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Abstract

Ocean acidification is considered as one of the major threats for coral reefs at a global scale. 

Marine calcifying organisms, including stony corals, are expected to be the most affected by 

the predicted decrease of the surface water pH at the end of the century. The severity of the 

impacts on coral reefs remains as matter of controversy. Although previous studies have 

explored the physiological response of stony corals to changes in pH, the response of the 

holobiont (i.e. the coral itself plus its symbionts) remains largely unexplored. In the present 

study, we assessed the changes in overall gene expression of the coral Montipora digitata and 

its microalgal symbionts after a short (three days) and a longer (42 days) exposure to low pH 

(7.6). The short-term exposure to low pH caused small differences in the expression level of 

the host, impacting mostly genes associated with stress response in other scleractinians. 
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Longer exposure to low pH resulted in no significant changes in gene expression of the coral 

host. Gene expression in the eukaryotic symbionts remained unaltered at both exposure times.

Our findings suggest resilience, in terms of gene expression, of the Montipora digitata 

holobiont to pH decrease, as well as capability to acclimatize to extended periods of exposure 

to low pH.  

1 Introduction

Ocean acidification, the decreasing pH of ocean surface waters, is considered a global threat 

to coral reefs (Hoegh-Guldberg et al., 2007). A Business-as-Usual (BaU) carbon emissions 

scenario predicts surface water pH should reach values ranging between 7.8 and 8.0 by the 

end of the century, likely posing a challenging future for marine calcifying organisms 

(Kleypas et al., 2005; Jokiel et al., 2008; De'ath et al., 2009). Among these organisms, 

scleractinian corals have received particular attention due to their pivotal role as reef builders 

(Shinzato et al., 2011). In this regard, ocean acidification has the potential to decrease reef-

accretion rates and negatively impact these important ecosystems that serve as biodiversity 

reservoirs, allow the development of other marine ecosystems, and provide important 

economic and environmental services (Moberg and Folke, 1999; Chen et al., 2015).

The mechanisms by which exposure to acidified water affect calcium carbonate accretion in 

corals appears to be related to the maintenance of pH-homeostasis at the tissue-skeleton 

interface, which allegedly makes calcification more energetically expensive (Krief et al., 

2010; McCulloch et al., 2012; Venn et al., 2013; Holcomb et al., 2014; Cyronak et al., 2015, 

Von Euw et al., 2017). Other observed physiological changes triggered by low pH include 

impaired reproduction, growth and metabolic functions, and anomalies in skeletal 

morphology (Albright et al., 2008; Albright et al., 2010; Morita et al., 2010; Suwa et al., 2010;
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Albright and Langdon, 2011; Nakamura et al., 2011). Symbiosis can also be affected as coral 

bleaching can be triggered by ocean acidification (Anthony et al., 2008). In addition, 

decreased photosynthetic productivity has been reported in Symbiodinium (the microalgal 

symbiont inhabiting corals) exposed to low pH water, and a delayed establishment of 

symbiosis has been observed in coral larvae exposed to this condition (Anthony et al., 2008; 

Crawley et al. 2010). However, the impacts of exposing corals to low pH vary across species 

and life stages (Kaniewska et al., 2012; Moya et al., 2012; Moya et al., 2015; Davies et al., 

2016). 

Previous findings suggest that corals can tolerate low pH by using different strategies, for 

example, through the reduction of their metabolic rate and oxygen consumption (in larvae) or 

by increasing calcification rates (in adults) (Nakamura et al., 2011; Rodolfo-Metalpa et al., 

2011). Better characterization of the responses of these organisms to ocean acidification is 

therefore fundamental in order to better understand the potential of scleractinian corals to 

cope with the challenges associated with a changing environment. Within this framework, we 

sequenced the transcriptome of Montipora digitata, a coral commonly found in seawater 

aquaria and available in culture in different countries, and of its symbiotic microalgae and 

assessed the changes in global gene expression as result of exposing M. digitata to low (7.6) 

pH water for 3 and 42 days. To date, most studies have focused on the physiological response 

of stony corals to changes in pH, leaving the coupled transcriptional response of corals and 

their symbionts to ocean acidification largely unexplored. Here we show that the M. digitata 

holobiont is remarkably tolerant to low pH water exposure, highlighting the potential for 

resilience and acclimation of corals to ocean acidification.
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2 Methods

2.1 Experimental setup and biological material

The experimental setup consisted of two tanks (control and treatment), each of them 

containing 20 L of artificial seawater coming from one of the (360 L) aquarium systems 

available at the Molecular Geo- & Palaeobiology Laboratory of the Department of Earth and 

Environmental Sciences, Palaeontology & Geobiology, LMU München (Supplementary Fig. 

S1). Water in the experimental tanks was replaced 3 to 5 times per hour with water from the 

main (360 L) tank. To simulate ocean acidification conditions, a pH-electrode (LE4099, 

Mettler Toledo) connected to a pH computer was used to control the injection of CO2 into the 

water of the treatment tank to be kept pH at 7.6 (treatment tank). In each experimental tank a 

water pump set to a flow rate of 300 L/h was used to keep the water circulating and to better 

mix the CO2 injected into the treatment tank. Water returning from the treatment tank was 

equilibrated to pH ~8.0 by letting it flow through a 25 cm column containing limestone grains

with diameters ranging from 2 to 5 mm and simultaneously injecting air (300 to 500 L/h). 

After this, the treated water was mixed with the remaining water in the main (360 L) tank. 

Both tanks were illuminated using a Mitras LX 6200-HV lamp simulating tropical light 

cycles; illuminance ranged between 19 and 22 kilolux at the seawater surface of both tanks. 

During the experiment, water pH in each experimental tank was controlled every day and was

recorded every hour from the second day onwards with a pH electrode LE4099 Mettler 

Toledo and a pH-meter PCE-PHD 1. During the experiment, the pH of the treatment tank was 

relatively constant (mean = 7.64, sd = 0.02), while the pH in the control aquarium fluctuated 

between 7.90 and 8.26 according to the respiration/photosynthesis cycle of corals and 

symbionts (mean = 8.08, sd = 0.11).
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Coral nubbins (n = 20) were obtained from branches of two adult Montipora digitata colonies

from our coral culture stock. The individual explants were cultured for over 2 months in the 

main (360 L) aquarium under the same light conditions used for the experiment. 

Approximately one month before starting the pH experiment, the nubbins were transferred to 

the control aquarium of the experimental setup (see above) for acclimation. Afterwards, half 

of the corals were moved to the treatment tank and sampling was conducted after 3 and 42 

days of exposure. Five corals were sampled from each tank at each sampling time.

2.2 RNA extraction and sequencing

At each sampling point, the nubbins were flash-frozen in liquid nitrogen, broken in smaller 

pieces with mortar and pestle (always in liquid nitrogen) and stored at -80 ºC until further 

processing. For RNA extraction, samples were homogenized in TRIzol Reagent (Thermo 

Fisher Scientific) with a SilentCrusher M and a Dispersion Tool 8 F (Heidolph) and total 

RNA was extracted using a slightly modified version of the Chomczynski method 

(Chomczynski and Sacchi, 1987). RNA quality and concentration were controlled with a 

NanoDrop ND-1000 spectrometer and with a BioAnalyzer 2100 (Agilent Technologies, Santa 

Clara, CA, USA). An additional cleaning step with Agencourt RNAClean XP Magnetic Beads

was done if required. RNA concentration and quality requirements for library preparation and 

sequencing were achieved for all samples obtained after the first sampling time, for the 

second sampling time only 6 samples (3 control + 3 treatment) met quality requirements and 

were further used. Library preparation and sequencing (50bp PE; HiSeq2500) was done at the

GeneCore of the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. 

The reads generated for the second sampling time were strand-specific and further used for de

novo transcriptome assembly. The reads generated were uploaded to the Short Read Archive 

9

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

10

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157008doi: bioRxiv preprint 

https://doi.org/10.1101/157008
http://creativecommons.org/licenses/by-nd/4.0/


Resilience to Acidification of a Coral Holobiont 

of the European Nucleotide Archive under the project accession PRJEB21531 

(http://www.ebi.ac.uk/ena/data/view/PRJEB21531).

2.3 Transcriptome assembly and annotation

Illumina read pairs were quality controlled with FastQC v0.63 (Andrews, 2010), low quality 

bases and reads were removed with Trimmomatic v0.32 (Bolger et al., 2014). The surviving 

pairs were further processed with the program Filter Illumina v0.40 of the Agalma/Biolite 

suite (Dunn et al., 2013) to ensure the removal of adapters and low quality reads. Reads from 

putative bacterial contaminants were filtered out by aligning the surviving pairs against all 

bacterial genomes on RefSeq as of July 2015 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria) and discarding mapping pairs. 

De novo transcriptome assembly was done with Trinity v2.0.6 using only strand-specific 

sequences (i.e. the surviving read pairs from the second sampling time) (Grabherr et al., 

2011). The assembled contigs from coral and dinoflagellates were separated with Psytrans 

(https://github.com/sylvainforet/psytrans) using the Acropora digitifera v0.9 (Shinzato et al., 

2011) and Symbiodinium minutum Clade B1 v1.0 (Shoguchi et al., 2013) predicted proteins as

references. The minicircle sequences of Symbiodinium sp. Chloroplast (Barbrook et al., 2014) 

were recovered manually from the contigs assigned to the coral. Coding sequences (CDS) 

from the assembled transcripts were predicted with TransDecoder v2.0.1 

(https://transdecoder.github.io). Only transcripts with predicted proteins were used as the 

reference transcriptome for both coral and symbionts. Completeness of the transcriptomes 

was assessed by search of the sequences against the Core Eukaryotic Genes Dataset 

(CEGMA) (Parra et al., 2007; Francis et al., 2013). Data processing and transcriptome 

assembly were mostly executed on the Molecular Geo- and Paleobiology Lab’s Galaxy server 
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(Goecks et al., 2010). Differentially expressed genes (DEGs hereafter) were annotated by 

BLASTN (E = 10-10) against the Non-Redundant (nr) database of the NCBI and by BLASTX 

(E = 10-10) against the SwissProt database (both downloaded in February 2015). The best 

SwissProt hit of each DEG was used to retrieve its associated Gene Ontology terms through 

the QuickGO online tool (https://www.ebi.ac.uk/QuickGO). In addition, predicted proteins of 

the DEGs were annotated with the protein identifiers of the Acropora digitifera v0.9 and 

Symbiodinium minutum Clade B1 v1.2 by BLASTP (E = 10-10). A Galaxy history containing 

some of the steps previously mentioned can be accessed at (XXXXXXX). The transcriptome 

annotations can be found in https://github.com/PalMuc/Montipora_digitata_resources.

2.4 Differential gene expression analysis

For each sampling time, the remaining reads from each sample were mapped with Bowtie2 

(Langmead et al., 2009) to the reference transcriptomes of M. digitata and Symbiodinium sp. 

Read counts from isoforms groups were added to derive a matrix of counts per Trinity-

component. Differences between conditions and colonies were assessed with the adonis 

function of the vegan R library (Oksanen et al., 2013). As in other ocean acidification studies 

(Davies et al., 2016; Kurman et al., 2017), the sample-dependence effect caused by one single

tank per condition could not be corrected (Riebesell et al., 2011; Cornwall and Hurd, 2016; 

but see Oksanen, 2001 and Schank and Koehnle, 2009 for a discussion on pseudoreplication). 

DEGs between conditions were detected using the package DESeq2 v1.8.1 (Love et al., 

2014). DEGs were selected by their significant change in expression as assessed by a Wald 

test; P-values were adjusted with the Benjamini-Hochberg correction (Benjamini and 

Hochberg, 1995). Gene Ontology (GO) terms enrichment was assessed with topGO v1.0 

(Alexa and Rahnenfuhrer, 2010) in R v3.2.1. Protein domains of the DEG products were 
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identified using PfamScan and PFAM A release 30.0 (both downloaded from 

ftp://ftp.ebi.ac.uk/pub/databases/Pfam/). The counts and the R scripts used to analyze the data 

can be found in the project repository 

(https://github.com/PalMuc/Montipora_digitata_resources).

3 Results

3.1 Reference transcriptomes

The Montipora digitata meta-transcriptome was assembled using over 190 million of strand-

specific read pairs. The transcriptome assembly yielded 179,298 sequences, of which 123,710

(69 %) were assigned to the coral host and 55,588 (31 %) to the symbiont. These transcript 

sets resulted in 41,852 and 34,057 predicted CDS for the coral and symbionts, respectively. 

The N50 length was 1,101 bp for the coral and 744 bp for Symbiodinium sp. G+C content of 

both reference transcriptomes were 43.9% and 54.5%, consistent with previous reports for the

Order Scleractinia and Symbiodinium spp., respectively (Bayer et al., 2012; Shoguchi et al., 

2013; Sun et al., 2013; Shinzato et al., 2014). Summary quality statistics for both 

transcriptomes are summarized in Table 1. Most of the Core Eukarytic Genes (CEGs) were 

found in the transcriptomes, 89.5% in M. digitata and 79.4% in Symbiodinium sp. 

(Supplementary Table S1). In addition, the level of fragmentation of the assembled 

transcriptomes appears to be low as judged by the low number of CEGs that are longer than 

the queries.

Table 1. Summary quality statistics for the reference transcriptomes of the M. digitata and Symbiodinium sp.

Statistic Montipora digitata Transcriptome Symbiodinium sp. Transcriptome

GC content 43.9 % 54.5 %
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N50 (bp) 1,101 744

Max. length (bp) 10,503 6,318

Mean length (bp) 872 648

Median length (bp) 645 540

Min. length (bp) 297 297

Total length (bp) 36,510,222 22,095,753

Num. of sequences 41,852 34,057

Only 5,541 (13.2%) out of the 41,852 genes contained in the transcriptome of M. digitata 

transcriptome could not be annotated with any of the databases. A large portion (48.6%) of 

transcripts had hits against sequences from all of the three databases used and about 15% of 

the total transcripts hit exclusively sequences of the A. digitifera genome (Fig. 1). On the 

other hand, most of the sequences in the transcriptome of Symbiodinium sp. were annotated 

with genes from the S. minutum genome (85.5% of all transcripts), and almost half of them 

(48.4%) had hits exclusively against this genome. Similarly to the coral transcriptome, only a 

small fraction of the transcripts (12.9%) lacked any annotation (Fig. 1).
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Fig
ure 1. Bar plot displaying different fractions of the annotations for both, coral and symbiont, transcriptomes. 
The total number of genes for each transcriptome is shown above the corresponding bar. Each color represents 
an annotation category specified in the legend on the right and the lines connecting the bars indicate the 
position of the same category for each dataset. The category with the largest fraction in the coral transcriptome 
corresponds to those genes that had records from the three annotation resources. Genes with no annotation 
records are shown in red and represent a minor fraction of each transcriptome. Reference genomes used were 
Acropora digitifera (scleractinian coral) and Symbiodinium minutum (dinoflagellate symbiont).

3.2 Coral response to low pH 

No significant differences in global expression were found with the adonis exploratory test 

between conditions and between colonies for neither the short (pcondition = 0.40, pcolony = 0.19) 

nor the longer (pcondition = 0.73, pcolony = 0.76) exposures of the coral to low pH. These findings 

are also supported by the variance in expression of the coral genes at both sampling times 

(Fig. 2) and by the variance-corrected counts of mapped reads per gene per sample 

(Supplementary Fig. S2). 
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Fig. 2 PCA plots of the variance of expressed genes in the coral nubbins (A) between colonies and (B) 
conditions after three days of exposure to low pH. Variance of gene expression is also plotted after the 42-days 
exposure comparing conditions (C) and colonies (D). No grouping patterns in any comparison can be 
distinguished. Dot color and shape codes are displayed at the bottom.

Still, the DeSeq2 gene expression analysis yielded 18 genes with significant (padj < 0.05) 

differences in expression level due to exposure to low pH after three days (model design: ~ 

colony + condition). The log2-fold changes for these genes ranged between -0.70 and 0.73 

(Supplementary Table 1). Six up- and 12 downregulated genes were found. From the six 

upregulated genes, two (including a metalloprotease) contain zinc-binding domains and others

have RNA/DNA binding domains. Among the downregulated genes, proteins similar to 

Noelin, to an αB-crystallin and to a “platelet-derived” growth factor were found. A protein 

with no annotation but containing a domain of the tumor necrosis factor receptor superfamily 

(TNFR) was also downregulated. GO terms related to organ development, cell differentiation 

and cell chemotaxis were enriched in this set of genes (Supplementary Table S2). Upregulated
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genes were rich in GO terms related to the negative regulation of calcium ion-dependent 

exocytosis, regulation of extracellular matrix assembly, collagen catalysis, changes in bone 

morphogenesis, negative regulation of cell-substrate adhesion, transmembrane transport of 

zinc and response to antigenic stimulus. Additionally, the Notch-signaling pathway appeared 

to be positively regulated, contrary to previous findings (Kaniewska et al., 2012). No DEGs 

were found in the coral after 42 days of exposure to low pH. 

3.3 Symbiont response to low pH

The exploratory analyses of gene expression of Symbiodinium sp. suggest no change at any 

sampling time (Fig. 4). The adonis permutation test resulted in no significant differences 

between conditions and colony after the first (pcondition = 0.62, pcolony = 0.78) or the second 

(pcondition = 0.88, pcolony = 0.99) exposure period. No DEGs were found at any time. 

Fig. 2 PCA plots of the variance of expressed genes in the symbioints after three (A) and 42 
(B) days of exposure to low pH. No grouping patterns at any time can be distinguished. Dot 
color and shape codes are displayed at the bottom.

4 Discussion

4.1 Mild stress response of the coral to low pH 

The present study used RNA-Seq to assess the coupled response of an adult stony coral 

(Montipora digitata) and its microalgal symbionts to low pH. Compared to previous 
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investigations (Kaniewska et al., 2012; Moya et al., 2012; Moya et al., 2015), our results 

suggest a mild gene expression response of the adult coral holobiont to a three-days exposure 

to acidified water in terms of number of DEGs and log2-fold change. Still, the log2-fold 

changes we found in this study are comparable to those observed in the resilient coral 

Siderastrea siderea under laboratory-induced ocean acidification conditions (Davies et al., 

2016). This suggests resilience of M. digitata to low pH.

The few DEGs found after short-term exposure of M. digitata to low pH (7.6) have been 

shown to be involved in stress response in corals. Zinc-metalloproteases, for instance, seem to

be relevant for heat tolerance in these organisms and might play a role in regulation of 

apoptosis and cell repair (Barshis et al., 2013). Other stress related genes were found among 

the significantly downregulated genes, like the αB-crystallin-like protein, an HSP20 family 

member. αB-crystallin seems to play a role in stress response in other corals (e.g. Orbicella 

annularis and O. faveolata), but its exact function is yet unknown (Downs et al., 2002). A 

TNFR domain-containing protein is another example, and changes in expression levels of 

proteins carrying this type of domain display have been found in other corals under stress 

conditions (Barshis et al., 2013; Seneca and Palumbi, 2015; Yuan et al., 2017). Another down-

regulated gene codes for a protein containing a platelet-derived growth factor domain, though 

the regulation of this kind of protein upon exposure to low pH has not been previously 

reported in corals. However, it is already known that homologs of human bone-

morphogenesis proteins (BMP2/4) participate in skeleton production of marine calcifiers, 

including corals (Green et al., 2013). In fact, proteins carrying this domain are currently used 

for bone regeneration in humans, and its use, in combination with coral skeleton, has been 

proposed to treat bone defects (Parizi et al., 2012). 

According to previous investigations, coral larvae are able to acclimate to acidified water 

within a few-days time span (Moya et al., 2015). Such a rapid acclimation by the adult coral 

25

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

26

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157008doi: bioRxiv preprint 

https://doi.org/10.1101/157008
http://creativecommons.org/licenses/by-nd/4.0/


Resilience to Acidification of a Coral Holobiont 

holobiont would thus explain the lack of change in gene expression after 42 days of acidified 

water exposure in our experiments, a time by which acclimation would likely have been 

already completed. Our findings in the long-term response are similar to a previous 

investigation on response of another adult scleractinian (Acropora millepora) to a 37-days 

exposure to low pH (elevated pCO2) that reported absence of change in the expression of 

target genes associated with calcification and metabolism (Rocker et al., 2015). In agreement 

with this, previous studies suggest that temperature stress has a greater impact in gene 

expression of corals than pH (Mayfield et al., 2014; Davies et al., 2016), although resilience 

to stress conditions varies from one species to another (Loya et al., 2001). 

4.2 Symbiont response

Physiological response to stress conditions does not only depend on coral host resilience but 

also on the interaction with its symbionts (Hoadley et al., 2015). In the present study, 

Symbiodinium sp. did not seem to be affected by the decrease of pH, possibly because of the 

more stable environment provided by the coral tissue, which acts as some kind of protection 

for the algae (Banaszak and Trench, 1996). However, differences in response between 

Symbiodinium spp. in hospite and isolated from the host to environmental stressors remain 

largely unexplored.

5 Conclusions

Here we provide baseline data in the form of a reference transcriptome of the scleractinian 

coral Montipora digitata and its dinoflagellate symbiont. We used these data to assess changes

in overall gene expression of the different components of the coral holobiont, i.e., the coral 

host and its microalgal symbionts after different periods of exposure to low pH (7.6) seawater.
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While the coral host showed an initial stress response after short-term exposure to low pH, an 

acclimatization of gene expression levels was indicated after longer exposure (42 days) to low

pH, whereas its symbionts remained unaffected independent of exposure times. While we 

cannot exclude tank effects due to the experimental set-up, these findings nonetheless suggest 

a potential of the Montipora digitata holobiont for acclimatization and resilience to lowered 

seawater pH, and that temperature may play a greater role in coral stress than pH. Both the 

reference transcriptome we provide and the working hypothesis of acclimatization and 

resilience in this model system serve as a valuable baseline for future in-depth experiments.  
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9 Supplementary Material

Fig. S1 (A) Diagram of the aquaria setup. To the left is the treatment tank (pH = 7.6) and to the right the control 
tank (pH = 8.0 pH). Water from one of the main water systems of the aquarium room flowed into the tanks 
(water IN) and back again to the big aquarium (water OUT). The acidified water returning to the big aquarium 
from the treatment tank was treated by letting it flow through a 25 cm column containing limestone grains with 
diameters ranging from 2 to 5 mm and injecting air with a flow rate from 300 to 500 L/h to cast out the carbon 
dioxide. pH of the treatment tank was kept at 7.6 by an automated mechanism that injected CO2 from a bottle 
whenever the pH went above this value. During the experiment, pH was recorded with data loggers plugged to 
pH-electrodes in each tank. Water pumps kept recirculating the water, particularly important for the well mixing 
of CO2 in the treatment tank. A Mitras LX 6200-HV lamp simulating the natural daily light cycles in the tropics 
was placed above and between the two tanks such that the illuminance was equally distributed. (B) A photograph
of the actual aquaria setup.
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Fig. S2 Heatmaps of the transformed counts (using the variance stabilizing normalization of DESeq2) of mapped
reads per gene of the coral host at the first (A) and second (B) sampling times. Each column represents a sample 
and each row a gene. Dendrograms at the top of the plots cluster the samples by average. Genes are sorted by 
decreasing variance from top to bottom. Most of the genes with the highest expression values in the coral after 
three days of exposure to low pH were amongst the least variable (A). 
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Table S1. Completeness of reference transcriptomes based on comparison with the 248 genes in the Core 
Eukaryotic Genes Dataset (CEGMA). CEG: Core Eukaryotic Genes.

Category Coral transcriptome Symbiont transcriptome

CEG with hits 222 197

High-confidence full-length matches 150 104

Probable full-length matches 7 5

CEG slightly shorter than query 5 2

CEG much shorter than query 31 33

Probable miss-assemblies 25 51

CEG much longer than query 4 2

CEG with no hits 26 51
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Table S2. DEG in the coral host after a three-days exposure to low (7.6) pH, including gene group identifier, 
log2-fold change, corrected p-value, protein domains found in predicted proteins and corresponding 
annotation.
Isogroup Log2-FC Padj Pfam Domain(s) [E-val] Annotation
TR57464|
c0_g1

0.73 0.00025865
7

Astacin [1.7e-64] Zinc metalloproteinase nas-
14

TR3854|c8_g1 -0.70 0.00021718
1

OLF [2.2e-33] Noelin

TR12191|
c4_g3

-0.64 0.00378190
9

NA NA

TR55829|
c4_g3

0.60 0.02163614
9

NA NA

TR8304|
c10_g2

-0.59 0.02044362
1

NA NA

TR25513|
c0_g1

0.57 0.02286719
2

DUF4772 [9.3e-22], 
53-BP1_Tudor [4.4e-05]

Zinc finger protein 395

TR5422|c1_g1 -0.56 0.02163614
9

NA NA

TR47269|
c9_g2

-0.56 0.02044362
1

Rve [5.8e-21] Uncharacterized protein 
K02A2.6

TR17622|
c0_g2

-0.55 0.02492151
7

Ets [8.1e-35] ETS domain-containing 
protein Elk-1

TR4348|c4_g1 -0.54 0.04991696
9

NA NA

TR50981|
c7_g3

-0.53 0.02044362
1

TNFR_c6 [1.9e-04] NA

TR60375|
c5_g4

-0.52 0.04926036
7

HSP20 [4.6e-19] Heat shock protein Hsp-
16.1/Hsp-16.11, Alpha-
crystallin B chain

TR21650|
c1_g1

-0.50 0.01680226
2

NA Protein with a platelet-
derived and vascular 
endothelial growth factors 
(PDGF, VEGF) family domain

TR28829|
c0_g1

-0.46 0.04926036
7

ELFV_dehydrog_N [3.4e-51] NADP-specific glutamate 
dehydrogenase

TR25128|
c7_g1

0.46 0.01680226
2

NA NA

TR1763|c4_g1 -0.42 0.02286719
2

RRM_1 [2e-10] Peroxisome proliferator-
activated receptor gamma 
coactivator-related-like 
protein

TR1853|c1_g2 0.40 0.02044362
1

NA Protein with RNA/DNA 
binding domains

TR21661|
c1_g1

0.38 0.03404108
1

Helicase_C [1.1e-47] Werner syndrome ATP-
dependent helicase-like 
protein
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