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Abstract 

Here we present a novel method: single-cell combinatorial indexing for methylation 
analysis (sci-MET), which is the first highly scalable assay for whole genome methylation profiling 
of single cells. We use sci-MET to produce 2,697 total single-cell bisulfite sequencing libraries 
and achieve read alignment rates of 69 ± 7%, comparable to those of bulk cell methods. As a 
proof of concept, we applied sci-MET to successfully deconvolve the cellular identity of a mixture 
of three human cell lines. 
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Main 
 

The fundamental challenge of identifying and characterizing the molecular properties of 
every cell type in the body has recently entered the realm of possibility1. High-throughput single-
cell transcriptome2–4 and chromatin accessibility profiling assays5–7 have dramatically improved 
our ability to uncover latent cell types within complex tissues and dynamic cell states during 
differentiation. These same possibilities extend to DNA methylation; a covalent addition of a 
methyl group to cytosine bases in the genome that largely serves in a repressive role8. DNA 
methylation occurs at a high rate in cytosine-guanine dinucleotides (CG), with cytosine 
methylation in non-CG sites (CH) occurring rarely and only in select tissues9. Both CG and CH 
methylation have cell type-specificity and are the subject of active modification in developing 
tissues8. DNA methylation can be probed at base-pair resolution using the deaminating chemistry 
of sodium bisulfite treatment before or after the generation of sequencing libraries (e.g. as in 
whole genome bisulfite sequencing, WGBS)10,11. Despite the comprehensive nature of these 
assays, key aspects of methylation architecture and dynamics remain elusive, with cell type 
heterogeneity at the forefront of this challenge. 

Recent work has optimized bisulfite sequencing to decrease input requirements to 
the single cell level (scWGBS)12–15. These assays have provided unique insights into 
environmental effects on methylome dynamics13, have uncovered new cell-types that form during 
hematopoesis14, and been coupled with scRNA-seq to directly study the relationship of DNA 
methylation to transcription15. However, these methods use a parallelized library generation 
strategy in which the WGBS protocol must be carried out on each cell in its own reaction vessel 
and thus remain low-throughput. Existing platforms to assess the transcriptome of single cells in 
high-throughput largely rely on droplet-based microfluidics strategies by sequestering single cells 
into individual droplets along with a substrate harboring barcoded oligonucleotides for cell-level 
indexing2,16. This approach is not readily adaptable to genome-wide DNA methylation profiling 
due to harsh bisulfite conversion chemistry, which destroys cell and nuclear integrity (preventing 
conversion prior to droplet encapsulation), and cannot be carried out in a single reaction buffer 
(preventing both conversion and barcoding in the same droplet). Furthermore, alignment rates for 
traditional scWGBS libraries are on the order of 25 ± 20%, much lower than for the equivalent 
bulk protocol12–15, which markedly increases the cost of obtaining sufficient aligned read counts. 

Recently, we described a platform for combinatorial indexing to acquire long-range 
sequence information17 that has been extended to single cell assays for open chromatin (sci-
ATAC-seq, scTHS-seq)5,7, chromosome conformation (sci-Hi-C)18, RNA transcript abundance 
(sci-RNA-seq)19, and whole genome sequencing (sci-DNA-seq)20. The key to this combinatorial 
indexing platform is a two-tier indexing strategy where DNA (or RNA) within nuclei (or cells) is 
modified with a barcoded adaptor corresponding to one of 96 (or 384) wells while maintaining 
nuclear integrity. All reactions are then pooled, followed by the redistribution of a limited number 
of these pre-barcoded nuclei into each of a new set of wells such that the probability of two nuclei 
harboring the same initial barcode ending up in the same well is low. PCR is then used to 
incorporate a second index (96 or 384) with corresponding sequencing adaptors. Thus, each 
library molecule contains two indexes: one from the initial barcoding, and the second from PCR, 
allowing single-cell discrimination. For sci-DNA-seq20, we deployed a nucleosome depletion 
strategy prior to combinatorial indexing which enabled relatively uniform coverage of the genome, 
a key component for extending this concept to measure genome-wide DNA methylation in single 
cells. 
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Figure 1 | sci-MET assay and performance. a. The sci-MET workflow. i) cells are obtained and contain 
nucleosome-bound DNA, ii) nuclei are then isolated and subjected to nucleosome depletion, iii) 1-2,000 nuclei 
are deposited into each well of a 96-well plate using fluorescence activated nuclei sorting (FANS) and reacted 
with transposase complexes with indexed, C-depleted, 3’ adaptors, iv) all wells are pooled from the transposase 
reaction and 22 nuclei are deposited into each of a set of new wells such that the probability of two nuclei sharing 
the same transposase index is low, several wells have unmethylated lambda genomic DNA that has been pre-
transposed with a unique index spiked in, and then all wells are subjected to bisulfite treatment, v) after bead-
based cleanup, two to four rounds of linear amplification is performed using a 5’ adaptor primer that terminates 
in nine N bases at its 3’ end, vi) PCR is then carried out using primers containing indexes corresponding to each 
well, vii) wells are pooled for sequencing. The final library molecule contains indexes that correspond to the 
transposase well and the bisulfite treatment + PCR well, which facilitates single-cell discrimination. b. Methylation 
rates for single GM12878 cells over CG islands (left) and gene bodies (right). 5,000 basepairs upstream and 
downstream of peaks are shown along with a percentile progression through the body of the features. As 
expected a marked decrease in methylation is observed in CG islands and in the bases leading up to transcription 
start sites. c. Human and mouse cells were mixed and carried through the sci-MET protocol using crosslinking 
and SDS nucleosome depletion to estimate barcode collision rates. d. Mapping efficiency (top), global CG 
methylation (middle) and global CH methylation (bottom) for a sci-MET preparation of a mix of human cell lines. 
Each point is a single cell colored by its identity. Alignment rates approach that of bulk bisulfite sequencing 
experiments, the mean using existing scWGBS technology is shown as a white point. e. The number of CG 
dinucleotides covered (in millions) by the total aligned reads per cell (in millions). Solid lines represent saturation 
curves for 3 rounds of linear amplification (blue), 4 rounds (green), or all cells (black). f. Methylation rates for 
GM12878 cells (blue lines, merged in black) over ENCODE ChIP-seq features captures the expected methylation 
profile. Purple feature names are for generally activating marks, red names are for generally repressive marks. 
g. Methylation rates for single cells (transparent lines) and merged for the three cell types (solid lines) over 
annotated genes. h. Methylation rates over GM12878 (left) and Primary Fibroblast (right) ENCODE H3K4me3 
ChIP-seq peaks. GM12878 and Primary Fibro. cells are shown. Arrows indicate the mean for the entire length 
of the features set. Each respective cell type has a greater decrease in DNA methylation over the matching 
H3K4me3 peak set. 
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We adapted our combinatorial indexing strategy to single cell WGBS (Fig. 1a). In contrast 

to previous work11, transposomes are loaded with C-depleted oligonucleotides and thus 

unaffected by bisulfite treatment. This approach reduced synthesis costs by avoiding methylated 

adaptors and improved downstream PCR amplification while maintaining library size. Due to low 

GC content, the C-depleted adapters possess lower melting temperatures than standard 

sequencing primers. To overcome this, we utilized sequencing primers modified with locked 

nucleic acids (LNA) to mimic standard melting temperatures. The second (5’) adaptor is then 

incorporated after pooling, redistribution, bisulfite conversion, and cleanup by performing one or 

more rounds of random primer extension, as in traditional scWGBS protocols12. 

First, we assessed the viability of our strategy on a well characterized B-lymphoblast cell 

line (GM12878). From a single experiment (96-well transposase barcodes by 96-well PCR 

preparation; 96 × 96), we generated a library in which we could identify barcode combinations 

corresponding to 774 single cells. Sequencing this library to a low depth (mean 55,129 unique 

reads per cell) produced methylation profiles that closely matched expectation for the GM12878 

cell line, including local depletion of methylation at gene promoters and CG islands (Fig. 1b, 

Supplementary Fig. 1,2). To assess the barcode collision rate (i.e. two nuclei of the same 

transposase barcode ending up in the same PCR well), we carried out sci-MET on a mix of human 

and mouse cell lines in a 96 × 40 experiment using lithium-based nucleosome depletion to 

characterize DNA methylation in 711 single cells (Supplementary Fig. 3). We classified collisions 

as barcodes with fewer than 90% of aligned reads to either the mouse or the human reference. 

Using this criteria, and assuming the same collision rate for undetectable human-human and 

mouse-mouse collisions, we estimate a total collision rate of 22%. This high rate is likely driven 

by decreased nuclear integrity during nucleosome depletion, so we repeated the experiment using 

an alternative crosslinking and SDS nucleosome depletion method. In a 96 × 32 experiment, we 

produced 520 single cell libraries with an estimated collision rate of 6% (Fig. 1c). This is near the 

expected rate from previous sci- methods. As with other combinatorial indexing strategies, the 

collision rate of sci-MET can be tuned by adjusting the number of nuclei sorted into each PCR 

well or number of barcodes. 

 We next sought to demonstrate the ability of sci-MET to deconvolve a mixed population 
of human cell types by profiling pure populations and a synthetic mixture of a B-lymphoblast 
(GM12878), primary inguinal fibroblast (Primary Fibro., GM05756), and embryonic kidney 
(HEK293) cell lines (Supplementary Fig. 1,2). In a 96 × 40 experiment using crosslinking and SDS 
nucleosome depletion, we characterized genome-wide methylation in 691 single cells passing 
QC filters, with a mean unique read count of 560,613 per cell; 107 cells had over one million 
uniquely aligned reads. Remarkably, we were able to achieve a mean alignment rate of 69 ± 7% 
(Fig. 1d), which is comparable to bulk WGBS rates and a substantial improvement over standard 
scWGBS (25 ± 20%)12–15. We suspect that this is due to the high efficiency of transposase-based 
adaptor incorporation and/or that single cells are not processed individually but in multiples, thus 
reducing adaptor dimers11,21. Given that the most substantial cost associated with single-cell 
methylation experiments is the ample raw sequencing that is required, our dramatically improved 
alignment rate has the potential to reduce associated sequencing costs by as much as 5 to 7 fold. 
Libraries also exhibited CG and non-CG methylation rates of 51 ± 4.0% and 0.77 ± 0.23% 
respectively (Fig. 1d), consistent with expectations and a high efficiency of bisulfite conversion 
(99.14% from lambda unmethylated control spike-in). We also observed increased unique CG 
coverage by unique read alignment (Fig. 1e), comparable coverage over annotated regions of the 
genome, with only a slight bias toward regions of open chromatin over regions with repressive 
marks (Supplementary Fig. 4), and increased unique CG nucleotide coverage when aggregating 
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multiple cells – with 61 low-coverage cells required to cover approximately half of the CG 
dinucleotides in the haploid genome at our sequencing depth (Supplementary Fig. 5), all 
suggestive of a sufficient level of coverage uniformity for comprehensive methylome assessment. 
Furthermore, the methylation rate over functionally annotated regions conformed to expectations 
with a marked decrease in methylation at activating marks (e.g. H3K27ac) and an increase at 
repressed regions (e.g. H3K36me3; Fig. 1f). We also observed the expected decrease in 
methylation in the promoter region of genes for all cell types (Fig. 1g), and a greater magnitude 
of methylation rate change for cells matching the ChIP-seq sample (Fig. 1h, Supplementary Fig. 
6). 

Summarized methylation status12 was calculated for each cell across autosomal loci of the 
Ensembl Regulatory Build22, which contains regions of the genome known for transcription factor 
binding and epigenetic marks (Fig. 2b). We then performed Non-negative Matrix Factorization 
followed by t-distributed Stochastic Neighbor Embedding (NMF-tSNE) to project cells in two 
dimensional space (Fig. 2c). Distinct domains containing each respective cell type along with cells 
from the mixed population were observed. Cluster purity was further confirmed by the proportion 
of reads aligning to the Y-chromosome (specific to fibroblasts), as well as minimal bias pertaining 
to unique read count or global CG methylation percentage (Supplementary Fig. 7). Aggregating 
cells by cluster identity, we observed 47.7x106 unique CG sites covered for the GM12878 cluster 
(599 cells), 5.35x106 for the Primary Fibro. cluster (32 cells), and 3.31x106 for the HEK293 cluster 
(10 cells). We next correlated the methylation rates with publically available WGBS datasets23,24 
for the top 1,000 most variable regulatory regions. For each merged cluster, the two most highly 
correlated samples were of the same cell type, or the most similar cell line in the case of HEK293 
(Fig. 2d, Supplementary Fig. 8). Hierarchical clustering on the Pearson correlation coefficients 
placed the HEK293 cluster in a clade with other aberrant cell lines (HepG2 and K562), the 
GM12878 cluster in a clade with two GM12878 bulk WGBS samples, and the Primary Fibro. 
cluster in a clade with two primary forearm fibroblast bulk WGBS samples (Fig. 2e, Supplementary 
Fig. 8,9). The confident assignment of these clusters for groups with as few as 10 cells (HEK293), 

Figure 2 | sci-MET splits out single cell methylomes by cell type. a. Non-negative matrix factorization and t-
distributed stochastic neighbor embedding (NMF-tSNE) was used to project single cell methylomes in two-
dimensional space (restricted to autosomal loci). Density based clustering was used to identify clusters. b. Single 
cell methylomes were aggregated over the three clusters and then correlated with publically available whole 
genome bisulfite sequencing data using the top 1,000 most variable regions in the Ensembl Regulatory Build. 
The two most highly correlated samples are in color. Note: For HEK293, no high coverage publically available 
WGBS data exists. c. Hierarchical clustering on the Pearson correlation values placed HEK293 in a clade with 
other cell lines (HepG2 and K562), GM12878 in a clade with WGBS of GM12878, and the Primary Fibro. cluster 
in a clade with two primary forearm fibroblast WGBS samples. Described clades are highlighted in color. 
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suggests that sci-MET produces high quality profiles of DNA methylation, and paves the way for 
the assessment of tissues of complex cell type compositions. 

To our knowledge, sci-MET is the first molecular technique to produce single-cell whole 
genome bisulfite sequencing libraries at an order of magnitude scale improvement compared to 
current single-cell methods. Inherent in our protocol is the ability to scale to far greater numbers 
by expanding the number of indexes (e.g. 384 × 384; Supplementary Fig. 10). This puts sci-MET 
throughput on par with other high-throughput single cell assays. In addition to the increased 
throughput, we were able to achieve substantially improved read alignment rates when compared 
to existing low-throughput approaches, thereby dramatically reducing the sequencing burden for 
such studies. Our platform achieves both the throughput and cost-effectiveness that is required 
to scale single-cell DNA methylation assessment to levels comparable to other epigenetic and 
transcriptional properties and prompts the inclusion of this vital mark in large scale efforts to map 
all cell types in the body. 

References: 

1. The Human Cell Atlas. bioRxiv (2017). doi:10.1101/121202 

2. Macosko, E. Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells 
Using Nanoliter Droplets. Cell 161, 1202–1214 (2015). 

3. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA 
sequencing of the human brain. Science (80-. ). 352, 1586–1590 (2016). 

4. Habib, N. et al. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult 
newborn neurons. Science 353, 925–8 (2016). 

5. Cusanovich, D. a et al. Multiplex single-cell profiling of chromatin accessibility by 
combinatorial cellular indexing. Science 348, 910–4 (2015). 

6. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory 
variation. Nature 523, 486–90 (2015). 

7. Lake, B. B. et al. Integrative Single-Cell Analysis By Transcriptional And Epigenetic 
States In Human Adult Brain. bioRxiv (2017). doi:https://doi.org/10.1101/128520 

8. Varley, K. E. et al. Dynamic DNA methylation across diverse human cell lines and 
tissues. Genome Res. 23, 555–567 (2013). 

9. Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation 
variation. Nature 523, 212–6 (2015). 

10. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic 
differences. Nature 462, 315–22 (2009). 

11. Adey, A. & Shendure, J. Ultra-low-input, tagmentation-based whole genome bisulfite 
sequencing. Genome Res. 22, 1139–1143 (2012). 

12. Smallwood, S. a et al. Single-cell genome-wide bisulfite sequencing for assessing 
epigenetic heterogeneity. Nat. Methods 11, 817–20 (2014). 

13. Farlik, M. et al. Single-Cell DNA Methylome Sequencing and Bioinformatic Inference of 
Epigenomic Cell-State Dynamics. Cell Rep. 10, 1386–1397 (2015). 

14. Farlik, M. et al. DNA Methylation Dynamics of Human Hematopoietic Stem Cell 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2017. ; https://doi.org/10.1101/157230doi: bioRxiv preprint 

https://doi.org/10.1101/157230
http://creativecommons.org/licenses/by-nc-nd/4.0/


Differentiation. 808–822 (2016). doi:10.1016/j.stem.2016.10.019 

15. Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic 
heterogeneity. Nat. Methods 13, 229–32 (2016). 

16. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. 
Commun. 8, 14049 (2017). 

17. Amini, S. et al. Haplotype-resolved whole-genome sequencing by contiguity-preserving 
transposition and combinatorial indexing. Nat. Genet. 46, 1343–9 (2014). 

18. Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017). 

19. Cao, J. et al. Comprehensive single cell transcriptional profiling of a multicellular 
organism by combinatorial indexing. bioRxiv (2017). 

20. Vitak, S. A. et al. Sequencing thousands of single-cell genomes with combinatorial 
indexing. Nat. Methods 14, (2017). 

21. Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by 
high-density in vitro transposition. Genome Biol. 11, R119 (2010). 

22. Zerbino, D. R., Wilder, S. P., Johnson, N., Juettemann, T. & Flicek, P. R. The Ensembl 
Regulatory Build. Genome Biol. 16, 56 (2015). 

23. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human 
epigenomes. Nature 518, 317–330 (2015). 

24. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the 
human genome. Nature 489, 57–74 (2012). 

25. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for 
Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011). 

26. Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix 
factorization. Nature 401, 788–91 (1999). 

27. Martin Ester, Hans-Peter Kriegel, Jörg Sander, X. X. A Density Based Notion of Clusters 
in Large Spatial Databases with Noise. doi:10.1.1.71.1980 

Competing Interests Statement 

DP, SN, and FS are all employees of Illumina Inc. FS, DM, SN, AA, RM, and JS all have one or 

more patents pertaining to one or more aspects of the technologies described here. 

Acknowledgements 

We would like to thank Brooke DeRosa for culturing the primary fibroblast cell line for this project. 

We would like to thank other members of the Adey Lab for helpful suggestions and dialogue 

pertaining to this work, particularly Sarah Vitak. A.C.A. is supported by the Knight Cardiovascular 

Institute and the Medical Research Foundation of Oregon. B.J.O. is supported by a fellowship 

from the Sloan Foundation. 

Author Contributions 

A.C.A. and R.M.M. conceived the sci-MET assay. R.M.M. carried out all sci-MET preparations 

with contributions from A.J.F. A.C.A., R.M.M., F.J.S., D.P., and S.N. designed the sci-MET 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 28, 2017. ; https://doi.org/10.1101/157230doi: bioRxiv preprint 

https://doi.org/10.1101/157230
http://creativecommons.org/licenses/by-nc-nd/4.0/


adaptors and primers and reduced the assay to practice. R.M.M., F.J.S., D.P., and S.N. carried 

out all sequencing. R.M.M. led the data analysis. D.S. and Z.X. performed the NMF-tSNE 

analysis. K.A.T. provided additional analyses. F.J.S., J.S., C.T., and B.J.O. contributed to analysis 

design and edited the manuscript. A.C.A. supervised all aspects of the study. All authors approved 

the manuscript. 

Datasets Used 

Publically available datasets used in this study were obtained from the ENCODE data portal with the 

following accessions: ENCFF039JFT, ENCFF092FNE, ENCFF103DNU, ENCFF110AZO, ENCFF121ZES, 

ENCFF122LEF, ENCFF157POM, ENCFF168HTX, ENCFF171ZRJ, ENCFF200MJQ, ENCFF210XTE, 

ENCFF215CKT, ENCFF216DJL, ENCFF241AQC, ENCFF247ILV, ENCFF256WDR, ENCFF257GGV, 

ENCFF186EKM, ENCFF517AOL, ENCFF545MIY, ENCFF266NGW, ENCFF279HCL, ENCFF315ZJB, 

ENCFF366UWF, ENCFF390OZB, ENCFF435SPL, ENCFF455TQO, ENCFF477AUC, ENCFF477GKI, 

ENCFF479QJK, ENCFF487XOB, ENCFF497YOO, ENCFF500DKA, ENCFF510EMT, ENCFF526PFA, 

ENCFF534RNT, ENCFF536RSX, ENCFF553HJV, ENCFF575GIN, ENCFF588IUK, ENCFF601NBW, 

ENCFF625GVK, ENCFF684JHX, ENCFF699GKH, ENCFF714SUO, ENCFF721JMB, ENCFF730NQT, 

ENCFF731IOY, ENCFF774GXJ, ENCFF795DNO, ENCFF831OYO, ENCFF835NTC, ENCFF837SXM, 

ENCFF847OWL, ENCFF867JRG, ENCFF874GGB, ENCFF913UZU, ENCFF918PML, ENCFF959WCA, 

ENCFF001SUN, ENCFF001SUL, ENCFF001SUG, ENCFF001SUD, ENCFF001SUJ, ENCFF001SUE, 

ENCFF001WYF, ENCFF001WYH, ENCFF001WYB, ENCFF001WYE, ENCFF001SUF, ENCFF001SUM, 

ENCFF001SUO, ENCFF001WYJ, ENCFF001WYK, ENCFF001SUI, ENCFF001SUP, ENCFF001SUQ, 

ENCFF741JQL, ENCFF549RWR, ENCFF323ZIV, ENCFF963GBQ, ENCFF800JNP, ENCFF001XDF, 

ENCFF639BKP, ENCFF363SIQ, ENCFF590RFP, ENCFF001WVZ, ENCFF001WWC, ENCFF001XHL, 

ENCFF001XHM, ENCFF001WWD, ENCFF001WWE, ENCFF001WWH, ENCFF001WWI, 

ENCFF523KSP, ENCFF066BAT, ENCFF825UAX, ENCFF765FCQ, ENCFF464QPC, ENCFF594VZB, 

ENCFF451UZW, ENCFF993MZN, ENCFF041SJL, ENCFF631QJF, ENCFF907IMB, ENCFF668WID, 

ENCFF050JWX, ENCFF418RFY, ENCFF483QXH, ENCFF301UTR, ENCFF019MRX, ENCFF715BRM, 

ENCFF367STH, ENCFF388TAT, ENCFF231GIV, ENCFF637XZK, ENCFF467BCP, ENCFF985WXP, 

ENCFF001VDK, ENCFF581RTT, ENCFF342JBJ, ENCFF037SXA, ENCFF422AIH, ENCFF001XCF, 

ENCFF001XCG, ENCFF127YXW, ENCFF498ERO, ENCFF781HLM, ENCFF046YRR. 

Methods 

Preparation of Unmethylated Control DNA. 100 ng of unmethylated Lambda DNA (Promega, 
Cat. D1521) was treated with 4uL of 500 nM transposase-adaptor complex (transposome) pre-
loaded with cytosine-depleted custom oligonucleotides in 10 uL of 1X Nextera Tagment DNA (TD) 
buffer from the Nextera DNA Sample Preparation Kit (Illumina, Cat. FC-121-1031) diluted with 
NIB to simulate reaction conditions for nuclei. Following incubation for 20 min at 55 ˚C, this 
reaction was cleaned with QIAquick PCR Purification Kit (Qiagen, Cat. 28104) and eluted in 30 
uL of 10 mM Tris-Cl solution (pH 8.5). The tagmented, cleaned DNA was then quantified via Qubit 
2.0 Flourometer dsDNA High Sensitivity Assay (Thermo Fisher, Cat. Q32854). 
 
Tissue Culture. Tissue culture cell lines (GM12878, Coriell; NIH/3T3, ATCC CRL-1658; HEK293, 
ATCC CRL-1554; Primary Fibro., inguinal fibroblast, GM05756, Coriell) were cultured in 5% CO2 
at 37˚C. GM12878 cells were grown in Roswell Park Memorial Institute media (RPMI, Gibco, Cat. 
11875093) supplemented with 15% (by volume) fetal bovine serum (FBS, Gibco, Cat. 10082147), 
1X L-glutamine (Gibco, Cat. 25030081), 1X Penicillin-Streptomycin (Gibco, Cat. 15140122), and 
gentamicin (Gibco, Cat. 15750060). HEK293 cells were grown in Dulbecco’s Modified Eagle’s 
media (DMEM, Gibco, Cat. 11995065), supplemented with 10% FBS, and 1X L-glutamine. 
NIH/3T3 cells were grown in the same preparation of DMEM as HEK293 cells. Primary Fibroblasts 
were cultured in a growth medium comprised of DMEM/F12 (with GlutaMax; Thermo Fisher), 10% 
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fetal bovine serum (FBS; Thermo Fisher), 1% MEM Non-Essential Amino Acids (Thermo Fisher), 
and 1% Penicillin/Streptomycin (Thermo Fisher). Adherent cell lines were grown to ~90% 
confluency at the time of harvest. 
 
Sample preparation and nuclei isolation. For library preparation, cells were pelleted if cultured 
in suspension, or trypsinzed (Gibco, Cat. 25200056), if adherent. Cell were washed once with ice 
cold PBS and carried through cross-linking (for the xSDS method) or directly into nuclei 
preparation using nuclei isolation buffer (NIB, 10mM TrisHCl pH 7.4, 10 mM NaCl, 3mM MgCl2, 
0.1% Igepal, 1X protease inhibitors (Roche, Cat. 1187358001)). 
 
Nucleosome Depletion. Detailed step-by-step protocol for nucleosome depletion and all 
subsequent steps can be found in the Supplementary Protocol. Nucleosome depletion and 
combinatorial indexing strategies were performed similar to previously described, with some 
variations20. 
Lithium-assisted nucleosome depletion (LAND) was performed for generation of GM12878-only 
and Human/Mouse libraries. Prepared nuclei were pelleted and resuspended in NIB 
supplemented with 200 uL of 12.5 mM lithium 3,5-diiodosalicylic acid (Sigma, Cat D3635) for 5 
minutes on ice before addition of 800 uL NIB and then taken directly into the combinatorial 
indexing protocol. 
Cross-linking and SDS nucleosome depletion (xSDS). Cells were cross-linked by incubation in 10 
mL of media with 1.5% formaldehyde (final conc. by vol.) and incubated at room temperature for 
10 minutes with gentle agitation. Cross-linking was quenched with 800 uL 2.5 M glycine and 
incubated on ice for 5 minutes. Cells were then spun down, washed with ice-cold PBS, and 
resuspended in ice cold NIB for a 20 minute incubation on ice with gentle agitation. Cells were 
then pelleted, washed with 900 uL of 1X NEBuffer 2.1m and resuspended in 800 uL 1X NEBuffer 
2.1 with 0.3% SDS (Sigma, Cat. L3771) and incubated at 42 ˚C with vigorous shaking for 30 
minutes in a thermomixer (Eppendorf). 200 uL of 10% Triton-X was added to quench, and the 
solution was incubated at for another 30 minutes at 42 ˚C with vigorous shaking. Nuclei were then 
taken into the combinatorial indexing protocol. We were concerned that the crosslinking may 
affect the bisulfite conversion reaction; however, based on the methylation rates (particularly for 
those of nonCG methylation which were very low in concordance with expectations), we 
determined that not to be the case. 
 
Combinatorial indexing via tagmentation. Nuclei were stained with 8uL of 5mg/mL DAPI 
(Thermo Fisher, Cat. D1306) and passed through a 35-um cell strainer. A 96-well plate was 
prepared with 10 uL of 1X TD buffer diluted with NIB in each well. Fluorescence-assisted nuclei 
sorting (FANS) was performed with a Sony SH800 flow sorter to sort 2,500 single nuclei into each 
well in fast sort mode (Supplementary Fig. 10). 4uL of 500 nM transposome, pre-loaded with 
cytosine-depleted, uniquely indexed, custom oligonucleotides was placed in each well (described 
in supplement, transposomes assembled as described in Amini et. al. 2014, ref.17). Reactions 
were incubated at 55˚C for 20 minutes. All wells were then pooled and stained with DAPI as done 
for the first FANS sort. A second 96-well plate was prepared with each well containing digestion 
reagents as described by the manufacturer’s protocol for the EZ-96 DNA Methylation MagPrep 
Kit (Zymo, Cat. D5040) at one-fifth the volumes (for 5 uL per well). 22 post-tagmentation nuclei 
from the pool of all reactions were sorted into each well using the single-cell sorting setting. Some 
wells were selected to receive only 10 nuclei, to allow for unmethylated controls. The plate was 
then spun down at 600 x g for 5 minutes at 4˚C. 
 
Library preparation. Prior to bisulfite conversion, several wells, which only received 10 nuclei in 
the final sort, were spiked with ~35 pg of the prepared unmethylated control DNA, to keep DNA 
mass constant per well. Nuclei were then processed following manufacturer’s protocol for the EZ-
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96 DNA Methylation MagPrep Kit, with volumes reduced to one-fifth those described by the 
manufacturer to allow for single-well reaction processing, and other slight modifications. Following 
the final post-bisulfite library cleanup, each well was eluted in 25 uL of Zymo M-Elution Buffer and 
transferred to a well in a 96-well plate prepared with the following reaction mixture for linear 
amplification: 16 uL PCR-clean ddH2O, 5 uL 10X NEBuffer 2.1 (NEB, Cat. B7202), 2 uL 10 mM 
dNTP mix (NEB, Cat. N0447), and 2 uL of 10 uM random nonamer primer with a partial sequence 
of the Illumina Standard Read 2 sequencing primer (9NP, 3’-
NNNNNNNNNAGATCGGAAGAGCACACGTCTG-5’). To render libraries single stranded prior to 
linear amplification, reactions were heat shocked at 95˚C for 45 seconds and then flash cooled 
on ice. Following cooling, 10 U Klenow (3’->5’ exo-) polymerase (Enzymatics, Cat. P7010-LC-L), 
was added to each reaction and followed by incubation at 4 ˚C for 5 minutes, then a slow ramp of 
+1 ̊ C/15 seconds, and 37 ̊ C for 90 minutes. This was repeated for 2-4 times dependent on library 
and in accordance with previously describe scWGBS protocols (Supplementary Fig. 1)12. For 
each repetition, 1 uL 10 uM 9NP, 1 uL 10 mM dNTP mix, 1.25 4X NEBuffer 2.1, and 10 U Klenow 
(3’ -> 5’ exo-) polymerase was added after the heat shock and cooling. Following completion of 
linear amplifications, wells were cleaned with 1.1X (by volume) of 18% PEG SPRI Bead mixture 
(Sera-Mag SpeedBeads (GE, Cat. 65152105050250) washed and resuspended in 18% PEG 
8000 (by mass), 1M NaCl, 10mMTris-HCl, pH 8.0, 1mM EDTA, 0.05% Tween-20), with a 5 minute 
room temperature incubation, then placed on a magnetic rack until the supernatant was cleared. 
The supernatant was discarded, and beads were washed with 80% ethanol while held in place 
by the magnets. Beads were then dried and libraries were eluted in 21 uL 10 mM Tris-Cl (pH 8.5). 
The full 21 uL eluate was then placed into a 96-well plate prepared with a PCR reaction mixture 
containing 25 uL 2X KAPA HiFi HotStart ReadyMix (Kapa, Cat. KK2602), 2 uL of 10 uM forward 
and reverse uniquely indexed primers (each introducing a 10-nt indexing sequence), and 0.5 uL 
of 100X SYBR Green I (FMC BioProducts, Cat. FC-121-1031). Real time PCR was performed on 
a Bio-Rad CFX thermocycler with the following conditions: 95°C for 2 minutes, (94°C for 80 
seconds, 65°C for 30 seconds, 72°C for 30 seconds [Image]) for 18-22 cycles. PCR was stopped 
once libraries reached the inflection point of measured SYBR green fluorescence. Following PCR, 
libraries were then pooled by column (10 uL/well) and with 0.8X (by volume) 18% PEG SPRI 
Bead Mixture as described previously. Libraries were eluted off the magnetic beads in 25 uL of 
10 mM Tris-Cl (pH 8.5). 
 
Library quantification and sequencing. Libraries were pooled and quantified between the 
range of 200 bp and 1 kbp using a 2100 Bioanalyzer DNA High Sensitivity kit (Agilent, Cat. 5067-
4626; Supplementary Fig. 11). Pools were sequenced on either an Illumina NextSeq 500, HiSeq 
2500 or HiSeq X, loaded at 0.9 pM, with a 5% PhiX spike-in to improve complexity (or 30% spike-
in for the NextSeq 500). All sequencing runs used a custom locked-nucleic acid (LNA) 
oligonucleotides for custom sequencing primers to match the standard chemistry temperatures 
(Supplemental Fig. 1). With the exception of the first GM12878-only library pool, libraries were 
sequenced with a custom sequencing chemistry protocol (Read 1: 100 imaged cycles; Index Read 
1: 10 imaged cycles, 27 dark cycles, 11 imaged cycles; Index Read 2: 10 imaged cycles). 
 
Sequence read processing. Reads were processed using bcl2fastq (Illumina Inc., v2.19.0) with 
the “--create-fastq-for-index-reads” and “--with-failed-reads” options to produce fastq files. Fastq 
reads were then identified by indexes, requiring each index (the two 10-nt indexes introduced by 
PCR, and the 11-nt index introduced by tagmentation) to independently be within a Hamming 
distance of two from the expected reference sequences. Reads with all three indexes assigned 
had the respective reference index sequences concatenated to a barcode and appended to the 
read name, which served as the cell identifier. Reads were then trimmed using TrimGalore! 
(v0.4.0) with option “-a AGATCGGAAGAGC” to identify adapters. Trimmed reads were quality 
checked using FastQC (v0.11.3) for adapter content, percent base across reads for bisulfite 
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conversion biases, and k-mer bias. Alignment to the human (GRCh37), mouse (GRCm38), or a 
combined human-mouse hybrid genome was performed with Bismark (v0.14.3) using “--bowtie2” 
and “--unmapped” options25. Aligned reads were then de-duplicated based on barcode, 
chromosome, and starting position. 
 
GM12878-only library development. GM12878-only libraries were generated as described 
above with alterations/specifications as follows: library were generated using the LAND method 
for nucleosome depletion, libraries were generated using four rounds of linear amplification, and 
were sequenced in a paired-end manner. For the paired-end sequencing strategy the following 
custom sequencing chemistry protocol was used (Read 1: 50 imaged cycles; Index Read 1: 10 
imaged cycles, 27 dark cycles, 11 imaged cycles; Index Read 2: 10 imaged cycles; Read 2: 50 
imaged cycles). Sequencing reads were processed using slightly modified read processing 
pipeline. Trimming was performed with TrimGalore! using the “-paired” option, we observed 
biases at the start of both read 1 and read 2 sequences, likely due to the random priming strategy, 
and consequently trimmed the reads with options  “--clip_R1 6”, “--clip_R2 9”. We aligned reads 
to the GRCh37 reference genome with Bismark with an added “-p” option for the paired-end 
alignment. 
 
Human-mouse library development. Human (GM12878) and mouse (NIH/3T3) cell lines were 
mixed following nuclei isolation, but before nucleosome depletion in a roughly equal ratio. 
Nucleosomes were then depleted using the LAND technique and processed as described above. 
Reads were aligned to a hybrid human-mouse genome to estimate barcode collision rate. We 
observed an increase in reads mapping to either human or mouse chromosomes dependent on 
read-depth, likely reflecting the lack of specificity in alignment of bisulfite sequencing data. To 
estimate barcode collision rate we identified putative single cell libraries with < 90% of reads that 
aligned to a single species which represents approximately half of the total collision rate. We also 
generated a second human-mouse library using a mixture of human (HEK293) and mouse 
(NIH/3T3) cells which underwent xSDS nucleosome depletion. The human-mouse xSDS library 
was processed as described above. 
 
Cell line deconvolution library development. To assess the ability of sci-MET to separate out 
different cell types using a low-coverage, high-cell count approach, we generated a library pool 
consisting of GM12878 (a B-lymphoblastoid cell line, 40%), HEK293 (a kidney epithelial cell line, 
20%), and GM05756 (primary inguinal fibroblast line, 40%). Cell lines were brought through the 
sci-MET protocol via xSDS, both in parallel, and as an equal ratio mix combined after nuclei 
isolation. We suspect that this ratio was dramatically altered due to the FANS gating that we 
performed which likely excluded the majority of the aneuploid HEK293 cells which are difficult to 
distinguish from euploid doublets. Furthermore, for the majority of wells in which the cell identity 
was known, the cells were GM129878, thus likely favoring the FANS gating to that cell’s profile. 
It is important to note that this challenge would persist for any method of single cell profiling that 
requires single cell sorting, such as all of the existing single cell methylation assay platforms. 
Libraries were processed as described above. 
 
Single-cell Discrimination. We calculated the read threshold for including barcodes as individual 
cells by first performing k-means clustering (k=3) based on the log10 number of unique aligned 
reads per cell and then fitting a normal distribution to the cluster containing the cells with the 
highest number of unique aligned reads. The threshold was then defined based on the 95% 
confidence interval (CI) of the fitted normal distribution (mean-(1.96 x SD)). We used the kmeans 
function in R for clustering and the MASS (v. 7.3-45) and mixtools (v. 1.1.0) packages for fitting 
the normal distributions. Peaks did not show clear separation for the GM12878-only prep due to 
low coverage. As an alternative approach, mixtools was used to fit mixed normal distributions to 
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the clustered data from which we calculated the 95% CI on the peak with the highest number of 
unique reads. (Supplementary Fig. 12). 
 
Quality Control. We assessed bisulfite conversion efficiency in our preparations through spike-
in of unmethylated lambda DNA. We aligned fastq reads with the respective 11-nt tagmentation 
index to the lambda genome (GenBank: J02459.1) using Bismark. We de-duplicated reads, and 
filtered to high quality alignments (≥Q30). We observed a highly efficient bisulfite conversion 
across sci-MET library constructions (>99%). 

Individual barcodes per library were assessed for mapping efficiency (calculated as 
aligned reads/fastq reads assigned to a barcode), and complexity (calculated as de-duplicated, 
aligned reads/aligned reads assigned to a barcode). Our protocol for library construction both 
increased the throughput of single-cell generation, and significantly increased mapping efficiency 
compared to previously methods. We required cells which met read threshold cutoff to have a 
mapping efficiency of ≥5%, a nonCG methylation of ≤ 5% for downstream clustering analysis. Of 
note, the theoretical maximum number of QC-passing sci-MET single cell libraries for an 
experiment is the number of transposase-indexed nuclei per bisulfite + PCR well multiplied by the 
total number of bisulfite + PCR wells. In the case of our human cell type mix experiment this 
results in a theoretical maximum of 844 libraries. 641 single cells of the possible 844 sorted 
passed read threshold and quality filters, yielding a success rate of 75.95%. We further stratified 
our library pool to assess the effect of various rounds of linear amplification on single-cell library 
quality. We found that four rounds of linear amplification significantly increased mapping efficiency 
(p-value = 7.83 x10-16, t= 8.27, Student's t test; Supplementary Fig. 2). Further we found that 
increased rounds of linear amplification increased the library complexity. We fitted two-factor 
saturation curves to single-cell libraries using the drc (v3.0-1) package's drm function in R 
dependent on rounds of linear amplification. For four rounds and three rounds of linear 
amplification, our projected upper asymptotes (full sequencing saturation) were 3.88 x 106, and 
2.71 x 108 unique CGs per single cell library, respectively (Figure 1e). 
 
Coverage Bias across Annotations. We calculated the coverage bias in individual cells across 
DHS, CG Islands, and Histone (H2AFZ, H3K27ac, H3K36me3, H3K4me1, H3K4me3, 
H3K4me3,H3K79me2, H3K9ac, H3K9me3, H4K20me1, H3K27me3) sites using annotated 
DNase, methylation profiling and CHIP-seq peak data from the publically available UCSC and 
ENCODE databases23,24. We used bedtools multicov (v. 2.22.0) to determine the coverage for 
each cell across all sites of each annotation bed file. We then determined the fraction of total 
reads per kilobase pair (kbp) by summing the coverage across all sites in a cell and normalizing 
by the reads per cell and by the sum of the genomic distance of the peak sites (Supplementary 
Fig. 4). 
 
CG Sites Covered Per N Cells Analyzed. We simulated the number of unique CG sites covered 
in an experiment by an arbitrary number of cells using sciMET (Human cell types data) by 
performing 100 iterations of sampling of n=(10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200,250, 
300, 350, 400, 450, 500, 550, 600, 650) cells. We then calculated the aggregate number of unique 
CG sites covered across all cells for each sampling and fitted a lowess curve (using R package 
ggplot v.2.2.1) to the unique CG sites per n cells sampled saturation plot (Supplementary Fig. 5).   
 
Non-negative Matrix Factorization, tSNE, and clustering. Non-negative Matrix Factorization 
(NMF) is a non-supervised data decomposition technique26. Here we used NMF to learn new 

feature representations. NMF is mathematically approximated by:  𝐀𝑚×𝑛 ≈ 𝐖𝑚×𝑘 ∙ 𝐇𝑘×𝑛, where 

𝐀 is the matrix representing the single cell methylation profiles of n samples. 𝐖 is a dictionary 
matrix with a much smaller k<<m. 𝐇 is the activation coefficients on the new basis. All the three 

of them are non-negative. The column vectors in 𝐖 are called meta-feature, which are higher-
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level abstraction of the original methylation levels and each column in 𝐇 is meta-expression on 
the new basis of each sample. Here we set 𝑘 = 12 to get matrix 𝐀 factorized into low-rank matrix 

𝐖 and 𝐇. In this way, we extracted the uncorrelated basis and the coefficient matrix 𝐇 of the new 
basis by significantly reducing the dimension of the features. Since relatively few basis vectors 
are used to represent many data vectors (k<<m), good approximation can only be achieved if the 
basis vectors discover structure that is latent in the data, which will help the next sample clustering 
and visualization. Then, given the learned feature representation, Student t-Distributed Stochastic 
Neighbor Embedding (t-SNE) package Rtsne (v.0.13) for R is used to plot the meta-expression 

matrix  𝐇𝑘×𝑛 with default parameters. Clustering on the NMF-tSNE coordinates was performed 
using the Density Based Clustering of Applications with Noise (DBSCAN; v.1.1-1) with an epsilon 
value of 4 and a minimal cell seed threshold of 4, ref.27. This process was performed for cells with 
≥ 30,000 unique aligned reads (Fig. 2c) as well as for just cells with ≥ 50,000 unique aligned reads 
(Supplementary Fig. 13), which provided no qualitative difference. 

 
Methylation over Genomic Annotations. Methylation rate over ChIP-seq and other genomic 
annotations was carried out by aggregating the methylation fractions in percentile windows for 
5,000 bp upstream of the feature, through the feature set, and 5,000 bp downstream of the feature 
and smoothed over three percentile windows. Methylation rates were carried out for each 
individual cell as well as for the combination of cells of each specific sample type in the case of 
the human cell type mix experiment. 
 
Window Summaries and Correlations over Ensembl Regulatory Regions. We quantified 
methylation rate across Ensembl Regulatory Build windows using a previously described 
method12. Density plots of methylation rates per cell, and per reads collapsed by cluster identity 
were generated with ggplot2, demonstrating a strong expected bimodality even within low-
coverage libraries. Using ENCODE and Epigenome Roadmap bulk WGBS samples, we 
quantified a weighted methylation rate and variance across samples using the Ensembl 
Regulatory Build loci22. We next took the top 1000 most variable loci across the bulk samples and 
summarized methylation rates within single-cell clusters identified above. We performed a 
Pearson correlation of methylation rates with the bulk WGBS samples using base R cor function. 
Biclustering was performed using the R package gplots (v. 3.0.1) heatmap2 function. 
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Supplementary Figure 1 | Summary of experiments and indexing design. a. GM12878 initial

experiment using lithium-based nucleosome depletion. b. Human and mouse mix experiment

using lithium-based nucleosome depletion. c. Human and mouse mix experiment using

crosslinking and SDS nucleosome depletion. d. Human cell type mixing experiment using

crosslinking and SDS nucleosome depletion. Rounds indicates the number of rounds of linear

amplification post-bisulfite treatment. The 96 × N values indicate the scale of the experiment as

described in the main text.
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Supplementary Figure 2 | Library read count and unique read percentages for (a) the initial

GM12878 only experiment which was sequenced to low depth, and (b) the human cell line mix

experiment. X-axis indicates the percent of unique reads out of total aligned reads, Y-axis is the

log10 unique read count for each cell (each represented as a point). The high read count

distribution indicates true single cell libraries and the lower distribution is the background noise.

In the middle panel of b, rounds indicates the number of rounds of linear amplification.

a

b
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Supplementary Figure 3 | sci-MET assay on a mix of human and mouse cells using lithium-

based nucleosome depletion. A high collision rate (22% total estimated collision rate) was

observed, possibly due to library molecule leakage after transposition.
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Supplementary Figure 4 | Bias of coverage for sci-MET libraries constructed for the cell type

mix experiment. Each cell had its read count within feature windows normalized to the total count

for the cell and the total combined size of the features. DHS = DNase-seq hypersensitivity. All

ChIP-seq and DHS feature sets were obtained from the ENCODE data portal.
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Supplementary Figure 5 | Total unique CG dinucleotides covered as a function of the number of

sciMET single cell libraries merged. 100 random subsets of cells were sampled at each

increment from the human cell type mix experiment for cell libraries containing a minimum of

30,000 unique aligned reads.
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Supplementary Figure 6 | Methylation rate aggregated over ENCODE features identified by

ChIP-seq. Methylation rate was calculated for the upstream 5,000 bp of each feature, throughout

the feature (defined as percentile of progression through the feature), and 5,000 bp downstream

and then aggregated across all features for each single cell (transparent lines) and then

averaged across the pure cell types (solid lines).
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Supplementary Figure 7 | Clustering and library metrics. a. After NMF-tSNE, cell coordinates

were used to identify clusters using the density-based clustering algorithm dbscan with an

epsilon value of 4 and a minimum of 4 cells per seed. Clusters are colored based on their

corresponding cell types. b. Log10 unique aligned reads with an alignment quality score ≥ 10. c.

Percent of reads aligned for each library. d. Percent of reads that align to the Y-chromosome. BJ

cells (foreskin fibroblast cell line) are the only cells derived from a male and form the far right

cluster.
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Supplementary Figure 8 | Correlation of aggregate clusters to ENCODE WGBS data sets for

the top 1,00 most variable Ensembl regulatory regions for the (a) GM12878, (b) Primary Fibro.,

and (c) HEK293 merged cell clusters. Datasets are in the order of the hierarchical clustering.

c
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Supplementary Figure 9 | Biclustering of correlation coefficients for publically available WGBS

data and the merged sci-MET clusters of the top 1,000 most variable regions in the Ensembl

regulatory build. Of note, the GM12878 sci-MET cluster is in a clade with two GM12878 WGBS

samples, the HEK293 sci-MET cluster is in a clade with HepG2 and K562 cell lines (there is no

HEK293 public dataset used), and the Primary Fibroblast sci-MET cluster is in a clade with two

primary forearm fibroblast WGBS samples.
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Supplementary Figure 10 | Scalability of sciMET platform. a. Scalability of sciMET using a

single initial 96-well plate of indexed transposomes. b. Scalability of sciMET when increasing the

number of initial indexes which increases libraries produced for each subsequent plate. The

expected cell count can be represented as:

a

b

𝐶𝑒𝑙𝑙𝑠𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 0.2 ×𝑊𝑒𝑙𝑙𝑠𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑎𝑠𝑒 (𝑚𝑖𝑛=96) ×𝑊𝑒𝑙𝑙𝑠𝐵𝑆+𝑃𝐶𝑅
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Supplementary Figure 11 | FANS sorting for a sci-MET prep. a. Initial sort of nuclei into wells of

the transposase plate. b. Second sort of tagmented nuclei into the bisulfite reaction and

subsequent PCR.

a b
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Supplementary Figure 12 | Bioanalyzer trace of the human cell line mix library.
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Supplementary Figure 13 | Discrimination of single cell libraries through library read

counts. Histograms and density plots of the unique aligned single-cell library preps. The clusters

(k=3) are shown in gray, black, and red. The red vertical lines mark the read cutoff based on the 95%

confidence interval of the cluster with the highest unique aligned reads. LAND = lithium assisted

nucleosome depletion. xSDS = crosslinking and SDS nucleosome depletion.
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Supplementary Figure 14 | Library metrics plotted onto NMF-tSNE coordinates. a. NMF-tSNE

for cells with a higher read count threshold (50,000). b. Log10 unique aligned reads with an

alignment quality score ≥ 10. c. Percent of reads aligned for each library. d. Percent of reads that

align to the Y-chromosome. BJ cells (foreskin fibroblast cell line) are the only cells derived from a

male and form the far right cluster.
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