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ABSTRACT 

During mitosis, bundles of microtubules form a spindle, but the physical mechanism of 

bundle formation is still not known. Here we show that random angular movement of 

microtubules around the spindle pole and forces exerted by passive cross-linking proteins are 

sufficient for the formation of stable microtubule bundles. We test these predictions by 

experiments in wild-type and ase1Δ fission yeast cells. In conclusion, the angular motion 

drives the alignment of microtubules, which in turn allows the cross-linking proteins to 

connect the microtubules into a stable bundle.  
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Introduction 

During mitosis the cell forms a spindle, a complex self-organized molecular machine 

composed of bundles of microtubules (MTs), which segregates the chromosomes into two 

daughter cells (1-3). MTs are thin stiff filaments that typically extend in random directions 

from two spindle poles (4). MTs that extend from the same pole can form parallel bundles, 

whereas MTs originating from opposite spindle poles form anti-parallel bundles (5-7). 

Stability of MT bundles is ensured by cross-linking proteins, which bind along the MT lattice, 

connecting neighboring MTs. Cross-linking occurs only if the distance between the MTs is 

comparable with the size of a cross-linking protein. These proteins can be divided into two 

classes: (i) proteins that cross-link MTs without directed movement along the MT, such as 

Ase1/PRC1 (ref. (8)); (ii) motor proteins that walk along the MT either towards the plus end 

of the MT, such as Cut7/Eg5 (ref. (9,10)), or towards the minus end, such as Ncd (ref. 

(11,12)). 

Spindle self-organization was studied in different biological systems and several 

theoretical models were proposed. Formation of antiparallel bundles of MTs in somatic cells 

of higher eukaryotes was investigated by computer simulations, which include MTs that grow 

in random directions from two spindle poles and motor proteins that link them (13). Further, 

several studies have explored the forces generated in the antiparallel overlaps in vitro (14-16) 

and in Drosophila embryo (17-19). Spindle formation was studied in Xenopus eggs, using the 

“slide and cluster” (20,21) and liquid crystal models (22,23). In budding yeast, it is suggested 

that MTs growing in arbitrary directions from the opposite spindle poles can change their 

direction due to minus end directed kinesin-14 motors bound to both MTs and get aligned, 

forming anti-parallel bundles (24). During spindle positioning, myosin motors walking along 

actin cables accelerate pivoting of astral MTs when they search for cortical anchor sites (25). 

Studies in fission yeast have shown that passive (thermal) pivoting motion of MTs around the 

spindle pole body accelerates kinetochore capture (26-28), together with dynamic instability 

of MTs (29). MT rotational motion about a pivot at the SPB was also included in the model 

for spindle formation (30) and in vitro studies (31). However, observation of the dynamics of 

bundle formation in vivo and a corresponding physical model are required to understand the 

formation and stability of MT bundles. 

In this paper, we combine experiments and theory to explore the formation of parallel 

MT bundles. We introduce the pivot-and-bond model for the formation of parallel MT 
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bundles, which includes random angular motion of MTs around the spindle pole (26), along 

with the attractive forces exerted by cross-linking proteins. The model predicts faster bundle 

formation if MTs diffuse faster and the density of cross-linking proteins is higher, which we 

tested experimentally. We conclude that the angular motion drives the alignment of MTs, 

which in turn allows the cross-linking proteins to connect the MTs into a stable bundle. 

Experimentally observed bundle formation 

The process of MT bundle formation can be observed experimentally in the fission yeast 

Schizosaccharomyces pombe because of a small number of MTs in the spindle. At the onset 

of mitosis, two spindle pole bodies nucleate MTs that form the spindle and additional MTs 

grow from the spindle pole bodies performing angular motion (26). In our experiments, we 

observed that MTs growing at an angle with respect to the spindle eventually join the bundle 

of spindle MTs (Supporting Fig. 1a, Supporting Movie 1). Such events are also accompanied 

by an increase in the tubulin-GFP signal intensity in the spindle, suggesting an increase in the 

number of MTs in the spindle and arguing against the scenario in which one of the MTs 

depolymerized (Fig. 1b). Additionally, we used cells with GFP-labeled Mal3, a protein that 

binds to the growing end of the MT (32). Here we observed MT bundling at a finer time 

resolution (Supporting Fig. 1c in Supporting Note) and the increased Mal3 signal in the 

spindle after bundling (Fig. 1d). Aside from MTs joining the already formed spindle, we also 

observed bundling between pairs of MTs which were both freely pivoting (see Supporting 

Fig. 1a). We did not observe un-bundling events after the bundles were formed. In all cases, 

MTs performed angular motion around the spindle pole body, which allowed them to 

approach each other and form a bundle. 

Theory 

To explore the physical principles underlying the formation and stability of MT bundles, we 

introduce the pivot-and-bond model (Fig. 2a). We describe two MTs as thin rigid rods of 

fixed length with one end freely joint at the spindle pole body, based on experimental 

observations both in vivo (26,27) and in vitro (33). The orientation of the first MT at time t  is 

described by a unit vector ( )r̂ t  (Fig. 2b). The orientation of the unit vector changes as 

,= ×
ˆd ˆ
d
r r
t

ω  (1) 
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where the vector ω  denotes angular velocity of the MT. The other MT has a fixed orientation 

along the z-axis in the direction of unit vector .ẑ  In the overdamped limit, the angular friction 

is balanced by the torque, ,T  experienced by the MT: 

.γ =T	ω  (2) 

Here, γ  denotes the angular drag coefficient. We calculate the total torque as 

( ) ,σ ⎡ ⎤= + ×⎣ ⎦ˆT r tτ η  where the first and the second term represent the deterministic and the 

stochastic components, respectively. If the noise is caused by thermal fluctuations, as in 

fission yeast (26), ( ),η= iη  =1,2,3i  is a 3-dimensional Gaussian white noise, where i-th and 

j-th components for times t  and 't  obey ( ) ( ) ( ) ,η η =δ − δ, ' 'i j ijt t t t  with ( )δ − 't t  being the 

Dirac delta function and δij  is the Kronecker delta function. The magnitude of the noise is 

related to the angular drag coefficient, following the equipartition theorem, as ,σ γ= B2k T  

with Bk T  being the Boltzmann constant multiplied by the temperature. We introduce the 

angular diffusion coefficient, ,γ= BD k T  and the equation (2) now reads 

( ).= + ×ˆ2 r
B

D D t
k T

ω τ η  (3) 

In our model, the torque τ  in equation (3) is the consequence of forces exerted by cross-

linking proteins connecting both MTs. If we denote the positions along the MTs as = ˆr rr  and 

= ˆz zz  respectively, the torque contribution from cross-linking proteins is  

( ),= ×d d , ,r f N r z tτ  (4) 

with dN  being the number of cross-linking proteins connecting the MT elements [ ]+, dz z z  

and [ ].+, dr r r  The force exerted by a single cross-linking protein is elastic and calculated as 

( ).= − − 0 ˆf y yk y  Here, k  is the Hookean spring constant, = −y z r  is the elongation of the 

protein linking positions r  and ,z  with magnitude y  and direction ,=ŷ y y  and 0y  is the 

relaxation length of the cross-linking protein. We describe the distribution of cross-linking 

proteins along the MTs by introducing the density, ,ρ  which obeys 

( ) ( ) .ρ=d , , r, , d dN r z t z t r z  To calculate the total torque we summed up all the attached 

cross-linking proteins: 
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,ρ
∞ ⎛ ⎞= × −⎜ ⎟

⎝ ⎠∫ ∫ 0

0 0

d d 1r z
R yk r z

y
τ  (5) 

where we used ( )× − = ×r z r r z  and allowed the fixed MT to span the entire positive z-axis. 

When the total number of cross-linking proteins is large we can use the mean field limit and 

consider them continually distributed along the MT. In this limit, the cross-linking protein 

density is given by: 

( ) ( ) .ρ ρ∂ ∂∂ = − − + −
∂ ∂ ∂

, ,r z
a d

j j k c r z k r z
t r z

 (6) 

Here, the currents describe the redistribution of cross-linking proteins along the MTs, 

,ρ ρ= − ∂r ,z r ,z m r,zj v D  where the two terms correspond to the drift and the diffusion of cross-

linking proteins, respectively. For passive cross-linkers, the velocities are calculated from the 

balance of the elastic force and friction of cross-linking proteins moving along the MT, 

,γ=r ,z r ,z mv f  where the components of the elastic force parallel with the corresponding MTs 

are calculated as = ⋅r ˆf rf  and .= − ⋅z ˆf zf  The friction coefficient is calculated using the 

Einstein relationship, .γ =m B mk T D  We assume that the attachment rate ak  is constant and 

that the detachment rate depends on the force experienced by the cross-linking proteins (34), 

( ) ( )( ) ,⎡ ⎤= ⎣ ⎦d d0 c, exp ,k r z k f y r z f  with cf  being the critical force required for rupturing the 

MT-protein bond. The extensions of cross-linking proteins in the nucleoplasm are in 

thermodynamic equilibrium, hence they obey the Boltzmann distribution. Thus, the 

distribution of cross-linking proteins in the nucleoplasm with respect to their extensions is 

given by ( ) ( )( ) ,π ⎡ ⎤= − −⎢ ⎥⎣ ⎦
2

0 B 0 B, 2 exp , 2c r z c k k T k y r z y k T  where the constant 0c  is the 

linear concentration of cross-linkers in the nucleoplasm. Equations (1)-(6) provide a complete 

description of angular movement for the MT in the presence of cross-linking proteins. 

Results 

To obtain the time course of the MT orientation, we parameterize the orientation of the MT 

given by the unit vector by ( ) ( ),θ ϕ θ ϕ θ ϕ θ=ˆ , sin cos ,sin sin ,cosr  where θ  and ϕ  denote 

the polar and azimuthal angle, respectively. In this parameterization, the equation of motion 

for the polar angle reads 
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( ).θ η
θ

∂= − +
∂

d 2
d

UD D t
t

 (7) 

The normalized potential describing the interaction between the MTs, ( ),θU  is implicitly 

defined as ,θ τ θ−∂ = +B cotU k T  where τ  denotes the magnitude of the torque and θcot  is 

the spurious drift term (35) (for derivation see Supporting Note 1). This equation is sufficient 

to describe the bundling process, because the angle between the MTs is given only by the 

polar angle, the dynamics of which is independent of the azimuthal angle. In the adiabatic 

approximation, ,ρ∂ ∂ =0t  equation (6) yields a one-dimensional cross-linker density profile 

( )ρr r  (exact expression given by equation S21 in Supporting Note 1). Integrating the density 

profile over the entire length of the MT allows us to calculate the torque exerted by cross-

linking proteins, which in turn allows us to calculate the generalized potential 

( ) ( ) ( ) ( ) .θ θ θ θ θ θ θ θ θ⎡ ⎤ ⎡ ⎤=− Θ − +Θ − −⎣ ⎦ ⎣ ⎦max min min min ln sinU  Here, θ =max a 0 0 d04k c y k  is 

the local maximum of the potential, θ =min 0y R  is the local minimum and Θ  is the 

Heaviside step function. The expression for the generalized potential combined with equation 

(7) formulates the pivot-and-bond model in terms of a one-dimensional Langevin equation. 

 By numerically solving equation (7) for the polar angle, for a large initial angle, we 

found that the MT performs random movement and spans a large space (Fig. 2c). However, 

the movement can become abruptly constrained in the vicinity of angle zero. These small 

angles correspond to a bundled state. Our numerical solutions also show that, in rare cases, 

constrained MT movement in the vicinity of angle zero can suddenly switch back to free 

random movement (Fig. 2d). The constrained movement near angle zero is a consequence of 

short range attractive forces exerted by the cross-linkers that accumulate in larger densities 

when MTs are in close proximity (compare green and magenta lines in Fig. 2e). The density is 

constant up to 0r  because in that region, the cross-linkers can always attach in a relaxed 

configuration, while for ,> 0r r  the cross-linkers will always be under tension and their 

density will drop off dramatically as r  increases further (see illustration in Fig. 2e and 

Supporting Note 1). Our numerically obtained time courses that correspond to the MT 

bundling are similar to those from experiments (compare Figs. 2c and 2f). 

To systematically explore the formation of MT bundles and their stability, we first 

examine the normalized potential describing the interaction between the MTs. The shape of 

the normalized potential for different MT lengths and nucleoplasm cross-linker concentrations 
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is shown in Fig. 3a. The normalized potential has a local maximum that introduces an 

intuitive boundary between two regions, [ ]Θ θ≡B max0,  and [ ],Θ θ π≡u max ,  termed bundled 

and unbundled state, respectively. The bundling and unbundling probabilities are calculated as 

( ) ,
Θ

θ θ⎡ ⎤∝ −⎣ ⎦∫
B,U

B,U exp dP U  where we used the stationary probability distribution 

( )θ⎡ ⎤−⎣ ⎦exp U  and the normalization + =B U 1P P  (see ref.  (35)). Bundling probability, shown 

in Fig. 3b as a function of cross-linker concentration, exhibits a sharp transition from zero to 

one around the value .=B 1 2P  Based on this transition, we define bundles as stable if 

.>B UP P  Thus, our theory predicts that stable bundles can form only if MTs are long enough 

and there are enough cross-linking proteins in the nucleoplasm (see Fig. 3c). 

Finally, we calculate how the MT bundling time depends on the parameters of the 

system. In the case of an isotropic distribution of initial MT orientations, we calculate the 

bundling time as ( ) ( ) ,
π

θ θθ
θ θ= ∫ minmin

B ,
1 2 sin dt D t  where 

θ θmin,
t  is the first passage time 

from an initial angle θ  to the angle θmin  (for more details see Supporting Note 1). After 

solving these integrals numerically, we found that the bundling time normalized by the 

diffusion coefficient, ,Bt D  decreases as the cross-linker concentration increases (solid black 

line in Fig. 3d), but is not significantly affected by the MT length (solid green line in Fig. 3d). 

Note that the bundling time, ,Bt  is inversely proportional to ,D  which decreases with MT 

length (26), thus we expect that the bundling time increases with MT length. The unbundling 

time, ,Ut  is calculated analogously. The unbundling time becomes longer than bundling 

time if the condition for bundle stability >B UP P  is fulfilled. Once this condition is satisfied, 

the bundling time greatly increases (dashed line in Fig. 3d). 

In order to compare the theory with experimental observations, we measured the 

bundling time as the total observation time of MTs divided by the number of observed 

bundling events, =B expt t n (see Supporting Note 2). Along with the wild type cells, we 

also performed the measurements on the mutant in which the ase1 cross-linker was knocked 

out (denoted ase1Δ, ref. (36,37)), in which we also observed MT bundling (see Supporting 

Fig. 1b, Supporting Movie 4 and Supporting Table 1). We observed that the bundling time 

increases with MT length (Fig. 3e), and that the bundling time is significantly longer in ase1Δ 

cells (compare green and magenta line in Fig 3e). We normalized the bundling time by the 
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diffusion constant and found a weak dependence on MT length, but a significant increase in 

ase1Δ cells compared to wild type (inset of Fig 3e, for theory see Supporting Note 1, for 

diffusion measurements see Supporting Fig. 2). The theory reproduces the weak dependence 

on MT length and implies that the deletion of ase1 decreases the effective cross-linker 

concentration roughly five fold. 

In conclusion, our work implies that only passive processes, thermally driven motion 

of the MTs and passive cross-linkers, are sufficient to describe the formation of parallel MT 

bundles. By introducing the pivot and bond model we gain a deeper understanding of the 

mesoscopic properties of the bundling process, such as bundle stability and average bundling 

time, as well as predict their dependence on biological parameters such as MT length and 

cross-linker concentration. This approach is complementary to more exhaustive and detailed 

methods such as large-scale numerical simulations (for example (30,38)).  

Along with parallel MT bundles, mitotic spindles also contain bundles of anti-parallel 

MTs, which are made of MTs extending from the opposite spindle poles. The theory 

developed here could be generalized to describe MTs extending from two spindle poles by 

adding additional angular variables and including directional movement of cross-linking 

proteins. Just like here, such model will give insight into the minimal requirements for the 

formation of anti-parallel MT bundles and therefore shed additional light on the physics of 

spindle formation.  
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FIGURE LEGENDS 

 

Fig. 1. Formation of MT bundles in S. pombe cells. (a) Time-lapse images and the 

corresponding drawings showing the formation of a parallel MT bundle in an S. pombe cell 

expressing tubulin-GFP and Sid4-GFP. (b), Measurement of the tubulin-GFP signal intensity 

of MTs before bundling and after bundling (measurement done along the line in the inset with 

the corresponding color). The measurements were done on the first and the last image in panel 

a, respectively. (c), Time-lapse images and the corresponding drawings showing the 

formation of a parallel MT bundle in an S. pombe cell expressing Mal3-GFP and Sid4-GFP. 

(d), Measurements of the Mal3-GFP signal intensity of the spindle and MT before bundling as 

in b. Scale bars in panels a and c are µ1 m . 
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Fig. 2. Scheme of the model and numerical solutions. (a), Cartoon representation of the 

bundling process. A MT (green rod) pivots around the spindle pole body (grey ball). Cross-

linking proteins (grey springs) attach and cause the MTs to from a bundle. (b), Scheme of the 

model. The orientations of two MTs are represented by the unit vectors r̂  and .ẑ  Cross-

linking proteins attach to and detach from MTs at rates ak  and ,dk  respectively. The 

elongation of the attached cross-linking protein is denoted y  and their relaxed length is .0y  

The angle between the MTs is denoted .θ  (c), A sample path for the starting angle 

,θ =0.9	rad  which shows a bundling event. (d), A sample path for an unbundling event. (e), 

Cross-linking protein density profiles along the MT for two points on the path shown in c, 

denoted by arrowheads in corresponding colors (large image). The point 0r  is shown for the 

magenta line. The inset shows a schematic of the orientations of attached cross-linkers. The 

cross-linkers attached within the distance 0r  from the spindle pole body are always relaxed, 

while those attached at larger distances from the spindle pole body are elongated. (f), A 

sample of MT angle time series obtained using light microscopy on cells with the Mal3-GFP 

label. All calculations are done with ,−= µ 1
0 300	 mc  ,= µ1.5	 mR  ,−= 2 10.001	rad sD  other 

parameters shown in Table 1. 
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Fig. 3. Solutions of the model in the adiabatic approximation. (a), The effective potential as a 

function of the polar angle for small angles. The inset shows the potential for all angles. (b), 

Bundling probability as a function of 0c  for three different values of .R  The colors of the dots 

correspond to the color code of the parameters used in a.  (c), Phase diagram. The gray area 

represents the region where bundles are stable. The arrowheads represent the values of R  

used in b. (d), Normalized bundling and unbundling times. The black lines represent the 

normalized bundling (solid line) and unbundling time (dashed line) as a function of 0c  for 

.= µ1.5	 mR  The green line represents the normalized bundling time as a function of R  for  
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.−= µ 1
0 250	 mc  (e) Experimentally measured bundling times for wild type (green) and ase1Δ 

cells (magenta). Inset shows the comparison between measured normalized bundling time 

(dots with error bars) and theoretical curves for −= µ 1
0 500	 mc  (solid green line) and 

−= µ 1
0 100	 mc  (solid magenta line). 
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Table 1. Values of the constant parameters used in this paper. 

Parameter Value Source 

k  −10.1	pNnm  Value for Eg5 (ref. (16,39)) 

cf  3	pN  Value for kinesin-1 (ref. (40)) 

0y  40	nm  Value for Prc1 (ref. (41,42)) 

mD  −µ 2 10.05	 m s  Value for Ase1 (ref. (15,43)) 

ak  −10.01	s  Value for Ase1(ref. (15)) 

d0k  −10.1	s  Value for Ase1 (ref. (15)) 
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