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Abstract 19 

Elevated prefrontal cortex activity is often observed in healthy older adults despite declines 20 

in their memory and other cognitive functions. According to one view, this activity reflects a 21 

compensatory functional posterior-to-anterior shift, which contributes to maintenance of 22 

cognitive performance when posterior cortical function is impaired. Alternatively, the 23 

increased prefrontal activity may be less specific, reflecting reduced dedifferentiation or 24 

reduced efficiency of neuronal responses due to structural and neurochemical changes 25 

accompanying aging. These accounts are difficult to distinguish on the basis of average 26 

activity levels within brain regions. Instead, we used a novel model-based multivariate 27 

analysis technique, applied to functional magnetic resonance imaging data from an adult-28 

lifespan human sample (N=123; 66 female). Standard analysis replicated the age-related 29 

increase in average prefrontal activation during memory encoding, but multivariate tests 30 

revealed that this activity did not carry additional information. Indeed, direct tests of the 31 

relative contributions of anterior and posterior regions to memory indicated reduced reliance 32 

on prefrontal cortex with increasing age. The results contradict the posterior-to-anterior shift 33 

hypothesis, suggesting reduced specificity rather than compensation. 34 

Significance statement   35 

Functional brain imaging studies have often shown increased activity in prefrontal brain 36 

regions in older adults. This has been proposed to reflect a compensatory shift to greater 37 

reliance on prefrontal cortex, helping to maintain cognitive function. Alternatively, activity 38 

may become less specific as people age. This is a key question in the neuroscience of 39 

aging. In this study, we used novel tests of how different brain regions contribute to memory 40 

for events. We found increased activity in prefrontal cortex in older adults, but this activity 41 

carried less information about memory outcomes than activity in visual regions. These 42 

findings are relevant for understanding why cognitive abilities decline with age, suggesting 43 

that optimal function depends on successful brain maintenance rather than compensation. 44 

 45 

 46 

 47 
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Introduction 49 

It is well established that healthy aging is associated with a decline in cognitive processes 50 

like memory, but mechanistic explanation of this decline is impeded by difficulties in 51 

interpreting the underlying brain changes. Functional magnetic resonance imaging (fMRI) of 52 

such cognitive processes shows striking increases, as well as decreases, in brain activity of 53 

older relative to younger adults. One leading theory – the Posterior-to-Anterior Shift in Aging 54 

(PASA) – states that compensatory recruitment of anterior regions like prefrontal cortex 55 

(PFC) contribute to maintenance of cognitive performance when posterior cortical function is 56 

impaired (Davis et al., 2008; Park and Reuter-Lorenz, 2009; Grady, 2012). Alternatively, 57 

age-related increases in PFC activity may reflect reduced specificity of neuronal responses, 58 

reflecting primary age-related changes within PFC (Park et al., 2004; Nyberg et al., 2012). It 59 

is difficult to adjudicate between these theories based on average activity levels within brain 60 

regions (Morcom and Johnson, 2015). We used a novel multivariate approach to directly test 61 

predictions of the PASA theory. 62 

With multivariate methods that examine distributed patterns of brain activity over many 63 

voxels, one can ask whether increased anterior activity provides additional information, 64 

beyond that carried by posterior cortical regions. Such complementary information would 65 

support theories like PASA that attribute additional PFC recruitment to compensatory 66 

mechanisms. We used a model-based decoding approach called multivariate Bayes (MVB) 67 

(Friston et al., 2008; Morcom and Friston, 2012; Chadwick et al., 2014), which estimates the 68 

patterns of activity that best predict a target cognitive outcome. Importantly, MVB allows 69 

formal comparison of models comprising different brain regions, such as PFC, posterior 70 

cortex, or their combination. 71 

In this study, we applied MVB to fMRI data from a memory encoding paradigm in a 72 

population-derived, adult-lifespan sample (N=123, 19-88 years; Shafto et al. 2014). 73 

Participants were scanned while encoding new memories of unique pairings of objects and 74 

background scenes, and the target cognitive outcome was whether or not these associations 75 

were subsequently remembered (Fig 1). A previous behavioral study in an independent 76 

sample showed a strong decline in such associative memory across the adult lifespan 77 

(Henson et al., 2016). We defined two regions-of-interest (ROIs): posterior visual cortex 78 

(PVC), comprising lateral occipital and fusiform cortex, and PFC, comprising ventrolateral, 79 

dorsolateral, superior and anterior regions (Fig 2a). These ROIs were based on previous 80 

fMRI studies of memory encoding, and those cited in the context of the PASA theory (Davis 81 

et al., 2008; Maillet and Rajah, 2014).  82 
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 83 

Figure 1. Associative encoding task. In the scanned Study phase, participants were asked to make 84 

up a story that linked each object with its background scene (120 trials total). On each trial, the scene 85 

was presented for 2 sec, then the object superimposed for 7.5 sec, finally the screen was blanked for 86 

0.5 sec before the next trial. At Test (out of the scanner), each object was presented again, and after 87 

a measure of priming, item memory and background valence memory, participants were asked to 88 

verbally describe the scene with which it was paired at Study. The latter verbal recall was scored as 89 

correct or incorrect, which was then used to classify the trials at Study into “remembered” and 90 

“forgotten” (see text for details). 91 

 92 

Materials and Methods 93 

Participants  94 

A healthy, population-derived adult lifespan human sample (N=123; 19-88 years; 66 female)  95 

was collected as part of the Cam-CAN study(Shafto et al., 2014). Participants were fluent 96 

English speakers in good physical and mental health. Exclusion criteria included a low Mini 97 

Mental State Examination (MMSE) score (<=24), serious current medical or psychiatric 98 

problems, or poor hearing or vision, as well as standard MRI safety criteria. Two participants 99 

were excluded from the current analysis as subsequent memory could not successfully be 100 

decoded from either region of interest (see Multivariate Bayesian decoding). Two further 101 

participants were excluded because of statistical outlier values in the analysis of univariate 102 

subsequent memory effects (see Statistics for criteria). The experiment used a within-103 
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participant design, so all participants received all the task conditions. Therefore, 104 

randomization and blinding were not required. The study was approved by the 105 

Cambridgeshire 2 (now East of England—Cambridge Central) Research Ethics Committee. 106 

Participants gave informed written consent.  107 

Materials 108 

Stimuli were 160 pictures of everyday emotionally-neutral objects taken from(Smith et al., 109 

2004). For the study phase, objects were presented within a square yellow background on 110 

one of 120 scenes from the IAPS emotional pictures database(Lang et al., 1997). Scenes 111 

were grouped into 40 per valence (positive, neutral, negative), selected based on a pilot 112 

study, with the same randomized trial order for each valence condition for all participants. To 113 

control for stimulus effects, the 160 objects were divided randomly into 4 sets, and the 114 

allocation of object sets to scene valence rotated across participants in 4 different 115 

counterbalances (see (Henson et al., 2016) for further details).  116 

Behavioral procedure 117 

The behavioural paradigm is summarized in Figure 1. The scanned study phase comprised 118 

120 trials, presented in two 10 min blocks separated by a short break. On each study trial, a 119 

background scene was first presented for 2 sec, and an object then superimposed for 7.5 120 

sec, slightly above center and either to the left or right. Participants were asked to create a 121 

story that linked the object to the scene, to press a button when they had made the story, 122 

and to continue to elaborate it until the scene and object disappeared. A blank screen of 0.5 123 

sec was then presented prior to the next trial. Participants were informed that the task would 124 

include some pleasant and unpleasant scenes. They were not told that their memory would 125 

be tested later. A practice session of 6 study trials was given just beforehand. 126 

The test phase took place outside the scanner, following a short break of approximately 10 127 

min involving refreshment and conversation with the experimenter. The 120 objects from the 128 

study phase were presented again, randomly intermixed with 40 new objects, and divided 129 

into 4 blocks lasting approximately 20 min each. The first stage of each test involved a 130 

priming measure: the masked version of the object was presented in the center of the 131 

screen, and participants were asked to identify it, making a keypress response and at the 132 

same time either naming the object aloud or saying “don’t know”. Next, item memory was 133 

tested by removing the pixel-noise and asking participants to judge whether the object had 134 

appeared in the study phase and to indicate their level of confidence in this judgement by 135 

pressing one of four keys: “sure new”, “think new”, “think studied”, “sure studied”. They were 136 

told that about one quarter of objects were new. Associative memory was then tested for all 137 
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items judged “studied” (“think” or “sure”), by asking participants to state aloud the type of 138 

background the object had been studied with (positive, neutral, or negative, or “don’t know”).  139 

Lastly, and relevant to the present study, participants were asked to verbally describe the 140 

scene that had been paired with the test object at study. Trials at study in which scenes that 141 

were correctly recalled at test, in terms of detail or gist, were scored as “remembered”, 142 

whereas study trials for which the scenes could not be recalled, or for which an incorrect 143 

scenes was described instead, or for which the object was not recognised, were scored as 144 

“forgotten”. Split by age tertile, the mean numbers of trials (SD) for Remembered and 145 

Forgotten trials were 55 (25) and 65 (25) for young adults (19-45 years; n=38), 44 (24) and 146 

76 (24) for middle aged adults (46-64 years; n=43), and 23 (15) and 97 (15) for older adults 147 

(65-88 years; n=42). 148 

As expected, regression against age showed that the number of remembered trials 149 

decreased with age (linear t(120)=-8.06, P<.001; with no significant quadratic component, 150 

t(120)=-0.50, P=.62)); two-tailed tests.  151 

Imaging data acquisition and preprocessing 152 

The MRI data were collected using a Siemens 3 T TIM TRIO system (Siemens, Erlangen, 153 

Germany). MR data preprocessing and univariate analysis used the SPM12 software 154 

(Wellcome Department of Imaging Neuroscience, London, UK, www.fil.ion.ucl.ac.uk/spm), 155 

release 4537, implemented in the AA 4.0 pipeline 156 

(https://github.com/rhodricusack/automaticanalysis). 157 

The functional images were acquired using T2*-weighted data from a Gradient-Echo Echo-158 

Planar Imaging (EPI) sequence. A total of 320 volumes were acquired in each of the 2 Study 159 

sessions, each containing 32 axial slices (acquired in descending order), slice thickness of 160 

3.7 mm with an interslice gap of 20% (for whole brain coverage including cerebellum; TR 161 

=1970 milliseconds; TE =30 milliseconds; flip angle =78 degrees; FOV =192 mm × 192 mm; 162 

voxel-size =3 mm × 3 mm × 4.44 mm). A structural image was also acquired with a T1-163 

weighted 3D Magnetization Prepared RApid Gradient Echo (MPRAGE) sequence (repetition 164 

time (TR) 2250ms, echo time (TE) 2.98 ms, inversion time (TI) 900 ms, 190 Hz per pixel; flip 165 

angle 9 deg; field of view (FOV) 256 x 240 x 192 mm; GRAPPA acceleration factor 2). 166 

The structural images were rigid-body registered with an MNI template brain, bias-corrected, 167 

segmented and warped to match a gray-matter template created from the whole CamCAN 168 

Stage 3 sample (N=272) using DARTEL (Ashburner, 2007) (see Taylor et al., 2015) for more 169 

details). This template was subsequently affine-transformed to standard Montreal 170 

Neurological Institute (MNI) space. The functional images were then spatially realigned, 171 
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interpolated in time to correct for the different slice acquisition times, rigid-body coregistered 172 

to the structural image and then transformed to MNI space using the warps and affine 173 

transforms from the structural image, and resliced to 3x3x3mm voxels.  174 

Regions of interest (ROIs) 175 

ROIs were defined using WFU PickAtlas (http://fmri.wfubmc.edu/, version 3.0.5) with AAL 176 

and Talairach atlases (Lancaster et al., 2000; Tzourio-Mazoyer et al., 2002; Maldjian et al., 177 

2003). The posterior visual cortex (PVC) mask comprised bilateral lateral occipital cortex and 178 

fusiform cortex (from AAL, fusiform and middle occipital gyri), and the PFC mask comprised 179 

bilateral ventrolateral, dorsolateral, superior and anterior regions (from AAL, the inferior 180 

frontal gyrus, both pars triangularis and pars orbitalis; middle frontal gyrus, lateral part; 181 

superior frontal gyrus, medial part; and from Talairach, Brodmann Area 10, dilation factor = 182 

1). 183 

Univariate imaging analysis 184 

For each participant, a General Linear Model (GLM) was constructed, comprising three 185 

neural components per trial: 1) a delta function at onset of the background scene, 2) an 186 

epoch of 7.5 seconds which onset with the appearance of the object (2s after onset of 187 

scene) and offset when both object and scene disappeared, and 3) a delta function for each 188 

keypress. Each neural component was convolved with a canonical haemodynamic response 189 

function (HRF) to create a regressor in the GLM. The scene onset events were split into 190 

three types (i.e, three regressors) according to the valence of the scene on each trial, while 191 

the keypress events were modelled by the same regressor for all trials (together, these four 192 

regressors served to model trial-locked responses that were not of interest). The responses 193 

of interest were captured by the epoch neural component, during which participants were 194 

actively relating the scene and object (see Behavioral Procedure). This epoch component 195 

was split into 6 types (regressors) according to the three scene valences and the two types 196 

of subsequent memory. Six additional regressors representing the 3 rigid body translations 197 

and rotations estimated in the realignment stage were included to capture residual 198 

movement-related artifacts. Finally the data were scaled to a grand mean of 100 over all 199 

voxels and scans within a session. 200 

The GLM was fit to the data in each voxel. The autocorrelation of the error was estimated 201 

using an AR(1)-plus-white-noise model, together with a set of cosines that functioned to 202 

highpass the model and data to 1/128 Hz, fit using Restricted Maximum Likelihood (ReML). 203 

The estimated error autocorrelation was then used to “prewhiten” the model and data, and 204 

ordinary least squares used to estimate the model parameters. To compute subsequent 205 

memory effects, the parameter estimates for the 6 epoch components were averaged across 206 
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the two sessions and the three valences (weighted by number of trials per session/valence), 207 

and contrasted directly as remembered minus forgotten (Morcom et al., 2003; Maillet and 208 

Rajah, 2014). Univariate statistical analyses were conducted on the mean subsequent 209 

memory effect across all voxels in the MVB analysis, in each ROI for each participant (see 210 

next section).  211 

Multivariate Bayesian decoding 212 

A series of MVB decoding models were fit to assess the information about subsequent 213 

memory carried by individual ROIs or combinations of ROIs. MVB estimates the free energy, 214 

which provides an upper bound on the Bayesian log-evidence. The evidence for different 215 

models can then be compared, or the fitted model weights examined to assess their 216 

distribution over voxels and the contributions of different voxels. These analyses were 217 

implemented in SPM12 v6486 and custom MATLAB scripts.  218 

MVB maps many physiological data features (the predictor variables are formed from fMRI 219 

activity in multiple voxels) to a psychological target variable. Each MVB decoding model is 220 

based on the same design matrix of experimental variables used in the above univariate 221 

GLM. The target variable is specified as a contrast, in this case subsequent memory. 222 

Modelled confounds in the design (all covariates apart from those involved in the target 223 

contrast) are removed from both target and predictor variables. Each MVB model is fit using 224 

hierarchal parametric empirical Bayes, specifying empirical priors on the data features 225 

(voxel-wise activity) in terms of patterns over voxel features and the variances of the pattern 226 

weights. Since decoding models operating on multiple voxels (relative to scans) are ill-227 

posed, these priors on the patterns of voxel weights act as constraints in the second level of 228 

the hierarchical model. MVB also uses an overall sparsity (hyper) prior in pattern space 229 

which embodies the expectation that a few patterns make a substantial contribution to the 230 

decoding and most make a small contribution. The pattern weights specifying the mapping of 231 

data features to the target variable are optimised with a greedy search algorithm using a 232 

standard variational scheme (Friston et al., 2007). In this work we used a sparse spatial 233 

prior, in which each pattern is an individual voxel (Morcom and Friston, 2012; Chadwick et 234 

al., 2014; Hulme et al., 2014; Maass et al., 2014) (log evidence was substantially greater for 235 

sparse than spatially smooth priors in both ROIs: for 1-tailed t-tests comparing to population 236 

mean=3, in PVC, t=4.65, p<.001 and PFC, t=6.91, p<.001, n=119).  237 

Features (voxels) for MVB analysis were selected using an orthogonal contrast and a leave-238 

one-participant-out scheme. For each participant and ROI, these were the 1000 voxels with 239 

the strongest responses to the 6 epoch regressors in the above GLM (defined using an F 240 

contrast in all other participants testing variance explained by these regressors, regardless 241 
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of valence or subsequent memory). We then checked that subsequent memory could 242 

reliably be decoded from the selected features by contrasting the evidence for each model 243 

with the evidence for models in which the design matrix (and therefore the target variable) 244 

had been randomly phase-shuffled, taking the mean over 20 repetitions. This difference in 245 

log-evidence corresponds to the log (marginal) likelihood ratio or log Bayes factor for 246 

comparing the real and phase-shuffled models. Log evidence was robustly greater for real 247 

than shuffled models in both PVC (t=7.96, p<.0001, mean difference = 12.7, SE=1.60; two-248 

tailed, n=119) and PFC (t=10.5, p<.0001, mean difference = 18.7, SE=1.78; two-tailed, 249 

n=119).  250 

Unlike univariate activation measures such as subsequent memory effects, but like other 251 

pattern-information methods, MVB finds the best non-directional model of activity predicting 252 

the target variable, so positive and negative pattern weights are equally important. 253 

Therefore, the principle MVB measure of interest for each ROI was the spread (standard 254 

deviation) of the weights over voxels, reflecting the degree to which multiple voxels carried 255 

substantial information about subsequent memory. We also constructed two novel measures 256 

of the contribution of prefrontal cortex to subsequent memory. The first used Bayesian model 257 

comparison within participants to test whether a joint PVC-PFC model boosted prediction of 258 

subsequent memory relative to a PVC-only model. The PASA hypothesis, in which PFC is 259 

engaged to a greater degree in older age and this contributes to cognitive outcomes, 260 

predicts that a boost will be more often observed with increasing age. The initial dependent 261 

measure was the log model evidence, coded categorically for each participant to indicate the 262 

outcome of the model comparison. The 3 possible outcomes were: a boost to model 263 

evidence for PVC-PFC relative to PVC models, i.e., better prediction of subsequent memory 264 

(difference in log evidence > 3), equivalent evidence for the two models (-3 < difference in 265 

log evidence < 3), or a reduction in prediction of subsequent memory for PFC-PVC relative 266 

to PVC (difference in log evidence < -3). The second novel measure of PFC contribution to 267 

subsequent memory was the proportion of top-weighted voxels in the joint PVC-PFC model 268 

that were located in PFC, as opposed to PVC, derived from joint PVC-PFC models. In each 269 

participant, the voxels making the strongest contribution to subsequent memory, defined as 270 

those with absolute voxel weight values greater than 2 standard deviations from the mean, 271 

were divided according to their anterior versus posterior location. The dependent measure 272 

was the proportion of these top voxels located in PFC. 273 

Experimental design and statistical analysis 274 

Sample size was determined by the initial considerations of Stage 3 of the CamCAN study – 275 

see Shafto et al.(Shafto et al., 2014) for details. For this secondary data analysis study, a 276 

sensitivity analysis indicated that with N=123, we would have 80% power to detect a small to 277 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2017. ; https://doi.org/10.1101/156935doi: bioRxiv preprint 

https://doi.org/10.1101/156935
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

medium effect explaining 7.4% of the variance (r2=.074). In our previous report of aging and 278 

successful memory encoding, an a priori test of a between-region difference in subsequent 279 

memory effects according to age showed a large effect (r2=.257) (Morcom et al., 2003).  280 

Age effects on continuous multivariate or univariate dependent measures were tested using 281 

robust second-order polynomial regression with “rlm” in the package MASS for R (Venables 282 

et al., 2002); MASS version 7.3-45; R version 3.3.1) and standardized linear and quadratic 283 

age predictors. Analysis of outcomes of the between-region MVB model comparison (PVC 284 

and PFC combined versus PVC, see Fig 2 and main text) used ordinal regression with “polr” 285 

in MASS. Distributions were also trimmed to remove extreme outliers (> 5 SD above or 286 

below the mean). The two participants (aged 72 and 80) with outlier values for univariate 287 

effects were also removed from the MVB analyses so the samples examined were 288 

comparable. Finally, we excluded two further participants (aged 68 and 83) in whom 289 

subsequent memory could not be decoded from at least one of the two ROIs (log model 290 

evidence <= 3), giving n=119. All tests were two-tailed and used an alpha level of .05.  291 

Where it was important to test for evidence for the null hypothesis over an alternative 292 

hypothesis, we supplemented null-hypothesis significance tests with Bayes Factors 293 

(Wagenmakers, 2007; Rouder et al., 2009). The Bayes Factors were estimated using 294 

Dienes’ online calculator (Dienes, 2014) which operationalizes directional hypotheses such 295 

as PASA in terms of a half-normal distribution. Here, as the regression betas were 296 

standardized, the half-normal distribution had mean=0 and SD=1.    297 

Results  298 

Standard univariate activation analyses assessed mean activity in each ROI across all 299 

voxels included in the multivariate analysis (see Materials and Methods). These confirmed 300 

that activity in both ROIs positively predicted subsequent memory across the lifespan (PVC: 301 

t(118) = 4.42, p < .001; PFC: t(118) = 2.13, p = .035). Consistent with the PASA account, 302 

PFC activity increases for subsequently remembered versus forgotten items also became 303 

more pronounced with age, particularly in later years (for linear effect of age, t(118) = 2.43, 304 

p=.017; for quadratic effect of age, t(118) = 2.58, p = .012) (Fig 2b). Age effects in PVC were 305 

not significant, though there was also no evidence that age effects in the two ROIs differed 306 

(see Table 1).  307 
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 308 

Figure 2.  Relationship between age and subsequent memory effects within ROIs. (a) PVC (blue) and 309 

PFC (red) ROIs overlaid on sagittal section (x=+36) of a canonical T1 weighted brain image. (b). 310 

Univariate subsequent memory effects (mean activity for remembered - forgotten), showing increased 311 

activity with age in PFC but not PVC. (c). Spread of multivariate responses predicting subsequent 312 

memory (standard deviation of fitted MVB voxel weights), showing reduced spread of responses with 313 

age in both ROIs. Red and blue lines are robust-fitted second-order polynomial regression lines and 314 

shaded areas show 95% confidence intervals. 315 

 316 

ROI/ measure  Linear    Quadratic  

 t R2
adj p t R P 

Mean       

PVC 0.728 -- 0.480 0.703 -- 0.495 

PFC 2.43 .032 0.017 2.58 .038 0.012 

PFC-PFC 0.883 -- 0.388 1.084 -- 0.293 

SD       
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PVC 5.91 .216 < .0001 1.72 -- 0.093 

PFC 5.64 .200 < .0001 0.747 -- 0.460 

PFC-PFC -5.51 .192 < .0001 -2.31 .027 0.024 

 317 

Table 1. Age effects on mean and standard deviation of univariate SM effects. SD = standard 318 

deviation. n=119. R2
adj = the unbiased estimate of the amount of variance explained in the population. 319 

 320 

If the increased activation in PFC reflected a compensatory PASA shift, we expected the 321 

multivariate analyses to show that this increased activity carried additional information about 322 

subsequent memory. However, the data revealed a different pattern. In MVB models, like 323 

other linear models with multiple predictors, each voxel within an ROI has a weight which 324 

captures the unique information it contributes (in this case, for predicting subsequent 325 

memory). Because both positive and negative weights carry information, we summarised the 326 

MVB results by the spread (standard deviation) of weights over voxels (see Materials and 327 

Methods).  328 

In both ROIs, this spread was markedly reduced during later life (PVC: for linear effect of 329 

age, t(118) = -3.49, p < .001; for quadratic effect of age, t(118) = 3.50, p < .001; PFC: linear 330 

t(118) = -3. 34, p < .001; quadratic t(118) = -1.44, p = .151) (see Fig 2c and Table 2). This 331 

means that, contrary to a compensatory PASA shift, PFC showed fewer, rather than more, 332 

voxels with large positive or negative weights with increasing age. Moreover, direct 333 

comparison across ROIs showed that the age-related reduction in spread of weights was 334 

greater in PFC than PVC (linear t(118) = -2.02, p = .044). By contrast, the spread of 335 

univariate activities across voxels increased with age in both ROIs (Table 1).  336 
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 337 

Figure 3. Evidence against a posterior-to-anterior shift from MVB comparisons between ROIs. (a) 338 

Ordinal regression of Bayesian model comparison of combined PVC-PFC model versus PVC-only 339 

model showed that a boost (difference in log-evidence > 3) for the combined model relative to the 340 

PVC model was no more frequent with increasing age relative to no boost (-3 < difference < 3) or a 341 

reduction (difference < -3). (b) The proportion of top-weighted voxels (> 2 standard deviations above 342 

mean) that fell within PFC (rather than PVC) showed an age-related reduction. The red line is a 343 

robust-fitted second-order polynomial regression line and the shaded area shows 95% confidence 344 

intervals. 345 

 346 

ROI/ measure  Linear    Quadratic  

 t r p T r p 

Mean       

PVC -2.06 .187 .039 2.23 .202 .026 

PFC -.338 -- .732 1.88 -- .059 

PFC-PFC 1.09 -- .278 -.196 -- .844 

SD       
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PVC -3.49 .307 <.001 -3.50 .308 <.001 

PFC -3.33 .294 .001 -1.44 -- .151 

PFC-PFC -2.02 .184 .044 .398 -- .690 

 347 

Table 2. Age effects on mean and standard deviation of MVB voxel weights. SD = standard deviation. 348 

n=119. 349 

 350 

To provide more direct tests for a posterior-to-anterior shift, we developed two measures of 351 

the relative contribution of PFC and PVC to subsequent memory after fitting joint MVB 352 

models that included both posterior and anterior ROIs. First, we used Bayesian model 353 

comparison in each participant to test whether adding PFC to the model – the joint PVC-PFC 354 

model – “boosted” prediction of subsequent memory relative to the PVC-only model (see 355 

Methods). Contrary to the PASA theory of a compensatory shift to greater reliance on PFC, 356 

a Bayes Factor comparing these two models revealed strong evidence for the null 357 

hypothesis of no boost (BF = 11.1); indeed, the probability of a boost to model evidence for 358 

PVC-PFC compared to PVC-only actually decreased with age numerically (Fig 3a; linear 359 

t(118) = -1.54, p = .064). Second, we measured the proportion of top-weighted voxels (> 2 360 

standard deviations above the mean) in the joint PVC-PFC model that were located in PFC, 361 

as opposed to in PVC. However, this proportion significantly decreased with age (Fig 3b; 362 

linear t(118) = -3.31, p = .00132; quadratic t(118) = -1.99, p = .0490), again contrary to 363 

PASA.  364 

Discussion 365 

This study investigated the proposal that there is a posterior-to-anterior shift in task-related 366 

brain activity during aging, with a greater relative reliance on prefrontal cortex in older age. 367 

We tested predictions of this PASA theory with data from an episodic memory encoding task 368 

that was conducted on a relatively large population-derived adult lifespan sample. Using 369 

novel model-based multivariate analyses, we provide direct evidence against a posterior-to-370 

anterior shift. Instead, our data suggest that increased PFC activity in older adults was less 371 

specific rather than compensatory, and that older adults relied less on prefrontal relative to 372 

posterior areas.  373 

The results of the standard univariate activation analyses are consistent with previous 374 

studies showing age-related increases in activation in prefrontal cortex, which form the basis 375 

of the PASA theory (Grady et al., 1994; Davis et al., 2008). The increase was relatively 376 

modest, but generalizes previous findings in that it was reliable across lateral, anterior and 377 
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superior areas. Despite this, multivariate analysis showed that with increasing age, fewer 378 

voxels in each ROI strongly predicted subsequent memory. This negative effect of age on 379 

the spread of multivariate responses was accompanied by a positive effect on the spread of 380 

univariate activation responses across voxels. This, suggests that, while more voxels 381 

showed substantial (positive or negative) responses related to subsequent memory in older 382 

people, these additional responses were redundant, with fewer voxels contributing uniquely 383 

to memory encoding, as expected if increased prefrontal activity is less specific.  384 

The notion of a posterior-to-anterior shift implies an age-related increase in PFC activity 385 

relative to posterior activity (Morcom and Johnson, 2015). Direct comparisons have not 386 

generally been made, but evidence for a shift comes from findings of cross-over effects in 387 

which age-related decreases in posterior cortical activity occur alongside age-related 388 

increases in PFC (e.g., Grady et al., 1994; Davis et al., 2008). Numerous other studies have 389 

focused on age-related increases in PFC rather than a shift relative from posterior cortex 390 

(e.g., Cabeza et al., 1997; Anderson et al., 2000). A recent meta-analysis of subsequent 391 

memory effects supported PASA, with age-related increases in older adults in several PFC 392 

regions (Maillet and Rajah, 2014), and decreases in PVC, although another meta-analysis 393 

across different tasks found age-related decreases as well as increases in different PFC 394 

regions (Spreng et al., 2010). In individual studies, neighbouring areas of PVC (Grady et al., 395 

1994) and PFC (Rajah and D’Esposito, 2005) can also show both age-related increases and 396 

decreases. A strength of our approach is that our multivariate analyses encompassed large 397 

ROIs in both anterior and posterior cortices, as well as direct comparisons between the two.  398 

The univariate activation analyses showed no evidence of a posterior-to-anterior shift, as 399 

age effects in PFC and PVC did not differ. However, the reduction in multivariate responses 400 

predicting subsequent memory was more pronounced in PFC than PVC. Together with the 401 

evidence that the activity was less specific, this implicates age-related effects in both regions 402 

which impact PFC to a greater degree, consistent with evidence from structural studies 403 

(West, 1996; Raz and Rodrigue, 2006). One mechanism by which deleterious changes can 404 

give rise to increased activity may be a pervasive dedifferentiation of neuronal 405 

representations, which predominantly affects complex cognitive functions (Li et al., 2001; 406 

Park et al., 2004; Carp et al., 2011; Abdulrahman et al., 2014). Alternatively, processing may 407 

become less efficient, providing less computational “bang for the buck” for the same level of 408 

neural activity (Rypma and Esposito, 2000; Morcom et al., 2007; Grady, 2008; Reuter-409 

Lorenz and Campbell, 2008; Nyberg et al., 2014). According to these theories, increased 410 

activation in older adults reflects loss of neuronal integrity rather than compensation. 411 
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The PASA theory proposes that PFC is not only engaged to a greater degree in older adults 412 

but that the additional activity also compensates, i.e., helps to maintain cognitive function. 413 

Unique insights are therefore to be gained from joint analysis of the contributions of anterior 414 

and posterior regions. Using multivariate models of both PFC and PVC, we constructed two 415 

novel measures of the degree to which unique information about subsequent memory was 416 

carried by PFC: 1) A direct model comparison showed that PFC did not contribute more to 417 

subsequent memory with increasing age, over and above the contribution of PVC, while a 418 

direct comparison of the number of influential voxels failed to support the hypothesis that 419 

PFC plays a stronger role with increasing age. On the contrary, we found that fewer of the 420 

voxels most strongly predicting subsequent memory were located in PFC relative to PVC in 421 

older adults.    422 

Our data replicate a (modest) increase in PFC activity over the adult lifespan, but do not 423 

support the idea that this reflects a compensatory posterior-to-anterior shift, at least in the 424 

context of memory encoding. The results are most parsimoniously explained by reduced 425 

specificity of neural responses reflecting primary age-related deleterious changes leading to 426 

dedifferentiation or inefficient neural computation. Our results therefore help to adjudicate 427 

between two main competing accounts of neurocognitive aging, while also illustrating the 428 

ability of MVB to compare models that comprise different sets of voxels, thereby offering an 429 

exciting new general way to test the relative contributions of brain regions to cognitive 430 

outcomes.  431 
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