2(X2)+ß3(X3)+ß4(X4), where 
X=[number of reads, number of taxa, read length, and a binary variable indicating 
whether a dataset is simulated]. T-statistics and associated p-values were calculated for 
each variable.  
 
Abundance 
Abundances were compared to truth set values for simulated and laboratory-sequenced 
data. Separate truth sets were prepared for comparison to tools that do and do not provide 
relative abundances by scaling expected relative abundances by genome size and ploidy 
(expected read proportion = (expected relative abundance)/(genome length*ploidy)), or 
comparing directly to read proportions. The genome size and ploidy information were 
obtained from the manual for the BioPoolTM Microbial Community DNA Standard, while 
the read proportions for the HC and LC samples were calculated using species 
information from the fasta file headers. The log-modulus was calculated as y' = 
sign(y)*log10(1+|y|)  to preserve the sign of the difference between estimated and 
expected abundance, y.  
  
Community/ensemble predictors 
Ensemble predictors were designed to incorporate the results from multiple tools using 
either summaries of identified taxa and/or their relative abundances, or read-level 
classifications.  
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Summary-based  
Community: 
When multiple tools agree on inferred taxa, it increases confidence in the result. 
Conversely, when multiple tools disagree on inferred taxa, it diminishes 
confidence in the result. To study this intuition quantitatively, we formulated a 
simple algorithm for combining the outputs from multiple tools into a single 
"community" output. For each tool, we first we ranked the taxa from largest to 
smallest relative abundance, such that the most abundant taxon is rank 1 and the 
least abundant taxon is rank n. Next, we weighted taxa by 1/rank, such that the 
most abundant taxon has a weight 1, and the least abundant taxon has weight 1/n. 
Finally, we summed the weights for each taxon across the tools to give the total 
community weight for each taxon. For example, if E. coli were ranked 2 in five of 
five tools, the total weight of E. coli would be 5/2. Variations on this method of 
combining multiple ranked lists into a single list have been shown to effectively 
mitigate the uncertainty about which tool(s) are the most accurate on a particular 
data set [67,68]. 
Quorum: 
As an alternative approach, we tested various combinations of three to five 
classifiers to predict taxa present based on the majority vote of the ensemble 
(known as majority-vote ensemble classifiers in machine learning literature). In 
the end, tools with the highest precision/recall (BlastMEGAN_Filtered, Gottcha, 
DiamondMEGAN_Filtered, Metaphlan, Kraken_Filtered, and LMAT) were 
combined to yield the best majority vote combinations.  We limited the ensembles 
to a maximum of five classifiers, reasoning that any performance gains with more 
classifiers would not be worth the added computational time. Two majority vote 
combinations were chosen: a) BlastEnsemble, a majority vote classifier that relies 
on one of the BLAST-based configurations, with a taxa being called if 2 or more 
of the classifiers call it out of the calls from BlastMEGAN (filtered), GOTTCHA, 
LMAT, and MetaPhlAn, and b) DiamondEnsemble, a majority vote classifier that 
does not rely on BLAST, with three or more of Diamond-MEGAN, GOTTCHA, 
Kraken (filtered), LMAT, and MetaPhlAn calling a taxa.  The second was 
designed to perform well but avoid BLAST-MEGAN, the tool with the highest F1 
score but also the highest computational requirements.  
 
In order to get the final relative abundance value, we tried various methods, 
including taking the mean or median of the ensemble.  We settled on a method 
that prioritizes the classifiers based on the log-modulus variance of the relative 
abundance on the simulated data.  Therefore, in the BlastEnsemble, the BLAST-
MEGAN relative abundance values were taken for all taxa that were called by 
BLAST-MEGAN and the ensemble, then LMAT values were taken for taxa 
called by LMAT and the ensemble but not BLAST, then MetaPhlAn abundance 
values were taken for taxa called by the BlastEnsemble but not BLAST or LMAT, 
and finally GOTTCHA relative abundance values were used for any taxa that 
were called by the Blast-Ensemble but not BLAST-MEGAN, LMAT, or 
MetaPhlAn.  This method was also apply to the DiamondEnsemble, with Kraken 
(filtered) prioritized, followed by LMAT, MetaPhlAn, Diamond, and GOTTCHA.  
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Any taxa called by any of the classifiers that were members of the ensemble but 
were not called by the ensemble, were set to 0.  To compensate for any 
probability mass loss, the final relative abundance values (numerator) were 
divided by the sum of the relative abundance after the taxa that did not have 
majority vote were “zeroed-out” (denominator).   
 

Read-based 
For each read r of a given dataset, this predictor considers the classification 
results given by all the tools and classifies r using the majority vote and a 
“quorum” value (set in input). If all the tools agree on the assignment of r, say 
organism o, then the predictor classifies r to o and move to the next read, 
otherwise, the predictor identifies the organism o’ of the highest vote count v and 
classifies r to o’ if v is higher than a quorum value set by the user (ties are broken 
arbitrarily).  
The details of the algorithm are provided in below. Parameters are the results of 
the tools (i.e., a list of pairs containing the read identifiers and the associated 
organism predicted), a quorum value (e.g., 1, 2, ... 7). Note that we have set the 
predictor to ignore cases in which only one tool provides a prediction. 

 
Algorithm of the read-based ensemble predictor: 
Input: N lists of pairs (read_id, taxonomy_id) {T1, T2,…, TN}, a quorum Q 
Output: A list of pairs (read_id, taxonomy_id) 
For each read_id r do 
      Collect all taxonomy_id {s1,s2,…,sN} of r from T1, T2, …, TN and store them in the list 
L 
      If L contains the same value s Then 
                  If |L| > 1 Then 
                              Output  r, s 
                  Else 
                              Output r, “NA” 
                  End If 
      Else    // A disagreement is detected, a “board meeting” with quorum is requested: 
                  If L contains less than Q elements Then 
                             Output r, “NA” 
                              Continue to the next read 
                  End if 
                  Determine s’ the value in L of highest occurrence (break ties arbitrarily) 
                  If the occurrence of s’ is higher than |L|/2 Then 
                              Output  r, s’ 
                  End if 
      End if 
End for 
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List of figures & tables + legends 

1. Table 1. Comparison of tools by classification strategies and associated 
databases. 

2. Figure 1. The F1-score, precision, recall, and area under the precision-recall 
curve (where tools are sorted by decreasing mean F1-score) across datasets with 
available truth sets for taxonomic classifications at the a) genus (35 datasets), b) 
species (35 datasets), and c) subspecies (12 datasets) levels. d) The F1 score 
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changes depending on relative abundance thresholding, as shown for two datasets. 
The upper bound in red marks the optimal abundance threshold to maximize F1 
score, adjusted for each dataset and tool. The lower bound in black indicates the 
F1 score for the output without any threshold. Results are sorted by the distance 
between upper and lower bounds.   

3. Figure 2. Number of false positives called by different tools as a function of 
dataset features. The t-statistic for each feature is reported after fitting a negative 
binomial model, with p-value > 0.05 within the dashed lines and significant 
results beyond.  

4. Figure 3. Combining results from imprecise tools can predict the true number of 
species in a dataset. a) UpSet plots of the top-X (by abundance) species uniquely 
found by a classifier or group of classifiers (grouped by black dots at bottom, 
unique overlap sizes in the bar charts above). The eval_RAIphy dataset is 
presented as an example, with comparison sizes X=25 and X=50. The percent 
overlap, calculated as the number of species overlapping between all tools, 
divided by the number of species in the comparison, increases around the number 
of species in the sample (50 in this case). b) The percent overlaps for all datasets 
show a similar trend. c) The rightmost peak in b approximates the number of 
species in a sample, with a root mean square error of 8.9 on the test datasets. d) 
Precise tools can offer comparable or better estimates of species count. Root mean 
square error = 3.2, 3.8, 3.9, 12.2, 32.9 for Kraken filtered, BlastMegan filtered, 
GOTTCHA, DiamondMegan filtered, and MetaPhlAn2, respectively. 

5. Figure 4. The a) precision and b) recall for intersections of pairs of tools at the 
species level, sorted by decreasing mean precision. A comparison between multi-
tool strategies and combinations at the (c) genus and (d) species levels. The top 
unique (non-overlapping) pairs of tools by F1 score from (a-b) are benchmarked 
against the top single tools at the species level by F1 score, ensemble classifiers 
that take the consensus of four or five tools (see Methods), and a community 
predictor that incorporates the results from all eleven tools in the analysis to 
improve AUPR.        

6. Figure 5. The relative abundances of species detected by tools compared to their 
known abundances for a) simulated datasets and b) a biological dataset, sorted by 
median log-modulus difference (difference' = 
sign(difference)*log(1+|difference|)). Most differences between observed and 
expected abundances fell between 0 and 10, with a few exceptions (see inset for 
scale). c) The deviation between observed and expected abundance by expected 
percent relative abundance for two high variance tools on the simulated data. 
While most tools, like Diamond-MEGAN, did not show a pattern in errors, 
GOTTCHA overestimated low-abundance species and underestimated high-
abundance species in the log-normally distributed data. d) The L1 distances 
between observed and expected abundances show the consistency of different 
tools across simulated datasets.  

7. Figure 6. a) Recall at varying levels of genome coverage on the HC and LC 
datasets (using the least filtered sets of results for each tool). b) Downsampling a 
highly sequenced environmental sample shows depth of sequencing significantly 
affects results for specific tools, expressed as a percentage of the maximum 
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number of species detected. Depending on strategy, filters can decrease the 
changes with depth. c) The maximum number of species detected by each tool at 
any depth.  

8. Table 2. Negative control results on biological samples with human DNA spiked 
in and simulated data constructed from nullomers (17-mers that do not map to any 
reference).  

9. Table 3. Read-level analysis on twenty-one datasets for seven read-by-read 
classifiers: CLARK, CLARK-S (filtered), Kraken (filtered), LMAT (filtered), 
BLAST-MEGAN (filtered), Diamond-MEGAN (filtered), and NBC (filtered), as 
well as the ensemble classifiers (or meta-classifiers) that aim either to maximize 
precision or recall. Column 1 indicates the dataset name, column 2 shows the 
metric (either precision or recall), columns 3 to 9 provide the precision and recall 
for each dataset for all seven classifiers, column 10 and 11 record the precision 
and recall of the meta-classifier with the quorum value (in parentheses) that 
allows the highest precision or recall, respectively. Because shorter reads can 
ambiguously map to multiple species, optimal recall is 100 only for the 
unambiguously mapping datasets in which all reads should be mapped with high 
certainty to species.  

10. Figure 7. (a) Time and (b) maximum memory consumption running the tools on 
a subset of data using sixteen threads (except for PhyloSift, which failed to run 
using more than one thread). BLAST and PhyloSift were too slow to completely 
classify the larger datasets, therefore subsamples were taken and time multiplied. 
(c) A decision tree summary of recommendations based on the results of this 
analysis.  
 

11. Supplementary Figure 1. The F1-score, precision, recall, and area under the 
precision-recall curve for taxonomic classifications at the species level for a) 24 
simulated datasets and b) 15 biological datasets, where tools are sorted by mean 
F1-score value.  

12. Supplementary Figure 2. a) Higher false positive rates for MetaFlow decrease 
for only a subset of simulated datasets. b) False positive rates for CLARK and 
other k-mer-based classifiers increase as the number of reads in a sample 
increases. c-d) MetaPhlAn shows significant but noisy relationships between the 
number of taxa in a sample and read length and the number of false positives it 
calls. e-f) Similar relationships for GOTTCHA are more likely spurious.  

13. Supplementary Figure 3. Precision-recall curves for tools on individual samples.  
14. Supplementary Figure 4. (a) Results from older nanopore data from 2015 for a 

5-species mixture. (b) Results from an updated version of the technology with 
higher throughput and accuracy for an 11-species mixture. Kmer- and alignment-
based classifiers attain high accuracy on nanopore data, even with noisy and 
lower quality (“Fail”, average per base quality score < 9) reads, while marker-
based strategies are less effective, although this could in part be an issue of 
coverage. Higher coverage in (b) allows MetaPhlAn and GOTTCHA to correctly 
identify one or two species. Tools are sorted by the percent of predictions correct 
by abundance on the 2D pass samples.  
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15. Supplementary Table 1. Features of datasets included in the analysis. Mean 
AUPR across tools provides an indication of the difficulty of a dataset.  

16. Supplementary Table 2. Precision and recall at the species level for tool, listed 
by dataset

17. Supplementary Table 3. Mean and median AUPR for the community predictor 
vs. other tools.   

18. Supplementary Table 4. The read counts and relative abundances for Bacillus 
anthracis identified by various tools after the whole genome sequencing of two 
samples from the New York City subway system.  
 

19. Supplementary File 1. Tool accuracy per taxon. Each file is categorized by 
taxonomic level. Inside each file, the first sheet shows the accuracy, the second 
sheet details the number of false positives, and the third sheet details the number 
of false negatives, of each classifier for each taxon in each taxonomic level.  The 
three ensemble classifiers -- Community, Blast Ensemble, Diamond Ensemble -- 
are in included in this analysis for comparison.   

20. Supplementary File 2. Name to taxonomy ID conversion tables for tools that do 
not report taxonomy IDs.  
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Algorithm: BLAST-MEGAN CLARK/-S
Diamond-
MEGAN GOTTCHA Kraken LMAT MetaFlow MetaPhlAn2 NBC PhyloSift

Year	of	release 2015 2015 2014 2015 2014 2015 2016 2014 2010 2014

Version	number
MEGAN:	
v5.10.6

v1.2.2-beta
v0.7.9.58,	
MEGAN:	
v5.10.6

v1.0b,	db	
v20150825

v0.10.5-beta,	
"standard	

db"	
v1.2.6 v0.9.2 v2.0.0 Webserver v1.0.1

Classification	heuristic Alignment Kmer Alignment Marker Kmer Kmer
Alignment	
(coverage)

Marker Kmer Marker

species 269899 1335 269899 1335 1381 5754 1313 3848 650 2685

%	in	db 99.87% 98.58% 99.87% 97.94% 97.30% 97.68% 94.08% 99.10% 59.97% 99.61%

taxa 280062 2488 280062 2498 2513 20265 1321 12926 960 9776

species 6707 123 6707 140 143 333 143 228 62 134

%	in	db 100% 92.31% 100% 100% 100% 100% 96.92% 100% 56.92% 100%

taxa 6878 144 6878 168 272 401 143 300 72 187

species 10750 4289 10750 4323* 4243 4348 777 3449 * 15

taxa 106851 4381 106851 4420* 4420 14525 5 3522 2080* 18

species 87132 0 87132 0 0 337 0 73 49242* 220

%	in	db 100% 0% 100% 0% 0% 100% 0% 100% 0% 100%

taxa 88375 0 88375 0 0 513 0 74 49242* 2042

species 357291 1* 357291 0 1* 1643 0 38 0 1921

taxa 464911 1* 464911 0 1* 1677 0 38 0 13212

Includes	human Yes
No	(human	
database	
available)

Yes No
No	(human	
database	
available)

Yes No No No Yes

Facilitates	custom	databases	 Yes Yes Yes Yes Yes Yes Yes Yes

Webserver	-	
No/	

Standalone	-	
Yes

Yes	

Strain-Level	 Yes No Yes Yes Yes Yes No Yes Yes No

AMR	&	virulence	markers No No No No No Yes No No No No

Input fasta,	fastq
fastq,	fasta,	

txt
fasta,	fastq fastq fasta,fastq fastq,fastq fasta

fastq,	fasta,	
sam

fasta,	fastq fastq,	fasta

Output daa,	sam,	csv csv daa,	sam,	csv sam,tsv txt tsv csv txt,	biom txt txt

Paired-end	 No Yes No No Yes Yes Yes* Yes No Yes

Read-level	classification Yes Yes Yes No Yes Yes No No Yes No

Multi-thread No Yes Yes Yes Yes Yes
	BLAST	-	yes,	
MEGAN	-	no

Yes

Webserver	-	
Yes	/	

Standalone	-	
No

Yes

Visualization Yes
Krona	plots,	
histograms

Yes Krona	plots
Krona	plots	

via	
MetAMOS

No No
Heatmaps,	
Krona	plots,	
GraPhlAn

No
Phylogenetic	
trees,	Krona	

plots

Web	interface No No No No
Yes,	

optionally
No No

Yes,	
optionally

Yes,	
optionally

No

License
Free	for	
academic	

GPL
Free	for	
academic	

GPL GPL GPL GPL MIT GPL GPL

Tutorial
ab.inf.uni-

tuebingen.de/s
oftware/megan

clark.cs.ucr.edu
github.com/bb
uchfink/diamo

nd

lanl-
bioinformatics.
github.io/GOTT

CHA

ccb.jhu.edu/sof
tware/kraken/
MANUAL.html

sourceforge.ne
t/p/lmat/wiki/E
xample%20LM
AT%20Run/

github.com/ale
xandrutomescu

/metaflow

bitbucket.org/n
segata/metaphl
an/wiki/MetaP
hlAn_Pipelines

_Tutorial

nbc.ece.drexel.
edu/tutorial.ph

p

phylosift.wordpre
ss.com/tutorials/r

unning-
phylosift/illumina-

tutorial/

*readily	available,	but	unused	for	this	analysis

U
sa
ge

Pa
ra
m
et
er
s

Fungi	(3	in	evaluation)

Other	eukaryotes

Ba
ck
gr
ou

nd

Archaea	(65	in	evaluation)

D
at
ab
as
e	
Si
ze

Table	1:	Algorithm	Types	and	Parameters	of	Usage	and	Reporting

Bacteria	(777	in	evaluation)

Viruses	(1	in	evaluation)
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Table	2:	Taxa	Detected	in	Negative	Controls

Algorithm:
BlastMegan	
filtered	
liberal

BlastMegan	
filtered

CLARK CLARK-S
Diamond	
Megan	
filtered

GOTTCHA Kraken
Kraken	
filtered

LMAT MetaPhlAn MetaFlow NBC** PhyloSift*
PhyloSift	
filtered*

Biological	Negative	controls
mean	%	human 0.999 1 0 0 0.41 0 0 0 0.997 0 0 	0.283* 0.323*
mean	#	non-human	species	 2.67 0 1178.33 1360 32.67 4.67 1242.33 314.33 898 6.33 0 12381 1063
#	species	in	all	3	samples 2 0 877 1024 32 2 948 177 390 3 0 7779 707
Shannon's	diversity	index 0.91 1 4.6 3.93 3.03 1.38 4.72 2.09 1.05 0.58 0 6.1 5

Simulated	negative	controls
#	species	in	each	dataset	(LM,	MH1,	MH2) 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 20,25,19 0,0,0 0,0,0 678,678,678 19,54,28 14,27,19
#	species	in	all	3	datasets	(incl.	human) 0 0 0 0 0 0 0 0 1 0 0 678 0 0
Shannon's	diversity	index 0 0 0 0 0 0 0 0 2.79 0 0 6.18 2.32 2.67

*PhyloSift	measures	by	score,	not	abundance
**NBC	was	not	run	on	the	biological	samples	due	to	file	size	constraints

6/21/20176/21/2017
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Dataset Metric CLARK CLARK-S Kraken LMAT BlastMegan DiamondMegan NBC Meta-Classifier 
(Precision) 

Meta-Classifier 
(Recall) 

HC1 
Precision 99.73 97.79 99.93 99.70 99.98 97.94 94.83 99.41 (6) 98.27 (1) 

Recall 85.10 90.30 74.16 74.57 77.38 23.92 62.42 88.91 (6) 89.49 (1) 

HC2 
Precision 99.69 96.57 99.77 99.62 99.97 97.61 93.43 99.63 (6) 97.02 (1) 

Recall 83.05 88.07 69.78 72.34 76.49 24.74 59.95 86.98 (6) 87.46 (1) 

LC1 
Precision 95.42 94.23 94.36 95.84 95.39 97.55 94.75 99.93 (7) 98.93 (1) 

Recall 85.89 91.05 74.57 79.90 78.25 27.91 69.88 85.44 (7) 85.78 (1) 

LC2 
Precision 99.90 99.76 99.97 99.83 99.99 98.74 99.58 99.96 (5) 99.77 (1) 

Recall 92.70 98.16 81.57 90.48 86.50 27.03 69.81 96.99 (5) 97.13 (1) 

LC3 
Precision 99.81 99.48 99.96 99.52 99.93 97.62 99.53 99.94 (7) 99.45 (1) 

Recall 92.02 96.81 80.62 62.82 85.66 23.73 74.72 95.53 (7) 95.67 (1) 

 LC4 
Precision 99.89 99.74 99.98 99.87 99.99 99.58 99.29 99.62 (5) 99.73 (1) 

Recall 92.56 98.28 81.44 88.17 87.08 35.99 78.86 96.68 (5) 96.83 (1) 

LC5 
Precision 96.72 93.73 87.15 95.54 90.41 98.31 91.96 98.18 (7) 94.48 (1) 

Recall 66.11 70.22 66.47 71.58 70.70 26.85 47.99 77.06 (7) 77.47 (1) 

LC6 
Precision 99.87 99.04 99.97 99.76 99.98 98.78 96.68 99.94 (6) 99.09 (1) 

Recall 88.98 94.67 78.38 84.33 82.57 29.61 63.00 93.36 (6) 93.55 (1) 

LC7 
Precision 99.93 98.07 99.93 99.78 99.98 98.79 99.36 99.96 (5) 98.22 (1) 

Recall 90.57 96.15 80.09 92.16 85.34 38.81 70.20 95.04 (5) 95.13 (1) 

LC8 
Precision 99.73 98.77 99.94 99.77 99.98 98.79 97.52 99.84 (6) 99.12 (1) 

Recall 84.19 89.40 78.17 83.67 83.12 25.23 68.52 93.46 (6) 93.66 (1) 

simHC 
Precision 97.68 97.78 99.69 99.38 97.29 98.72 98.54 99.64 (7) 98.61 (1) 

Recall 92.54 90.81 87.91 74.83 50.16 88.99 89.96 92.27 (7) 92.58 (1) 

simMC 
Precision 98.77 98.85 99.81 99.61 98.30 99.30 99.46 99.81 (7) 99.23 (1) 

Recall 95.89 95.06 93.00 86.02 56.50 94.10 93.02 95.69 (7) 95.77 (1) 

simLC 
Precision 98.61 98.62 99.79 99.61 98.24 99.20 99.43 99.74 (7) 99.10 (1) 

Recall 95.36 94.45 92.42 84.63 56.18 93.34 93.06 95.21 (7) 95.32 (1) 

Buc12 
Precision 95.26 93.03 98.04 98.82 95.86 98.06 98.27 98.68 (7) 95.62 (1) 

Recall 72.82 75.50 67.48 80.31 69.80 24.31 57.17 78.54 (7) 78.90 (1) 

CParMed48 
Precision 99.51 99.66 99.91 99.60 99.80 99.16 98.54 99.84 (5) 99.62 (1) 

Recall 93.91 95.11 91.73 84.79 91.59 42.98 49.62 94.58 (5) 94.67 (1) 

Gut20 
Precision 98.92 98.74 99.66 99.72 99.35 98.96 99.12 99.74 (7) 99.03 (1) 

Recall 84.60 85.97 81.30 75.17 76.04 33.92 77.49 90.11 (7) 90.37 (1) 

Hous31 
Precision 97.36 97.16 98.72 99.99 97.55 98.50 97.88 98.56 (7) 98.00 (1) 

Recall 87.45 88.14 85.63 84.46 84.66 27.88 56.05 89.73 (7) 89.89 (1) 

Hous21 
Precision 99.19 99.33 99.84 96.55 99.40 98.97 99.32 99.61 (6) 99.03 (1) 

Recall 86.88 89.07 84.38 74.36 85.36 36.64 49.99 88.78 (6) 88.98 (1) 

NYCSM20 
Precision 99.23 99.07 99.71 99.92 99.60 97.68 98.82 99.78 (6) 99.35 (1) 

Recall 85.33 85.35 80.11 68.28 69.19 24.04 59.53 90.02 (6) 90.30 (1) 

Soi50 
Precision 99.51 99.47 99.89 99.65 99.72 99.05 98.53 99.83 (7) 99.78 (1) 

Recall 92.86 93.61 89.28 85.62 90.58 44.26 48.74 93.71 (7) 93.76 (1) 

simBA525 
Precision 98.69 98.47 99.32 99.63 98.92 98.23 94.34 99.60 (7) 99.00 (1) 

Recall 88.63 89.10 85.30 65.62 78.18 41.63 40.30 90.93 (1) 91.32 (1) 
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