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ABSTRACT 

 

Determining whether recurrent but rare cancer mutations are bona fide driver mutations 

remains a bottleneck in cancer research. Here we present the most comprehensive 

analysis of retrovirus driven lymphomagenesis produced to date, sequencing 700,000 

mutations from >500 malignancies collected at time points throughout tumor 

development. This enabled identification of positively selected events, and the first 

demonstration of negative selection of mutations that may be deleterious to tumor 

development indicating novel avenues for therapy. Customized sequencing and 

bioinformatics methodologies were developed to quantify subclonal mutations in both 

premalignant and malignant tissue, greatly expanding the statistical power for identifying 

driver mutations and yielding a high-resolution, genome wide map of the selective 

forces surrounding cancer gene loci. Screening two BCL2 transgenic models confirms 

known drivers of human B-cell non-Hodgkin lymphoma, and implicates novel candidates 

including modifiers of immunosurveillance such as co-stimulatory molecules and MHC 

loci. Correlating mutations with genotypic and phenotypic features also gives robust 

identification of known cancer genes independently of local variance in mutation 

density. An online resource http://mulv.lms.mrc.ac.uk allows customized queries of the 

entire dataset.
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INTRODUCTION  

 
The majority of verified human cancer genes have been identified by 

translocation breakpoints, recurrent exonic mutations, and focal copy number 

aberrations (Futreal et al. 2004). Increasing cohort sizes of human tumor sequencing 

has revealed large numbers of rare clonal mutations, however their contribution to 

disease is more difficult to prove due to a lack of statistical power, giving rise to false 

positives and negatives (Lawrence et al. 2013). It is similarly challenging to determine 

how deregulation of intact open reading frames by non-coding mutations, large-scale 

copy number alterations and epigenetic mechanisms contributes to disease. The data 

available to identify cancer drivers from tumor sequencing studies could be increased 

through the study of subclonal mutations in both premalignant samples as well as 

mature tumors, however this requires quantification of both in numbers sufficient to 

demonstrate that selection has taken place. 

Murine leukemia virus (MuLV) induced lymphoma is an ideal model system to 

study the extent to which subclonal mutations can be used to identify cancer drivers. 

Infection of newborn mice with MuLV causes a systemic lifelong viremia whereby viral 

integrations deregulate and truncate nearby genes by diverse mechanisms. Fusion 

transcripts, virus LTR enhancer elements acting on endogenous promoters and 

replacement of 3’ UTR sequences can increase expression, whilst disruption of 

endogenous transcripts, transcriptional interference or methylation of DNA flanking 

integrations can decrease expression (Berns 2011). These mutations eventually give 

rise to hematological malignancies, and a high proportion of the recurrently mutated loci 

correspond to known drivers of human lymphoid malignancies, as well as regulators of 

hematopoietic development and lymphocyte survival (Berns 2011; Ranzani et al. 2013). 

Historically, these screens focused on mutations present in clonal outgrowths as 
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evidence of their role in malignancy, however recent pyrosequencing of MuLV 

lymphomas has also shown selection taking place within subclonal populations of cells 

(Huser et al. 2014). Cloning integration mutations by ligation mediated PCR requires a 

fraction of the sequencing coverage needed to identify other mutation types, allowing 

large numbers of subclonal integration mutations to be identified with unparalleled 

sensitivity. Furthermore, gamma retroviruses are not subject to remobilization, can 

integrate in any sequence context, and localized bias of the orientation of integrations 

can be used as a measure of selection that is independent of regional variation in 

integration density (Huser et al. 2014). 

The fraction of rare mutations that drive cancer is largely unknowable. In this 

study, we use somatic insertional mutagenesis in mice as a model to demonstrate that 

subclonal mutations that are only rarely found as clonal mutations in advanced-stage 

disease can be effectively employed to identify known cancer drivers and differentiate 

rare disease causing mutations from passenger mutations. Using a novel insertion site 

cloning protocol, able to detect subclonal retroviral integrations with unprecedented 

sensitivity, we cloned more than 3000 clonal and 700,000 subclonal mutations across a 

spectrum of > 500 MuLV induced T-cell and B-cell lymphoid malignancies from two 

BCL2 transgenic models over a time course of lymphomagenesis. From these we find 

both positive and negative selection of subclonal events throughout all stages of 

lymphomagenesis and that in late-stage disease both clonal and subclonal populations 

identify more than 100 known cancer drivers and regions implicated in non-Hodgkin 

lymphoma (NHL) by coding mutations, copy number aberrations and genome wide 

association studies (GWAS). This resource can be used to prioritize rare but recurrent 

mutations from human tumors for further study. 
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RESULTS 

 

A time course of MuLV infection quantifies the transition from premalignancy to 

malignant lymphoma. 

To observe how subclonal mutations undergo selection during lymphomagenesis 

we generated a diverse set of B cell and T cell derived lymphoid malignancies, 

sacrificing animals with advanced-stage disease, as well as at a series of premalignant 

time points. Moloney MuLV typically results in a T-cell leukemia/lymphoma however 

subtype and mutation profile can be skewed by genetic background and predisposing 

germline alleles (Uren et al. 2008; Kool et al. 2010). To produce malignancies where 

mutation profiles are correlated with different phenotypes and predisposing genotypes, 

we generated lymphomas on two genetic backgrounds using both wild type animals and 

two BCL2 transgenic models. The t(14;18)(q32;q21) IGH/BCL2 translocation drives 

enforced expression of the antiapoptotic protein BCL2 and is one of the earliest and 

most common initiating mutations of follicular lymphoma (FL) and diffuse large B-cell 

lymphoma (DLBCL). Overexpression of BCL2 is also frequently observed in B-cell 

chronic lymphocytic leukemia (CLL). 

Newborns were infected with MuLV by intraperitoneal injection. A cohort of Vav-

BCL2 transgenic animals (expressing high levels of human BCL2 from a Vav promoter 

(Ogilvy et al. 1999)) and wild type littermates were generated on a C57BL/6 x BALB/c 

F1 background. Emu-BCL2-22 transgenic cohorts (expressing moderate levels of 

human BCL2 from an Emu enhancer (Strasser et al. 1991)) and wild type littermates 

were generated on both C57BL/6 x BALB/c F1 and C57BL/6 backgrounds. All mice 

developed lymphoid malignancies with latency ranging 42-300 days (Fig. 1a-c), with 

enlarged spleens, thymuses and lymph nodes observed in all cohorts. Disease onset 
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was significantly accelerated by the Vav-BCL2 transgene on the F1 background 

(p=0.0001) (Fig. 1a) and by the Emu-BCL2-22 transgene on a C57BL/6 background 

(p=0.0163) (Fig. 1c) compared with their littermate controls. The F1 background 

developed lymphoma more rapidly than equivalent C57BL/6 cohorts (supplemental Fig. 

S1). 

Immunophenotyping by flow cytometry of spleen cell suspensions of 345 animals 

demonstrated variable B and T cell proportions in all cohorts, reflecting the broad 

tropism of Moloney MuLV (Fig. 1d-f, gating strategy outlined in supplemental Fig. S2a). 

Both BCL2 transgenic cohorts yielded a higher proportion of CD19+ B-cell lymphomas 

compared to wild type mice (Fig. 1g), most notably in the Vav-BCL2 cohort. Spleen 

suspensions segregate into two groups, with either a majority of T cells or of B cells 

(Fig. 1h). T-cell lymphomas were primarily CD4+, less frequently CD4-CD8- (typical of 

early T-cell precursor ALL), and only rarely CD8+ or CD4+CD8+ (Fig. S2b). B-cell 

lymphomas were generally immunoglobulin light chain positive indicating a mature B 

cell phenotype (Fig. S2c). MuLV infected Vav-BCL2 transgenic mice displayed a 

disproportionate outgrowth of PNA+ CD95+ germinal center B cells, and isotype 

switching to IgG as has been previously described in this strain (Egle et al. 2004)(Fig. 

S2c-d).
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Figure 1 – Variable latency and immunophenotype of MuLV lymphoma from wild 

type and BCL2 transgenic mice. 

a) The Vav-BCL2 transgene significantly reduced latency on an F1 background. b & c) 

The Emu-BCL2-22 transgene significantly reduces latency on a C57BL/6 background 

but not F1 background. The Emu-Bcl2-22 C57BL/6 cohort had a significantly shorter 

latency than wild type C57BL/6 controls and both C57BL/6 cohorts had longer latency 

compared with F1 equivalents. (Supplemental Fig. 1). d-f) Stacked bar charts on the 

right represent the immunophenotyping of spleen suspensions from each cohort. Each 

row represents one spleen. Colors in each row represent the proportion of B cells (blue 

CD19+) and T cells (yellow CD5+ CD4- CD8-, light orange CD5+ CD8+, dark orange 

CD5+ CD4+ CD8+ and red CD5+ CD4+) in each sample. BCL2 transgenes increase 

the proportion of B cells in all cohorts and the mixture of T cell lymphoma subtypes is 

highly variable. g) The proportion of CD19+ B cells is increased by both BCL2 

transgenes (h) Histogram of all CD19+ proportions from all cohorts combined is a 

bimodal distribution that can be segregated into those consisting primarily of B cells 

(>50%) and T cells. 
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To track selection of premalignant mutations we also generated cohorts 

sacrificed at days 9, 14, 28, 56, 84 and 128 post-infection and harvested the spleens 

from these animals (Table S1). QPCR of virus transcript and copy number indicated that 

virus replication was detectable at day 9 and reached saturation at day 14 (Fig. 2a & b). 

This suggests that a high proportion of mutagenesis occurs in the first 14 days post 

infection, with subsequent rare events of superinfection and selective pressure shaping 

the mutation profile and the eventual clonal outgrowth of late-stage lymphomas. 

 Retroviral integration sites from all animals were identified using a novel Illumina 

HiSeq based protocol (a revision of methods described in Koudijs et al. 2011 and Uren 

et al. 2009) and summarized in Fig. S3). A series of test DNAs were used to generate 

multiple replicate libraries that were sequenced to saturating coverage. Measures of 

highly clonal mutations are reproducible when the same DNA sample is processed 

twice (Fig. S4a), and clonal integrations can be reproducibly detected when diluted 100 

fold into a second DNA sample (Fig. S4b). Barcoded libraries were generated from the 

lymphoid organs of 355 diseased animals, 166 animals sacrificed at predetermined time 

points, and control DNAs (human and uninfected mice). Sequencing these libraries 

identified more than 700,000 unique integration sites, the vast majority of which are 

subclonal and represented by a single read. The relative clonality of integrations within 

each ligation was estimated using the number of individual sheared DNA fragments 

identified for each insert. 
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Figure 2 – Quantifying the progression of MuLV replication and clonal 

outgrowth of resulting lymphoma. 

Virus copy number and expression level was quantified by QPCR of genomic DNA 

(a) and RTQPCR of cDNA (b) extracted from spleen samples of time course 

animals. (c) Profiles of the relative abundance of the top 50 most clonal integrations 

from a cross section of mature lymphoma and time course samples are represented 

as bar graphs. Non-adjusted clonality is indicated in blue, normalized clonality (such 

that the most abundant integration has a value of 1) are the graphs in red. 

Premalignant animals from early time points display a relatively flat profile whereas 

later time points and mice with symptomatic lymphoma show clear signs of clonal 

outgrowth. Shannon entropy values (E) are displayed on each graph. 
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Quantifying lymphoma progression by clonal outgrowth. 

We sought to use mutation abundance to distinguish premalignant samples 

from rapidly dividing diseased samples. MuLV generates tumors with 100% 

penetrance, resulting from independent competing clones. A single clonal outgrowth 

of pure tumor cells containing few mutations will yield high coverage of each 

mutation, whereas a clonal outgrowth with dozens of concurrent mutations alongside 

a large proportion of non-tumor DNA will yield low coverage for even the most clonal 

mutation. There may also be multiple independent clones or related subclones within 

each animal.

As such, for comparison between samples we generated normalized clonality 

values (NC values) where the most clonal integration within each sample was 

normalized to a value of 1. In Fig. 2c the 50 insertions with the highest normalized 

clonality values within each sample are ordered by their relative abundance and 

plotted as bar graphs. Premalignant samples from the time course had a flat profile 

of primarily subclonal mutations with the majority represented by a single read/DNA 

fragment, whereas later stage lymphoma samples are dominated by highly clonal 

outgrowth, with between 1 and 20 clonal integrations. 

We used two approaches to compare levels of clonal outgrowth. Entropy was 

employed as a description of the clonality of integrations within each sample (a 

method based on the prior use of the Shannon entropy to estimate clonal outgrowth 

of T lymphoma (Brown et al. 2016) and in mathematical models of leukaemia 

(Baldow et al. 2016)). Entropy calculations from the 50 most clonal integrations 

yielded high scores for premalignant samples and low scores for advanced-stage 

lymphoma. 

As an independent approach, we used distance measures to cluster clonality 
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profile by their shape. Dynamic Time Warping (Giorgino 2009) and the Kolmorogov-

Smirnov test were both used to measure difference in shape between all insert 

profiles and a distance matrix was constructed from these. Clustering on these 

matrices yields two clusters (Fig. 3a) that place the majority of premalignant time 

course samples within the cluster with higher entropy values > 3.5 (Fig. 3b & c). 

Throughout the time course, entropy values remain high until day 56 and 84 when an 

increasing fraction of samples display lower values indicating clonal outgrowth (Fig. 

3d). Overall, clonal outgrowth is a function of mouse age and strongly correlates with 

symptomatic disease. Diseased mice (i.e. those sacrificed due to symptoms) with 

entropy > 3.5 likely represent animals where lymphoma arose in other organs (bone 

marrow/thymus and lymph nodes) and had not disseminated to the spleen tissue 

analyzed. For subsequent analyses, we define late-stage samples as those with 

clonal outgrowth with a low entropy (< 3.5) and use a cut-off of entropy < 3.5 and 

normalized clonality > 0.1 to define late-stage clonal insertions (Fig. 3e & 3f).
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Figure 3 – Using entropy as a measure to segregate premalignant samples 

from clonal outgrowth of lymphoma. 

a) Dynamic Time Warping was used to cluster clonality profiles of all samples and 

identifies two major groups; premalignant samples (blue) and samples undergoing 

clonal outgrowth (red). Near identical clusters were obtained using the Kolgomorov 

Smirnov statistic (not shown). b) Samples are plotted comparing entropy score by 

rank and individual samples are colored by cluster branch, indicating both entropy 

scores and clustering give a similar bifurcation of samples. c) Distribution of entropy 

scores between the two clusters indicates an entropy value of 3.5 effectively 

separates the groups. d) Distribution of entropy scores between different time points 

indicates a progressive increase in the frequency of clonal outgrowth. Superimposing 

the clonality profiles of all samples within each cluster indicates consistent shape 

within the low entropy group (e) and within the high entropy group (f). A normalized 

clonality value of 0.1 is used to differentiate clonal and subclonal mutations within the 

late stage clonal outgrowth samples. 
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Kinetics of mutation selection throughout a time course. 

MuLV has integration biases that vary substantially throughout the genome 

such that mutation density is insufficient to differentiate selected driver mutations 

from passengers. For this reason we assessed selection over the time course to 

define driver mutations. First, by limiting analysis to the 3051 clonal integrations of 

the late-stage lymphomas we identified 311 common integration sites by Gaussian 

kernel convolution (de Ridder et al. 2006) (GKC) i.e. by estimating the smoothed 

density distribution of integrations over the genome compared to random 

distributions (supplemental table S2). Candidate genes were automatically assigned 

using the KCRBM R package (de Jong et al. 2011). Examining all insertions within 

100kb windows of clonal common integration site (CIS) peaks over all time points, 

demonstrated a gradual increase in the proportion of inserts at these loci from day 9 

through to late-stage lymphoma samples (Fig. S4a-c). 

To quantify the significance of this selection we used contingency table tests 

(Fisher’s exact) to compare the number of integrations in windows surrounding loci in 

early-stage mutations (days 9 and 14), late-stage clonal, and late-stage subclonal 

mutations. Ranking loci using the exact test comparisons between early and late-

stage mutations yields similar results using either subclonal or clonal mutations (Fig. 

S4d, supplemental table S2).

P-values for all early/late, clonal/subclonal comparisons for the top 50 clonal 

CIS loci are illustrated in Fig. 5 in the blue heat map. In some cases high ranking 

clonal CIS loci demonstrate weak selection between early mutations and late-stage 

clonal mutations (e.g. Bzrap, Rreb1), suggesting these are more likely to be 

passenger mutations resulting from integration site biases of MuLV. Late-stage 

subclonal mutations outnumber clonal mutations by 100 fold. Including these 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157800doi: bioRxiv preprint 

https://doi.org/10.1101/157800
http://creativecommons.org/licenses/by/4.0/


	
17	

subclonal mutations in the analyses i.e. comparing all late-stage integrations to early 

mutations, reveals some CIS loci with selection that is more significant than in clonal 

analysis alone (supplemental table S2), including some corresponding to verified 

human cancer genes such as REL, EBF1, ERG, ELF4, MYCL, KIT and KDR. The 

finding of known cancer drivers at these loci demonstrates that this analysis of 

selection over a time course offers an enlarged dataset from which to identify 

previously validated cancer drivers and by extension, potentially identify novel genes 

not previously implicated in disease. 

In addition to selection between early and late-stage samples, we also 

considered other criteria as evidence for selection. A recent study of MuLV induced 

T- cell lymphomas used orientation of integrations as evidence that there is selection 

for deregulation of nearby genes (Huser et al. 2014). The red heat map of Fig. 4 

indicates that the majority of the top 50 clonal CIS loci also have a significant bias for 

subclonal integrations on one strand or the other. We additionally explored whether 

integrations also demonstrate phenotypic bias (selection specific to B-cell or T-cell 

lymphoma, the yellow heat map) or genotypic bias (selection in cooperation with the 

BCL2 transgenes, the green heat map). The majority of the top 50 clonal CIS loci 

demonstrate biases of strand specificity, lymphoma subtype and/or genotype 

specificity. Importantly there is substantial overlap between all four selection criteria 

(stage, orientation, immunophenotype and genotype) suggesting these criteria can 

be used in concert to provide corroborating evidence for selection.
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Figure 4 – Multiple criteria indicate selection of both clonal and subclonal 

mutations at CIS loci. 

Four heat maps representing the relative levels of selection observed between different 

categories of integrations. Fisher’s Exact tests were performed counting the inserts 

within 100kb windows surrounding each of the top 50 clonal insert loci. Blue indicates 

comparisons between early and late stage integrations. Red represents integration 

orientation bias (forward or reverse strand). Yellow represents specificity for B cell 

(>50% CD19) versus T cell lymphomas. Green represents specificity between different 

genotypes. P-values for Fisher’s exact tests are indicated by color intensity. 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157800doi: bioRxiv preprint 

https://doi.org/10.1101/157800
http://creativecommons.org/licenses/by/4.0/


	
20	

 Identifying loci undergoing selection throughout the entire genome. 

The absence of clonal mutations within a region does not rule out selection in 

that region. Of the 300,000 integrations from late-stage diseased animals, only a 

fraction are located within the regions surrounding clonal CIS loci. To see if selection 

over the time course can identify known cancer gene loci in regions outside clonal 

mutation CIS loci, we extended analysis across the entire genome using both 10kb tiling 

and 100kb sliding windows at 10kb intervals. The distribution of integrations in different 

subsets of samples, across a single chromosome (chr15) is illustrated in supplemental 

Fig. S7a. Tracks representing inserts and the relative levels of selection across the 

genome (calculated using exact tests) indicates extensive selection for mutations 

occurring outside regions identified by GKC clonal inserts. 

Examining the entire genome reveals significant local biases for early versus 

late-stage, strand bias, genotype and immunophenotype (B cell/T cell lymphoma) (table 

S3). After multiple testing correction, we identified 170 late-stage specific loci with a 

false discovery rate (f.d.r.) below 0.05, including dozens of windows containing only 

subclonal insertions. The Venn diagram in Fig. 5a illustrates that there is substantial 

overlap of late-stage selected loci with equivalent loci found to be strand specific (49 

loci), and genotype specific (37 BCL2 loci, 15 wild type loci). This is also true for 

immunophenotype specific loci (19 B cell loci, 11 T cell loci). Although biases were 

observed for some loci between males and females, none were found to be significant 

after multiple testing correction (data not shown). 

In regions of high insert density subclonal mutations form a high-resolution map 

of the selective pressures surrounding known oncogenes. The central region of 

chromosome 15 (chr15:62,000,000-63,000,000) with the highest concentration of late-

stage integrations is the Myc/Pvt1 locus (Fig. 5b). The surrounding region harbors 
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multiple clusters of selection spanning from upstream of Myc, and extending through 

multiple clusters downstream as far as the Gsdmc gene family locus (Fig. S7b). This 

distribution of selected mutations over a 2Mb region concurs with the recent finding that 

copy number gains of the entire segment, incorporating Myc, Pvt1 and the Gsdmc 

family locus, is required to give acceleration of cancer in mouse models (Tseng et al. 

2014). 

Orientation bias is a unique criterion, in that it is independent of the integration 

biases of MuLV that may be influenced by cell type or genotype. To validate that 

orientation bias is indeed a function of selection we calculated bias using equal 

numbers of integrations from early and late-stage cohorts (i.e. 80,000 integrations). No 

loci from the early-stage inserts are significant after multiple testing correction, but the 

late-stage insert subset identifies 16 loci. This illustrates that the increased significance 

of strand bias in the late-stage cohort is not merely a function of greater statistical power 

from larger number of integrations, but rather evidence of selection for integrations that 

deregulate or disrupt genes (table S4). 
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Figure 5 – Genome wide scanning of subclonal mutation distributions identifies 

regions undergoing selection.  

a) Genome wide contingency table tests of all mutations identifies loci that are late 

stage specific, strand biased and genotype biased. The Venn diagram demonstrates 

substantial overlap between loci identified by these criteria. b) Distribution of 

integrations over the Myc/Pvt1 locus. Each row of colored vertical lines represents the 

forward and reverse strand integrations of each category of mice. Grey bands below 

each colored row represent the level of selection evidenced by contingency table tests. 

Late stage specific integrations are evident throughout the region however integrations 

upstream of Myc are primarily on the forward strand and T cell specific whereas 

integrations within the Pvt1 gene are in the reverse orientation and somewhat biased 

toward wild type mice. 
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Selection of mutations effectively identifies known cancer drivers. 

Supplemental table S5 lists all candidate genes associated with one or more of 

our selection criteria. Table 1 lists the subset of these loci corresponding to genes from 

the cancer gene census (Futreal et al. 2004); in total 47 genes located at 43 loci. Of the 

47 genes, 27 map within 200,000kb of a clonal CIS with a p-value < 0.05, however an 

additional 21 genes at 20 loci are implicated by subclonal selection criteria that were not 

identified by clonal CIS demonstrating subclonal mutations can provide additional 

statistical evidence to implicate cancer drivers for loci lacking sufficient clonal mutations 

to make this determination. 

We also compared the list of candidate genes identified by any criteria with a set 

of 12 cohorts of hematological malignancies present in the cBio portal (Cerami et al. 

2012). All protein coding candidates generated by KCRBM (without curation) or the 

curated candidate gene lists were used to identify human orthologues using BioMart 

(http://www.ensembl.org/biomart/martview/). The set of 78 MuLV candidate genes found 

mutated in 2 or more samples from any study is depicted in Fig 5a. For the majority of 

cohorts we find significant overlap between either the KCRBM candidates or the full set 

of mutated genes (Fig 5b). When limiting analysis to genes mutated twice in each study 

we see most overlap with a pan NHL study (consisting of DLBCL and FL) and cohorts of 

mature B cell derived lymphoma (DLBCL, MM, MCL). Importantly the overlap is also 

significant when examining the set of genes mutated only once in each study i.e. the set 

of most rarely mutated genes from most cohorts overlaps significantly with the 

candidate lists, demonstrating this dataset can be used as corroborating evidence for 

rarely mutated genes in human sequencing cohorts. 
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Late stage Strand bias BCL2 specific Wild type B cell T cell

Cancer 

Genome 

Census 

Gene

Nearby 

Candidates
Significant Biases

GKC CIS 

pval<0.05 

<200,000 bp 

away

Clonal 

GKC 

rank

Distance

Clonal 

GKC 

rank

Distance

Clonal 

GKC 

rank

Distance

Clonal 

GKC 

rank

Distance

Clonal 

GKC 

rank

Distance

Clonal 

GKC 

rank

Distance

Myc Pvt1 Late stage, Strand bias Yes 2 -521 2 89479 - - - - - - - -
Ccnd3 Taf8 Late stage, Strand bias, T cell Yes 3 -5592 3 24408 - - - - - - 3 34408
Notch1 Late stage, Strand bias, Wild type Yes 5 -30146 5 59854 - - 5 29854 - - - -
Pim1 Late stage, Strand bias Yes 7 37936 7 -52064 - - - - - - - -
Ikzf1 Late stage, Wild type Yes 8 -31949 - - - - 8 -11949 - - - -
Myb Ahi1 Late stage, Strand bias Yes 12 100018 12 -19982 - - - - - - - -

Ccnd2 Parp11 Late stage, Strand bias, T cell Yes 17 -18379 17 -18379 - - - - - - 17 -148379
Mycn Late stage, Strand bias Yes 20 13349 20 -36651 - - - - - - - -
Irf4 Exoc2, Dusp22 Late stage, Strand bias, BCL2 Yes 21 -11430 21 -31430 21 -91430 - - - - - -

Fgfr3 Slbp, Tacc3 Strand bias Yes - - 23 -28657 - - - - - - - -
Vrk1 Bcl11b, Papola Late stage Yes 24 25063 - - - - - - - - - -

Ccnd1 Late stage, Strand bias Yes 28 -35703 28 -35703 - - - - - - - -
Mecom Late stage, Strand bias, Wild type, T cell Yes 41 4149 41 4149 - - 41 -65851 - - 41 -15851

Fli1 Ets1 Late stage, B cell Yes 42 24799 - - - - - - 42 -15201 - -
Syk Auh, Sykb Late stage Yes 47 56107 - - - - - - - - - -
Smo Ahcyl2 Late stage Yes 91 548 - - - - - - - - - -
Jazf1 Tax1bp1 Late stage Yes 105 -19644 - - - - - - - - - -
Rhoh Chrna9 Late stage Yes 108 -56022 - - - - - - - - - -

Kit Kdr Late stage, Strand bias, B cell Yes 113 -38555 113 111445 - - - - 113 1445 - -
Kdr Kit Late stage, Strand bias, B cell Yes 113 -38555 113 111445 - - - - 113 1445 - -
Bcl6 Lpp Late stage, BCL2 Yes 181 -149957 - - 181 -199957 - - - - - -
Lpp Bcl6 Late stage, BCL2 Yes 181 -149957 - - 181 -199957 - - - - - -

Pax5 Zcchc7, Zbtb5 BCL2 Yes - - - - 210 -187501 - - - - - -
Stat5b Stat3, Stat5a Late stage, Strand bias Yes 292 29918 292 -70082 - - - - - - - -
Stat3 Stat5b, Stat5a Late stage, Strand bias Yes 292 29918 292 -70082 - - - - - - - -
Mn1 C130026L21Rik Late stage Yes 302 -89049 - - - - - - - - - -

Nfatc2 Kcng1 Late stage No 14 -549400 - - - - - - - - - -
Crtc3 Late stage No 265 223679 - - - - - - - - - -

Atp1a1 Late stage No 291 -975035 - - - - - - - - - -
Lef1 Ostc Late stage No 338 -3909 - - - - - - - - - -
Bcl3 Ceacam16 Late stage No 458 76781 - - - - - - - - - -
Rel Bcl11a Late stage, Strand bias No 472 -25451 472 14549 - - - - - - - -

Bcl11a Rel Late stage No 472 -25451 - - - - - - - - - -
Akt2 Late stage No 486 -57784 - - - - - - - - - -
Elf4 Late stage No 596 35832 - - - - - - - - - -

Pou2af1 Late stage No 605 96410 - - - - - - - - - -
Cd74 Camk2a, Tcof1 Late stage No 664 -108097 - - - - - - - - - -
Mycl Mfsd2a, Cap1 Late stage No 957 235 - - - - - - - - - -
Rb1 Rcbtb2 Strand bias No 1117 -120980 - - - - - - - - - -
Sufu Trim8 Late stage No 584 -432148 - - - - - - - - - -

Foxo1 Maml3 Late stage No 607 -341538 - - - - - - - - - -
Nf1 Ksr1 Late stage No 748 -390122 - - - - - - - - - -

Bcl2 Late stage No 871 -458795 - - - - - - - - - -
Nras Dennd2c Strand bias No - - 856 -11320 - - - - - - - -
Ebf1 BCL2, B cell No - - 578 -14964 578 -14964 - - - -

Tnfrsf17 B cell No - - - - - - - - 422 -425 - -
Pten Rnls B cell No - - - - - - 509 -699492 - -

Candidates implicated by subclonal selection correspond to genes from the cancer genome census. 27 of these genes map within 200kb of a clonal GKC CIS (pvalue <0.05 Rank < 312).
The distance of subclonal selection peaks from GKC CIS is indictated. Peaks not within 200kb of significant clonal GKC CIS are highlighted.
Adjacent pairs of genes implicated by inserts at the same locus are shaded (Kit & Kdr, Bcl6 & Lpp, Stat5b & Stat3, Rel & Bcl11a).

Table 1
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Table 1 – Analysis of subclonal integrations increases the proportion of 

cancer gene census loci identified. 

Cancer gene census genes were identified by GKC CIS analysis using late 

stage clonal mutations and by genome wide scanning for selection of subclonal 

mutations. Importantly the subclonal mutation analysis identifies known cancer 

drivers not identified as significant CIS by GKC of clonal mutations. Candidates 

implicated by subclonal selection correspond to genes from the cancer genome 

census. 27 of these genes map within 200kb of a clonal GKC CIS (p-value 

<0.05 Rank < 312). The distance of subclonal selection peaks from GKC CIS is 

indicated. Peaks not within 200kb of significant clonal GKC CIS are highlighted. 

Adjacent pairs of genes implicated by inserts at the same locus are shaded (Kit 

& Kdr, Bcl6 & Lpp, Stat5b & Stat3, Rel & Bcl11a). 
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Figure 6 – Overlap of CIS loci with exome sequencing studies of 

hematologic malignancies. 

Human orthologues were identified for all candidate genes (an automated list KCRBM, 

and a curated list) using biomart and compared to lists of genes with coding mutations 

in 12 cohorts of hematologic malignancy in cBio portal. a) All genes found mutated in at 

least two samples over all cohorts are listed with mutation counts from each cohort. The 

full overlap for all cohorts is listed in supplemental table S7. b) The significance of 

overlap between the set of candidate orthologues and the set of mutated genes in each 

study is calculated using a Fisher’s exact test. 
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Across the set of genes identified there is a notable prevalence for genes that are 

known to be deregulated by translocations and/or copy number aberrations as well as 

those found in genome wide association studies in humans. Using a list of 278 selected 

regions identified in this screen by any criteria, 273 were mapped unambiguously to 

orthologous region on Hg19. We overlapped this set of loci with focal copy number 

aberrations of 5 human studies of mature B cell lymphoma and found a significant 

degree of enrichment in 4 of the 5 datasets (table S8). 

Recurrent large-scale copy number changes in human B NHL suggest the 

involvement of multiple genes within these regions. We find a number of corresponding 

loci where selection is evident over large regions incorporating multiple genes. Aside 

from the abovementioned Myc/Pvt1/Gsdmc family locus (Fig. S7b) we see multiple 

selected regions surrounding the Rel/Bcl11a locus (orthologous to human 2p12-16 

amplicons of CLL & DLBCL Fig. S7c), the Slamf gene family which regulate lymphocyte 

survival, activation and co-stimulation (orthologous to human 1q21-23 amplicons of 

multiple myeloma and DLBCL Fig. S7d) and the Gimap gene family of GTPases that 

also regulate lymphocyte survival and development (orthologous to amplicons of the 

distal arm of human 7q seen in FL, DLBCL and Burkitt lymphoma) (Fig. S7e). We also 

see multiple selected loci spanning the region surrounding Prdm1 (orthologous to 

deletions of human 6q21 in B-cell NHL and other hematologic malignancies Fig. S7f). 

The use of BCL2 transgenic animals expands the scope of mutations identified 

beyond loci typically identified by MuLV in wild type animals. Of 37 loci that are BCL2 

transgene specific, and 19 loci that are B cell specific, we find selected regions near 

known B-cell lymphoma and leukemia drivers including Pou2f2, Ebf1, Ikzf3 and Bcl6. 

The most specific locus for both BCL2 transgenic animals and for B cell lymphoma is 
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Pou2f2 (Fig. S7g) which is recurrently mutated in human FL and DLBCL. Recurrent 

missense mutations reduce Pou2f2 transactivation activity and B lymphoma cell lines 

expressing these have a survival advantage (Li et al. 2014), conversely DLBCL cell 

lines appear to be addicted to POU2F2 expression (Hodson et al. 2016). The position of 

insertions within several known tumor suppressor genes is suggestive of disruption. 

Similar intragenic distributions of integrations have previously been described for the 

tumor suppressor Ikzf1 which is mutated or deleted in both B and T-ALL (Gupta et al. 

2016; Mullighan et al. 2008) (Fig. S7h), and this pattern is also observed for the tumor 

suppressors Ikzf3 and Ebf1 (Fig. S7i & S7j), both of which have inactivating mutations in 

FL and DLBCL but more typically B-ALL (Morin et al. 2013; Gupta et al. 2016; Bouska 

et al. 2014; Mullighan et al. 2007). Cxxc5 (late-stage specific) also has a similar pattern 

of intragenic integrations (Fig. S7k) and is deleted and epigenetically silenced in acute 

myeloid leukemia (Kühnl et al. 2015). The majority of our insertions at the Pou2f2 locus 

are intragenic, consistent with the tumor suppressor function observed in FL. 

To find additional evidence supporting the role of candidate genes in hematologic 

malignancies, we conducted an extensive review of the literature, with an emphasis on 

data from human lymphoid malignancies and a particular focus on BCL2 driven B cell 

lymphoma. Supplemental table S6 lists evidence for 194 genes from our list of 

candidates flanking selected loci. In addition to 47 genes identified in the cancer 

genome census we also find 30 genes identified in the Intogen mutational cancer driver 

gene list (Gonzalez-Perez et al. 2013). 

 

Selection of loci implicated by GWAS of lymphoid malignancies. 

In a previous study we found overlap between CIS loci and the set of loci 

associated with familial chronic lymphocytic leukemia (CLL) (Kool et al. 2010). 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 29, 2017. ; https://doi.org/10.1101/157800doi: bioRxiv preprint 

https://doi.org/10.1101/157800
http://creativecommons.org/licenses/by/4.0/


	
31	

Supplemental table S9 summarizes the recent literature of GWAS studies of ALL, FL 

and DLBCL and identifies overlap with the set of candidate genes. The IKZF1 and 

PIP4K2A/BMI1 loci are associated with ALL (Xu et al. 2013; Moriyama et al. 2015). 

GWAS of mature B cell lymphomas have identified associations with follicular 

lymphoma (LPP, HLA loci, PVT1, CXCR5, ETS1 and BCL2 ) and with DLBCL (LPP, 

EXOC2, HLA-B and PVT1) (Cerhan et al. 2014; Bassig et al. 2015). 

The second most specific locus for BCL2 transgenic mice is Cd86 (late-stage, 

strand bias, BCL2) which is suggestively implicated by two GWAS studies of FL and 

DLBCL (Skibola et al. 2014; Cerhan et al. 2014; Bassig et al. 2015). We additionally find 

other loci encoding co-stimulatory/co-inhibitory signaling (Fig. S7l-p). The loci encoding 

Cd86 ligands Ctla4 and Cd28 and their neighboring homologue Icos show late-stage 

specific selection, and polymorphisms in this region have also been associated with 

various NHL subtypes (Piras et al. 2005). Other members of the B7 family and their 

receptors are also implicated by insertions including Icoslg (late-stage) and the Cd274 

(Pdcd1lg1) and Pdcd1lg2 locus (late-stage with f.d.r. = 0.081) as is their receptor Pdcd1 

(late-stage). Pdcd1lg2 is amplified and rearranged frequently in primary mediastinal 

large B cell lymphoma (Twa et al. 2014) and increased expression is speculated to 

inhibit anti lymphoma T cell responses (Shi et al. 2014). 

Late-stage biased insertions are located near the H2-D/H2-Q locus (orthologous 

to the MHC I HLA-B/C loci) and BCL2 transgenic biased clusters are found near the 

MHC Class II beta chains H2-Ob, H2-Ab1, H2-Eb1 and alpha chains H2-Aa, H2-Ea-ps 

(orthologous to the MHC II HLA-DRB/HLA-DQB loci) (FigS7q). Aside from the 

abovementioned GWAS associations both regions are deleted in human DLBCL 

(Booman et al. 2008; Monti et al. 2012; Sebastián et al. 2016). There are also 

suggestive clusters of late-stage insertions surrounding the MHC Class I components 
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H2-T24/T23/T9/T22/BI/T10/T3/Gm7030 (equivalent to the HLA-E locus) and the MHCII 

alpha/beta chains H2-Oa/H2-DMa/H2-DMb (equivalent to the HLA-DOA/HLA-

DMA/HLA-DMB region), suggesting roles for both classical and non-classical MHC 

components in lymphoma progression. 

 

Negative selection of mutations throughout lymphoma development 

Intriguingly we observed many loci throughout the genome that are early-stage 

specific i.e. undergoing negative selection between early and late-stage cohorts, 

suggesting these integrations become detrimental to survival and expansion of 

developing lymphoma cells. The most significant of these is the Smyd3 locus where a 

cluster of intragenic insertions surrounding exons 6-8 are present to a significantly 

lesser extent in the late-stage lymphomas samples (supplemental figure 7r). SMYD3 is 

a methyltransferase that methylates H3K4 and H4K5 and over-expression has been 

observed in a variety of tumor types. SMYD3 methylation of MAP3K2 activates MAP 

kinase signaling and loss of Smyd3 delays development of both pancreatic and lung 

tumors (Mazur et al. 2014). Presumably integrations that disrupt Smyd3 expression are 

detrimental and hence selected against in lymphomagenesis. SMYD3 loss potentiates 

the effects of MEK1/2 inhibition on tumor growth (Mazur et al. 2014) and SMYD3 

inhibitors have been shown to inhibit the growth of tumor cell lines (Peserico et al. 

2015). The example of the Smyd3 locus demonstrates the potential for time course 

mutation analysis to not only identify cancer drivers, but also potential targets that whilst 

not mutated, are essential for tumor cell growth. 
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Co-mutation analyses using subclonal mutations. 

Understanding which genes cooperate in lymphomagenesis can inform the 

biology and subtype of disease, however co-mutation analyses of subclonal mutations 

is complicated by the potential presence of multiple independent subclones. To 

minimize these effects, we performed contingency table tests to identify co-mutation 

rates, limiting analysis to the most clonal integrations (NC>0.1), increasing the likelihood 

that mutations are present in the same clone. Rather than discard all subclonal 

insertions, we additionally performed analyses looking for associations of clonal 

mutations with the subclonal mutations, based on the assumption that subclonal 

mutations may be present in the same cells as clonal mutations from the same sample. 

Both approaches yield overlapping results overall, but the latter greatly improves the 

statistical power of the associations identified (supplemental Fig.S8). 

We have previously demonstrated that co-mutation analysis can be 

compromised by the pooled analysis of phenotypically and genotypically distinct groups, 

which creates false positives from genes that are co-mutated or mutually exclusive due 

to a primary association with tumor subtype rather than other mutations (Kool et al. 

2010). For this reason we devised an online tool that allows subsets of tumors with 

restricted phenotypes, genotypes and mutation profiles to be queried 

http://mulv.lms.mrc.ac.uk/coocc/index.php. 

 

DISCUSSION 

In this study we present the most comprehensive analysis of MuLV-driven 

lymphomagenesis produced to date, identifying 700,000 mutations from 521 infected 

animals with an average of more than 1000 subclonal mutations per sample. By 

developing a framework that incorporates subclonal mutation frequencies in both 
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premalignant cells and late-stage tumors, we enhance the statistical power enabling the 

identification of known driving events in cancer and further implicate dozens of novel 

loci in the biology of lymphomagenesis, in some cases independently of evidence of 

clonal expansion. 

The resolution of mutation coverage illustrates considerable complexity in the 

position and orientation of selected integrations in the vicinity of verified cancer drivers, 

and suggests uncharacterized locus-specific mechanisms by which these mutations 

modify expression in a position dependent manner. The online repository 

(http://mulv.lms.mrc.ac.uk) allows researchers studying lymphoid malignancies to query 

custom subsets of data for genome wide associations of a gene of interest with tumor 

type and mutation status, and create custom tracks for the UCSC genome browser 

(Kent et al. 2002). Tracks on the UCSC genome browser can also be browsed to 

examine the selection biases at specific loci of interest 

http://mulv.lms.mrc.ac.uk/ucsc/index.php) and subsets of tumors can be queried to 

identify co-mutated genes within phenotypically/genotypically matched lymphomas. 

Recent whole genome sequencing of cohorts of hundreds of patient samples 

illustrates the challenges of identifying driver mutations outside the exome (Puente et al. 

2015; Nik-Zainal et al. 2016). Recurrent clonal mutations follow a power law distribution, 

with statistically intractable rare events making up the bulk of mutations in many tumor 

types. Proving which of these contribute to disease remains a bottleneck that can only 

be partly alleviated by larger cohort sizes. Whilst the clonal mutations in MuLV driven 

tumors match a similar power law distribution, selection of mutations identified at the 

subclonal level strongly correlate with clonal mutations and/or known cancer drivers, 

suggesting that these mutations can provide statistical support for the role of rarely 

recurrent clonal mutations. Reanalysis of existing cohorts of tumors from other 
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insertional mutagenesis screens alongside equivalent premalignant tissue may greatly 

expand the yield of cancer drivers identified as well as eliminate false positives. 

Many tumor types display background mutation rates that vary throughout the 

genome. For instance, mature B cell lymphomas are in part driven by aberrant somatic 

hypermutation (Khodabakhshi et al. 2012). This variation can confound the identification 

of driver mutations outside non-coding regions. The overlap we find between 

independent criteria as evidence of selection (disease stage, tumor type, genetic 

interactions and strand bias) using a mutagen that exhibits strong regional variation in 

distribution, demonstrates it is possible to use these criteria as a mitigant of regional 

variation in mutation frequencies. Furthermore, visualizing this selection as a continuum 

at multiple scales using multiple parameters allows intuitive differentiation of recurrent 

selection in non-exonic regions from mutation hotspots. 

Insertional mutagenesis screens complement the characterization of human 

tumor genomes identifying genes that play a crucial role in tumor biology even where 

they are not subject to exonic mutations, frequent translocations, or focal copy number 

changes. Loci identified in this and previous MuLV screens correspond to NHL cancer 

drivers, particularly with copy number aberrations, translocations and loci identified by 

GWAS. This is consistent with MuLV primarily acting via deregulated expression of 

open reading frames, with a subset of loci having disrupted/truncated open reading 

frames. Proving that deregulated but intact open reading frames are cancer drivers is 

problematic, particularly for tumor types such as CLL where the number of coding 

mutations per cancer genome is low and substantial epigenetic deregulation has been 

observed (Guièze and Wu 2015). Aside from the candidates we find with a supporting 

role in the literature, this study implicates hundreds of other candidates with equal 
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significance that can be used as a resource to prioritize the study of human cancer 

drivers and potential therapeutic targets. 

Targeted resequencing of recurrently mutated genes in CLL has demonstrated 

that coding subclonal mutations also undergo significant selection and even convergent 

evolution (Jethwa et al. 2013). Currently selection of subclonal mutations in cancer is 

difficult to prove outside the coding regions of known cancer drivers, in part because the 

error rates of existing NGS platforms limit detection of single nucleotide allele 

frequencies to > 1%. Novel technologies for detection of lower abundance mutations 

are in development (Chen-Harris et al. 2013; Gerstung et al. 2012; Schmitt et al. 2012), 

although their throughput and coverage is limited. This study demonstrates the value of 

applying genome wide, subclonal mutation detection to large cohorts of cancer 

genomes. Analyzing thousands of subclonal mutations per sample, in both malignant 

and premalignant tissue, and incorporating these into a framework that combines tumor 

genotype and phenotype, not only provides supporting evidence for rarely mutated 

cancer drivers, but also potentially widens the spectrum of genes encoding therapeutic 

targets. 
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METHODS 

Animal work 

All procedures were performed in accordance with the UK Home Office Animals 

(Scientific Procedures) Act 1986. BCL2-22 (B6.Cg-Tg(BCL2)22Wehi/J, 

http://jaxmice.jax.org/strain/002318.html) were bred with wild-type C57BL/6 and BALB/c 

mice (Charles River, UK). C57BL/6 Vav-BCL2 mice were bred with wild type BALB/c 

mice to produce (BALB/c x C57BL/6) F1 Vav-BCL 2 mice. 

MuLV was prepared by transfection of 293T cells with the plasmid pNCA 

(Colicelli and Goff 1988) (provided by Stephen Goff, Addgene 17363). Newborns were 

injected intraperitoneally with 50µl MuLV supernatant. Mice were weighed weekly and 

monitored three times per week for signs of illness. Mice (infected and matched 

controls) in the time course cohort were sacrificed and lymphoid organs harvested at 

predetermined time points, prior to disease onset (9, 14, 28, 42, 56, 84 and 112 days). 

Survival cohort mice were sacrificed upon developing advanced symptoms of 

lymphoma and lymphoid organs were harvested and snap frozen in liquid nitrogen 

immediately. Cell suspensions of spleen tissue were prepared in all cases using the 

gentleMACS Dissociator (Miltenyi Biotec) set to programme m_spleen_1.01. 

 

Flow Cytometry 

Cryopreserved spleen suspensions were defrosted and washed twice in buffer, 

PBS-2% FCS and incubated with 2.0µg Fc block per 106 cells for 15 minutes. The 

samples were then incubated with the antibody cocktails for 15 minutes after which they 

were washed. The majority of samples were processed using the Attune NxT Acoustic 

Focusing Cytometer, Life Technologies, and the remainder were processed on a BD 

LSRII. All analyses were performed using FlowJo v10.2.  
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Integration site cloning and GKC CIS identification 

To clone virus integrations we integrated the method of Koudijs et al (Koudijs et 

al. 2011) and Uren et al (Uren et al. 2009) and modified these for the Illumina platform. 

A detailed protocol is provided in the supplemental methods document. 

 

Entropy quantitation 

Clonality values among the early-stage samples are relatively uniform, whilst 

late-stage samples present few integrations with very high clonality values and most 

with low clonality values. To quantify this difference and thus be able to order samples 

from pre-malignancy to late-stage lymphoma we used Shannon entropy (Shannon 

2001). The 50 highest clonality values 𝑐!, 𝑐!,… , 𝑐!" were transformed into probabilities 

𝑝!: 

𝑝! =
𝑐!
𝑐!!"

!!!
	

 

The Shannon entropy 𝐸 over a set of probabilities 𝑝!,𝑝!,… ,𝑝! is defined as: 

𝐸 = − 𝑝! log𝑝!
!

	

 

The entropy quantifies the spread of a distribution: it is zero when a single 𝑝! is 

equal to one and all others are equal to zero; and reaches its maximum value when the 

probabilities are uniformly distributed (pi=1/50 for every i). Probabilities from early-stage 

samples are closer to a uniform distribution and therefore the samples will have high 

entropy values, while the probabilities from late-stage samples are closer to a spike, 

providing low entropy values. 
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Clustering 

Samples were clustered based on the shape of clonality profiles. The top 50 

ranked clonal insert NC values of each sample were compared to all other samples 

using dynamic time warp (dtw package) or the Kolmorogov-Smirnov test (ks.dist() 

function) as a measure of difference between samples (with the R package, function 

dist() takes as input the list of NC values and the method chosen -“DTW”-). A distance 

matrix that was clustered using the “average” linkage method (using the R hclust() 

function). Different linkage methods gave similar results (data not shown). 

 

Statistical analysis 

Genome wide scanning for selected insertions 

A scanning 100kb window is moved across the genome in increments of 10kb. 

For each window the number of insertions in each class (early/late, forward 

strand/reverse strand, BCL2 transgenic/wild type) is counted and the likelihood of this 

distribution between groups is estimated using two-tailed Fisher's exact test. By 

comparing neighboring windows, p-value minima are identified (i.e. windows where the 

p-value is higher on either side). Where minima are less than 100,000bp from each 

other the position with the lowest p-value is kept and others discarded. To estimate 

false discovery rates all insert/group assignments are randomized (e.g. the same 

number of inserts are early/late but the assignment is random). Local p-values are 

calculated and p-value minima are identified. 1000 permutations are used to determine 

the rate at which each p-value is identified by chance. 
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Cohort comparisons 

Survival comparison of cohorts was performed using Prism 6. Significance of the 

differences in the proportion of B cells in cohorts was determined using Prism 6 

student’s t-test. 

 

Data Accession 

Paired mapped reads for the sequencing are available from the NCBI sequence read 

archive https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP110741. 
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