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Abstract

Background: Network generation tools coupled with chemical reaction rules have been 

mainly developed for synthesis planning and more recently for metabolic engineering. Using 

the same core algorithm, these tools apply a set of rules to a source set of compounds, 

stopping when a sink set of compounds has been produced. When using the appropriate sink, 

source and rules, this core algorithm can be used for a variety of applications beyond those it 

has been developed for.

Results: Here, we showcase the use of the open source workflow RetroPath2.0. First, we 

mathematically prove that we can generate all structural isomers of a molecule using a 

reduced set of reaction rules. We then use this enumeration strategy to screen the chemical 

space around a set of monomers and predict their glass transition temperatures, as well as 

around aminoglycosides to search structures maximizing antibacterial activity. We also 

perform a screening around aminoglycosides with enzymatic reaction rules to ensure 
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biosynthetic accessibility. We finally use our workflow on an E. coli model to complete E. 

coli metabolome, with novel molecules generated using promiscuous enzymatic reaction 

rules. These novel molecules are searched on the MS spectra of an E. coli cell lysate 

interfacing our workflow with OpenMS through the KNIME analytics platform.

Conclusion: We provide an easy to use and modify, modular, and open-source workflow. We 

demonstrate its versatility through a variety of use cases including, molecular structure 

enumeration, virtual screening in the chemical space, and metabolome completion. Because it

is open source and freely available on MyExperiment.org, workflow community contributions

should likely expand further the features of the tool, even beyond the use cases presented in 

the paper. 

Keywords: Scientific workflows, Chemical Space, Reaction networks generation, 

Retrosynthesis, Reaction rules, Isomer enumeration.

1. Introduction

The number of known chemical reactions is huge, at the time this manuscript was written 

there were ~84 million single- and multi-step reactions in the Chemical Abstract Service 

database (CAS) [1].  Yet, many reactions in CAS are redundant because the same reactions 

are applied to different reactants.  Identifying identical reactions can be performed by 

computing reaction rules. Reaction rules represent reactions at the reaction center only. In 

other words, a reaction rule comprises only the substructures of the reactants and the products

for which the atoms are either directly involved in bond rearrangements or are deemed to be 

essential for the reactivity of the reaction center. While a set of reaction rules is of course not 

available for all known chemical reactions, rules have been compiled for focused 

applications, such as retrosynthesis planning [2, 3], the discovery of novel chemical entities in

medicinal chemistry [4], xenobiotic (including drug) degradation [5], metabolomics [6], and 

metabolic engineering [7-10]. Depending on the application, the number of rules varies from 
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less than one hundred to few thousands, but in all cases the number of known reactions per 

application far exceeds the number of rules (there are for instance more than 14,000 reactions 

in metabolic databases such as MetaNetX [11]). There are several ways of coding reaction 

rules (for instance, BE-matrices [12] and fingerprints [13]) but most of the time the rules can 

be represented by reaction SMARTS [14], as it is done in the current paper.

The purpose of reactions rules is to generate reaction networks. The rules can be used in a 

forward manner to find for instance the metabolic degradation products of a drug, or in a 

reverse manner to find the reactions producing a desired product from a set of available 

reactants. In this later usage one produces retrosynthesis reaction networks. Several tools have

been developed in the past to generate (retrosynthesis) reaction networks and reviews are 

available for synthesis planning [2, 3] and for metabolic engineering [15]. Disregarding if the 

rules are applied in a forward or reversed manner, network generation tools are making use of

the same core algorithm. Starting from a source set of compounds the core algorithm applies 

the rules in an iterative fashion either a predefined number of times or until a sink set of 

compounds have been produced. At each iteration, the algorithm fires the rules on the source 

set producing new molecular structures and determines the new source set of molecules the 

rules will be fired upon at the next iteration. That set must comprise molecules that have not 

been processed before. Further details on the core algorithm and the differences between the 

various implementations are provided in Faulon et al. [16] and Delépine et al. [17]. 

In the current paper we make use of an open source workflow (RetroPath2.0 [17]), which 

follows the above core algorithm. This workflow is not based on original codes but instead 

was constructed entirely by assembling KNIME nodes [18] developed by the 

cheminformatics community (primarily RDKit nodes [19]). RetroPath2.0 is the first open 

source release of a retrosynthesis reaction network generation, its usage in the current paper 

beyond network generation demonstrates its versatility.

As already mentioned, reaction network generation tools coupled with reactions rules have 
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been developed and used primarily for synthesis planning and metabolic engineering, but can

they be used to enumerate molecules (isomers for instance) and more generally to search 

chemical structures in the chemical space?

In principle yes if one can devise reaction rules enabling the production of any molecule in 

the chemical space. Such a set of rules necessarily exists for all know molecules (such as 

those in the CAS database) since they have been produced through either natural or synthetic 

chemical reactions. In practice and as already stated, reaction rules so far developed are 

application limited. Yet, within their respective application fields, specific rules have been 

used to discover novel molecules and reaction pathways. Taking experimentally validated 

examples, the rules associated with the ligand-based de novo design software DOGS 

(inSili.com LLC) [4] have enabled the production of new chemical entities inhibitors of 

DAPK3 (death-associated protein kinase 3) [20], metabolic rules for promiscuous enzymes 

have allowed the discovery of novel metabolites in E. coli [21] and have also been used to 

engineer metabolic pathways producing 1,4-butanediol [9] and flavonoids [22].

Going beyond application limited reaction rules, the main contribution of the present paper is 

to propose a set of transformation rules that enables the generation of any isomer of any given

molecule of the chemical space. Precisely, we prove the claim that any isomer of any given 

molecule of N atoms, can be reached applying at most O(N²) rules. 

As illustrations, our transformation rules are used to screen the chemical space for structures 

that are similar to a given set of well-known monomers and to search aminoglycosides 

structures maximizing antibacterial activities. The compounds produced by our rules are not 

necessarily chemically accessible, since our transformation rules are not constructed based on 

chemical synthesis schema. To probe the (bio)synthetic accessibility of our solutions, we also 

perform search in the (bio)chemical space using enzymatic reaction rules. The enzymatic 

rules are also used to propose novel molecules completing E. coli metabolic network and for 

which masses are found in cell lysate mass spectra.
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All results presented in this paper have been produced making use of the open source 

workflow RetroPath2.0. RetroPath2.0 and the associated data are provided as Supplementary 

and can be downloaded at MyExperiment.org. The only differences between the various 

usages we have made of the RetroPath2.0 are within 1) the set of reaction rules and 2) the 

way molecules are selected at each iteration during the network generation process. 

2. Results and Discussions

The purpose of this section is to showcase the versatility of the RetroPath2.0 by taking use 

cases of interest to the community. We first propose reaction rules to enumerate isomers (2.1),

we then use the rules to screen in the chemical space structures that are similar to some 

known monomers (2.2) and compute property distribution (Glass transition temperature) in 

both the Chemical Space and PubChem, we next use a QSAR to search aminoglycosides 

types molecules for which antibacterial activity is maximized using both isomer 

transformation rules and enzymatic rules (2.3), and we finally use enzymatic rules to find 

novel metabolites in E. coli and annotate the MS spectra of an E. coli cell lysate interfacing 

RetroPath2.0 with OpenMS [23] (2.4).

2.1. Isomer enumeration

Isomer enumeration is a long-standing problem that is still under scrutiny [24, 25]. Our intent 

here is not to provide the fastest enumeration algorithm but to demonstrate how RetroPath2.0 

can perform that job once appropriate reaction rules are provided. However, we provide in 

supplementary Figure S1 a comparison of Retropath2.0’s execution time with the OMG and 

PMG software tools [25,26] specifically dedicated to isomers enumeration. Retropath2.0 is 

found faster than OMG but slower than PMG. Thereafter, we outline below two approaches 

making use of RetroPath2.0. The first is based on the classical canonical augmentation 

algorithm [27] and the second consists of iteratively transforming a given molecule such that 
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all its isomers are produced. We name this latter approach isomer transformation. In both 

cases we limit ourselves to structural (constitutional) isomers, as there already exist 

workflows to enumerate stereoisomers [28].

Canonical augmentation. The principle of canonical augmentation, which is an orderly 

enumeration algorithm, is to grow a molecular graph by adding one atom at a time and 

retaining only canonical graphs for the next iteration [27]. The algorithm first proposed by 

Brendan McKay has been used to generate the GDB-17 database of small molecules [29]. The

original algorithm has also been modified such that at each step a bond (not an atom) is added

to the growing molecules [25]. In the present implementation we use the original McKay 

algorithm [27], consequently, the number of iteration is the number of atoms one wishes the 

molecule to have. The algorithm can easily be implemented into RetroPath2.0 by choosing as 

a source set a single unbonded atom, and a rule set depicting all possible ways an atom can be

added to a molecular graph (see method section for more information). Considering that an 

atom can be added to a growing molecule through one, two, or more bonds (depending on its 

valence), the set of reaction rules is straightforward however cumbersome if one starts to 

consider all possible atoms types. For this reason we limit ourselves to carbon skeleton as it is

usually done in the first step of isomer enumeration algorithm. Figure 1 below depicts the set 

of rules that generate all triangle free carbon skeletons.
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Figure 1. Reaction rules for canonical augmentation of carbon skeletons. The 

corresponding reaction SMARTS string is provided for each rule. 

We note that rules R2 to R4 will generate cycles since the added atom is attached to the 

growing molecule by 2 to 4 four bonds, thus only rule R1 is necessary to grow acyclic 

molecules (alkanes for instance). The Table below provides the numbers of alkane structural 

isomers found up to 18 carbon atoms running RetroPath2.0 with rule number 1 in Figure 1. 

Table 1. Number of generated alkane isomers by canonical augmentation 

algorithm and isomer transformation algorithm

Nbr of 

carbon 

atoms

Nbr of structures output

by canonical 

augmentation algorithm

Nbr of structures output 

by isomer transformation

algorithm

Nbr of iterations for isomer

transformation algorithm

1 1 1 1

2 2 1 1

3 3 1 1

4 5 2 2

5 8 3 3

6 13 5 3
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7 22 9 4

8 40 18 5

9 75 35 5

10 150 75 6

11 309 159 7

12 664 355 7

13 1466 802 8

14 3324 1858 9

15 7671 4347 9

16 18030 10359 10

17 42924 24894 10

18 103447 60523 10

The numbers agree with earlier calculations [30]. For a given number of carbon atoms (N), the canonical augmentation generate 

all alkanes from 1 to N carbon atoms, while the isomer transforming enumeration generate alkanes having only N carbon atoms, 

one can thus verify that at any given number of carbon atoms N, the numbers of structures generated by the canonical 

augmentation algorithm equals the sum of numbers of isomers generated by the transformation algorithm up to N.

Isomer transformation. The isomer canonical augmentation algorithm becomes more complex

when one starts to consider different atom and bond types. To overcome these difficulties the 

idea of the transformation enumeration approach is to start with one fully-grown molecule to 

which one applies all possible transformations such that all the structural isomers of the initial

molecule are generated. This approach can be implemented in RetroPath2.0 using a hydrogen 

saturated molecule as a source and a reaction rule set enabling to transform the molecule 

while keeping the correct valence for each atom. Because atom valences are maintained the 

total number of bonds must remain the same after the transformations have taken place. In 

order to maintain the number of bonds constant, for any reaction rule the number of bonds 

created must equal the number of bonds deleted. 

RetroPath2.0 applies a reaction rule to a given molecule by first searching all occurrences in 

the molecule of the subgraph representing the reactant (left side of the rule). To this end the 

labels on the subgraph are removed. Then for each occurrence of the unlabeled subgraph in 

the molecule, the labels are restored and the bonding patterns on the molecule are changed 

accordingly. The process is illustrated in the Figure 2 below where it can be seen that rules Ra 

and Rb are identical (i.e. they produce the same solutions). In general, two rules Ra=(La, A) 

and Rb=(Lb,B) will produce the same solutions if a one-to-one mapping  can be found 
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between the labels La and Lb of the rules such that the set of edges (A) in Ra is transformed by 

into the edges (B) of Rb, i.e. (A)=B.

Figure 2. Identical rules. There are two different ways (two different possible matchings for 

the reactants of the rules) of applying rules Ra and Rb, each rule produces molecules M1 and 

M2. The molecules produced by Ra are identical to those produced by Rb because the rules are 

identical. Ra is identical to Rb because when applying the one-to-one label mapping 

(1,2,3,4)= 2,1,4,3 on the edges of the Ra one obtains the edges of Rb. 

Claim:

The 19 rules described in Figure 3 allow us to generate all isomers of a given molecule at 

most 3/4*(N² – N) iterations, where N is the number of atoms, respecting the following 

constraints: the maximal valence is 4 and there cannot be two double bonds on the same atom 

in a 3 or 4 membered ring.
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Figure 3. Isomer transformation rule set. All reactions rules are solutions of system of 

equations (2) and are non identical (see text and Figure 2 for definition of identical rules). 

Reactions in green move bonds around without creating or deleting cycles. Reactions in blue 

change bond order by creating or deleting at least one cycle. To each reaction corresponds a 

reverse reaction. The reverse reaction of R1 is R1, for R2 it is R4, for R3 : R7, for R5: R5, for R6 : 

R8 and the reverse reaction of R9 is R9. The reverse reaction for R10 is R15, for R11, R18, for R12, 

R19, for R13, R16 and for R14, R17. The bond order a13 and a24 can take any value from 0 to 3. The

full list of rules excluding triple bonds can be found in Figure S2.

Figure 4. Rules before solution space reduction due to valence and structure 

considerations. Reactions in green move bonds around without creating or deleting cycles. 

Reactions in blue change bond order by creating or deleting at least one cycle. Reactions in 
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purple were deleted because valence is limited to 4, and reactions in black were deleted 

because there cannot be two double bonds on the same atom in a 3 or 4 membered ring.

Lemma 1: 

The minimal number of bonds one can change is 4 and the 19 rules described in Figure 3 

generate all minimal transformations respecting the following constraints: the maximal 

valence is 4 and there cannot be two double bonds on the same atom in a 3 or 4 membered 

ring.

Proof:

The minimal transformation one can perform consists of deleting one bond and creating 

another one. Since the bond created must be different than the one deleted at least three atoms

(A1, A2, A3) must be involved. Let a12, a13, and a23 be the bond order between the three atoms 

and let b12, b13 and b23 the bond order after the reaction has taken place. Because the atom 

valence is maintained the following system of equations holds:

(L1) a12+a13=b12+b13  

(L2) a12+a23=b12+b23 (1)

(L3) a13+a23=b13+b23

(L1)+ (L2) – (L3) -> a12 = b12, which implies a23 = b23 and a13 = b13.

It is therefore impossible to proceed to a minimal transformation with only 3 bonds involved.

Let us consider 4 atoms. There are 6 possible bonds between those atoms. Let us consider that

we are changing 4 bonds, since we aim to find minimal transformations. Let us call a13 and a24

the two fixed bonds, without loss of generality. 

Valence conservation (with b13 = a13 and b24 = a24) gives us the following system:

(L1) a12 + a14 = b12 + b14
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(L2) a12 + a23 = b12 + b23    (2)

(L3) a23 + a34 = b23 + b34

(L4) a14 + a34 = b14 + b34

We can notice that (L1) + (L3) = (L2) + (L4): we therefore have a system of 3 equations with 4 

unknowns, so we can set an unknown and calculate the other solutions.

As we are looking for minimal transformations, we can assume that we are changing a bond 

order by 1 on this solution we can set. Since valence is conserved, if a bond order is 

increased, then a bond order from the same atom has to be decreased. As the problem is 

perfectly symmetrical in all variables at this point, and we can us assume without loss of 

generality (at least one bond has to be deleted) that b12= a12 -1. Then solving the system 

immediately gives us b14 = a14 + 1, b23 = a23 +1 and b34 = a34 -1. This system can only be solved

in our case (positive bond orders, no quadruple bonds) if a14 and a23 are either 0, 1 or 2 and a12 

and a34 are either 1, 2 or 3. This means that we have at most 81 (3⁴) cases for initial bond 

orders where our isomer problem has a solution. However, this solution space can be further 

reduced by problem symmetry arguments. We can see that the roles of a12 and a34 are 

symmetrical, as well as the roles of a23 and a14.

Let us call A1 the atom with the highest considered sum of bound orders (neglecting the fixed 

orders a13 and a24). Therefore, it is such that 

a12 + a14 >= a12 + a23 (higher sum of bound orders than A2), or a14 >= a23 (Condition 1)

a12 + a14 >= a14 + a34 (higher sum of bound orders than A4), or a12 >= a34 (Condition 2)

a12 + a14 >= a23 + a34 (higher sum of bound orders than A3), is automatically verified when the 

other 2 are verified.

Condition 1 is not respected when a23 = 2 and a14 = 0 or 1 or when a23 = 1 and a14  =0, without 

constraints on a12 and a34: (2+1) * 9 = 27 solutions. For the same reason, 27 solutions do not 

respect condition 2. The solutions that do not respect both condition 1 and condition 2 are 
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(2+1) * (2+1) = 9. By symmetry arguments, we therefore reduce the solution space from 81 to

81 – 27 – 27 + 9= 36. These 36 reaction rules are presented in Figure 4.

We can further reduce the solution space by considering that the maximum atom valence is 4. 

The solutions that do not respect this rule are such that a12 + a14 = 5, so a12 = 3 and a14 =2 (and 

this automatically verifies conditions 1 and 2). Since there are no constraints on a23 and a34, 

we have 9 such solutions: the solution space has been reduced to 36 – 9=27 reactions.

One more constraint, imposed by 3D conformation of the molecule, is that there cannot be 

two double bonds on the same atom in a 3 or 4 membered ring.

This must be true for our initial molecule as well as for the produced molecule. For the initial 

molecule (as can be seen in the 4 black rules under rule 13 in Figure 4), when a12 = a14 = 2, 

since a34 >1 (bond whose order will be reduced), there is a cycle if a23 ≠ 0. There are therefore 

4 solutions where the initial molecule is invalid: when a12 = a14 = 2, and a34 is 1 or 2 (smaller 

than a12) and a23 is 1 or 2.

This must also be true for the produced molecule. Two double bonds will be produced around 

atom 1 with a12 = 3 and a14=1 (this can be seen in the 4 black rules under rule 18 in Figure 4). 

There will be a cycle if a34 ≠ 1. There are therefore 4 solutions where the produced molecule 

is invalid: when a12 = 3, a14 = 1, and a34 is 2 or 3 and a23 is 0 or 1 (smaller than a14).

Since these solutions respect valence and problem symmetry, they are not included in the 

previous solution space reductions and therefore the solution space is reduced to 27 – 8 =19 

solutions. A summary table of solution space reduction is given in Table S1. Since we have 

found 19 different working solutions for all the cases we have left, we have proved that the 

minimal number of bonds one can change is 4 and the 19 rules described in Figure 3 generate 

all these minimal transformations.

Lemma 2: 
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Let us consider Mb an isomer of Ma. We can apply a rule from this set of 19 rules that will 

reduce the sum of absolute order differences between those two molecules by at least 2 and at 

most 4.

Proof:

Let (aij) be the order of bonds in Ma, (bij), j Є [2,N], i Є[1,j-1],   the order of bonds in Mb, 

where N is the number of atoms in Ma and Mb. Since Mb is different of Ma, we can find i,j 

such that aij > bij. By valence conservation in atom Aj, we can find k such that ajk < bjk, and by 

valence conservation of atom Ak, we can also find l such that akl > bkl. Therefore, we are 

considering 4 atoms and 4 bonds between those atoms, with at least 3 of their orders changing

by 1. According to Lemma 1 the minimal number of bonds one can change is 4, so we will 

also have to change the bond order between Ai and Al. We are therefore considering a minimal

transformation, so we know thanks to Lemma 1 that we can apply a rule from our set of rules 

to generate that transformation. Let us call Ma’ the molecule produced that way, and aij’ its 

bond orders. Let us now calculate the sum of orders of Ma’. Then, by applying the rule, we 

have aij’ = aij -1 and therefore |bij – aij’| = |bij – aij| - 1. For the same reason, |bkl – akl’| = |bkl – akl| -

1. Moreover, ajk’ = ajk +1, and since ajk is smaller than bjk, we also have |bjk – ajk’| = |bjk – ajk| - 1.

The only bond we did not choose to change is ali . The order aij’ of the transformed bond is 

either closer to bli than was ali , then the difference of the sum of absolute order differences is 

reduced by 4, or is further from bli , and this sum is reduced by 2. Therefore, if Ma and Mb are 

different, we can apply a rule from this set of rules that will decrease the sum of absolute 

order differences by at least 2 and at most 4.

Lemma 3: 

Considering Ma and Mb an isomer of Ma, the 19 rules described in Figure 3 allow us to 

transform Ma into Mb using at most 3/4*(N² – N) single transformations, where N is the 

number of atoms, respecting the following constraints: the maximal valence is 4 and there 

cannot be two double bonds on the same atom in a 3 or 4 membered ring.
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Proof:

Let us consider Mb an isomer of Ma. If the sum of absolute order differences is not null, then 

Mb is different from Ma and using Lemma 2, we know we can apply a rule that will strictly 

decrease the sum of absolute order differences. This sum is obviously positive, is an integer, 

and is strictly decreasing each time we apply a transformation rule so it will converge to 0 in 

S/2 transformations at most, where S is the sum of absolute order differences between Ma and 

Mb. When this sum is null, all bond orders are the same, which means the molecules are the 

same. An upper estimation of the maximum bond order difference is obtained when Ma only 

has triple bonds, which all have to be deleted. In that case, the sum of absolute order 

differences is: S = 3*(N² - N)/2, where N is the number of atoms and (N² - N)/2 the number of 

defined orders (since aij = aji). Therefore, since the sum decreases by at least 2, the maximum 

number of transformations we need to apply is 3*(N² - N)/4.

Proof of the main claim:

Given the workings of the algorithm (breadth-first, as explained in section 4.2), the number of

iterations for generating all isomers is the number of iterations for generating the furthest one 

in term of bond order difference from our starting molecule. Therefore, applying Lemma 3, 

we know the maximum number of iterations of the algorithm is 3*(N² - N)/4.  

Notice that although the number of iterations of the algorithm scales O(N²), the number of 

transformation rules applied (i.e.: single reactions) is proportional to the number of isomers.

Corollary 1:

The maximum number of iterations to generate all alkanes is N-1, where N is the number of 

carbon atoms (hydrogens are not considered here).

Proof:

Adapting the demonstration of Lemma 3, we have to consider the sum of absolute order 

differences of the farthest isomers that can be reached. Since alkanes are acyclic, the number 

of bonds is N-1 (proven by a simple recurrence, the new atom being joined at a single point to
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the chain since the molecule is acyclic). Therefore, considering all bonds are different in the 

new molecule, the sum of absolute order differences is at most 2(N-1). Therefore, the 

maximum number of steps is N-1. 

The isomer transformation algorithm was applied to generate all alkanes up to 18 carbon 

atoms using rule R1 of Figure 3, since it is the only rule with only single bond. Results are 

presented in Table 1, where it can be seen that Corollary 1 is verified in practice.

2.2. Virtual screening in the chemical space

In this section we used RetroPath2.0 to search all molecules that are at predefined distances of

a given set of molecules. Such queries are routinely carried out in large chemical databases 

for drug discovery purposes [31], but in the present case we search similar structures in the 

entire chemical space. To perform search in the chemical space, we used a source set 

composed of 158 well-known monomers having a molecular weight up to 200 Da. Our rule 

set included the transformations colored green in Figure 3 (i.e. transformation rules where 

double bonds are not transformed into cycles and conversely). For each monomer, 

RetroPath2.0 was iterated until no new isomers were generated. Each generated structures at a

Tanimoto similarity greater than 0.5 from its corresponding monomer were retained 

(Tanimoto was computed using MACCS keys fingerprints [32]). 

Next we wanted to probe if the generated structures exhibited interesting properties as far as 

polymer properties are concerned. To that end we first developed a QSPR model taking 

properties from [33]. We focused on polymer glass transition temperature Tg data [34]. The 

QSPR model was based on a random forest trained using RDKit fingerprints descriptors [19]. 

The obtained model had a leave-one-out cross-validation performance of Q2 = 0.75. The 

model was then applied to predict the Tg for the set of enumerated isomers. Figure 5 compares
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the distribution of predicted Tg values for the enumerated isomers with those obtained from 

isomer structures available from PubChem. Tg values for enumerated isomers appeared evenly

distributed around 301.86±25.69 K compared with the isomers that were available in 

PubChem (331.66±46.19 K). This shift in the Tg values could be explained by the difference 

in distribution that necessarily exists between the isomers that are present in PubChem and 

the total number of enumerated isomers. As we lower the Tanimoto threshold, some 

monomers might become underrepresented in terms of isomer availability in PubChem. 

Figure S3 in Supplementary shows the distributions of both sets of isomers in function of the 

threshold. The increased ability of selecting polymers with Tg above or below room 

temperature for the enumerated set compared with the PubChem isomers is a desirable 

feature, as this parameter will determine the mechanical properties of the polymer [35]. In 

that way, performing a virtual screening of the chemical space of isomers of the reference 

monomers opens the possibility to engineering applications with improved polymer design.

17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 14, 2017. ; https://doi.org/10.1101/158147doi: bioRxiv preprint 

https://doi.org/10.1101/158147
http://creativecommons.org/licenses/by/4.0/


Figure 5. Distributions of predicted Tg values for enumerated isomers and for isomers 

found in PubChem. Distribution of predicted polymer glass transition temperature Tg for 

enumerated isomers and for isomers found in Pubchem of a reference set of 158 monomers 

with a Tanimoto similarity greater than 0.5

Moreover, we were interested in determining how many of the starting 158 monomers were 

accessible through biosynthesis. Namely, how many of the compounds can be synthesized by 

engineering a metabolic pathway in a chassis organism. This computation can be 

accomplished by RetroPath2.0 by defining all naturally produced chemicals as sinks in the 

workflow and using a collection of known enzymatic reaction rules in reversed mode. The 

process has been described in detailed elsewhere [17]. Through the application of the rules in 
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a retrosynthetic fashion, it is possible to determine the routes that connect the target 

compounds to the natural precursors. Of the 158 available monomers, using the RetroPath2.0 

workflow downloaded from MyExperiment.org [36], we were able to identify 26 compounds 

that can be naturally synthetized (Figure 6-A). We provide in an archive containing the list of 

pathways for those 26 compounds.

The QPSR model for Tg was applied to the set of enumerated isomers. As shown in Figure 6-

B, the resulting set provided a good covering of the chemical space surrounding the starting 

monomer set. Moreover, a significant number of enumerated isomers shown a high predicted 

Tg value, which may indicate a good candidate as a building block replacement for known 

monomers. Interestingly, those isomers that were close to biosynthetic accessible monomers 

(Tanimoto based on MACCS keys fingerprint > 0.8) had a distribution of predicted Tg values 

that significantly differ from the full set (p-value < 1e-12 Welch t-test), with a mean Tg 

=352.1K (Tg =301.9 K in the full distribution). These close isomers to biosynthetically 

accessible monomers might be considered as good candidates for alternative biosynthesis 

since reaching them through biosynthesis may require only few modifications of the original 

catalytic route.  
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Figure 6. (A) Initial 158 monomers (green big circles) represented in the chemical space of 

chemical descriptors using the two main principal components computed from the MACCS 

fingerprints as axes. Monomers that can be produced through biosynthesis are represented as 

big circles in red. (B) Covering of the chemical space generated by the 574,186 isomers (blue)

enumerated for the 158 monomers (green) with a Tanimoto similarity greater than 0.5 and 

associated predicted Tg property of the resulting polymer. Virtual monomers are depicted as 

small circles to facilitate visualisation of their distribution around the starting monomers.
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2.3. Search for molecules maximizing biological activities 

In this section we are interested in searching chemical structures in the chemical space 

optimizing biological activities. This type of search can be solved using inverse QSAR 

procedures [37]. Inverse QSAR requires to first building a QSAR equation predicting 

activities from structure and then either (i) inverting the equation and enumerating structures 

matching a given activity [37] or (ii) searching in the chemical space structures similar to 

those used to build the QSAR equation [33] but having optimized activities. The second 

approach makes use of either deterministic methods such as lattice enumeration [38] or 

stochastic searches.

We propose here to use RetroPath2.0 to solve the inverse QSAR problem using a stochastic 

approach with isomer transformation rules and enzymatic rules for biosynthetic accessibility. 

To this end, we selected a dataset of 47 aminoglycosides structures for which antibacterial 

activities have been measured using a MIC assay [39]. The dataset is composed of natural 

aminoglycosides (gentamicin, tobramycin, neomycin, kanamycin A and B, paromomycin, 

ribostamycin and neamine) to which are added synthetic structures build on a neamine 

scaffold. This dataset has already been used to build a QSAR model based on CoMFA 

analysis leading to a Q2 of 0.6 for a Leave-One-Out (LOO) procedure [39]. We provide in 

Supplementary a QSAR workflow that makes use of RDKit fingerprints [19] and random 

forest as a learner leading to a higher Q2 (0.7) for LOO. With that QSAR in hand we run 

RetroPath2.0 with a source set composed of the 47 aminoglycosides used in the training set, 

and two different reaction rules sets. The first set is extracted from the transforming 

enumeration rules depicted in Figure 3, the second set is composed of enzymatic reaction 

rules leading to neamine (an aminoglycoside) biosynthesis from glucose. Reaction rules for 

the second set were computed as explained in the method section resulting in 94 rules specific

to the biosynthesis of aminoglycosides.

In both cases, reactions rules were fired on the initial source set composed of 47 structures. 

All rule products were ranked according to their predicted activities as calculated by the 
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QSAR and were selected for the next iteration according to a tournament procedure describe 

in the method section which derives from [40]. The Figure 7 (A and B) below gives the top 

activity and the average population activity vs. iteration. The most active structures found by 

each rule set are also drawn in Figure 7 (C and D).

Figure 7. (A) and (B) Evolution vs. iteration number of the best predicted activity (red) and 

average population predicted activity (blue) from amongst the newly generated structures 

using (A) transformation enumeration rules or (B) enzymatic rules. (C) and (D) Selected best 

structure generated after 500 iterations using either (C) transformation enumeration rules or 

(D) enzymatic rules.

We observe in Figure 7 that the average curve in B is lower to the one in A. This is due to the 

fact that enzymatic rules generated a lot of compounds that are structurally far from 

aminoglycoside (i.e.H2O, NH4+, O2…). Moreover, the rules used for A, allows more 

transformation / modification, thus enabling to better explore the chemical space, and 

ultimately finding more active compounds.  We note that the structure in Figure 7 C have a 

22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 14, 2017. ; https://doi.org/10.1101/158147doi: bioRxiv preprint 

https://doi.org/10.1101/158147
http://creativecommons.org/licenses/by/4.0/


slightly better predicted activity (pACT = 9.015) than the initial compounds used in the 

training set, while the structure in Figure 7 D have the same predicted activity than 

gentamicin (pACT = 8.867).

2.4. Metabolome completion and metabolomics

In this last example we use enzymatic reaction rules in an attempt to complete the 

metabolome of species used in biotechnology. We are motivated here by current efforts 

invested to complete the knowledge on the metabolism of various organisms [6, 7, 15]. The 

benefits are numerous and include the identification of relevant biomarkers for many 

diseases; for personalized nutrition advice; and also for searching for relevant indicators and 

metabolites of plant and animal stress in agricultural practices and breeding programs. 

Additionally, knowing the metabolic space of microbes is an essential step for optimizing 

metabolic engineering and creating synthesis pathways for new compounds for industrial 

applications. 

Experimental evidences from metabolomics analyses are often informing us that with 

currently known metabolites one cannot cover the ranges of masses found in actual samples, 

and consequently there is a need of completing the metabolomes of interest. This need is 

clearly seen in the Human Metabolome Database (HMDB) where the number of reported 

masses has recently grown from 20,931 in 2013 [41] to 74,461 (at the time this manuscript 

was written), while annotated metabolites in metabolic databases are still in the range of 1847

(HumanCyc). Despite such a growth in databases, a significant amount of spectral peaks 

remains unassigned. This high fraction of unassigned peaks might be due to several factors 

including isotope, adduct formation, ion fragmentation, and multimers. Besides such sources 

of uncertainty in samples, many unassigned peaks should also be due to promiscuous 

activities of enzymes not yet characterized because of the lack of an appropriate description 

of the mechanisms of enzyme promiscuity. 
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To gain insights into those mechanisms enabling promiscuity, reaction rules have been shown 

to be appropriate [21] in particular the rules allowing to focus on the center of the reactions. 

To this end, several enzymatic reaction rules have been proposed such as those derived from 

bond-electron matrices [42], on the smallest molecular substructure changing during 

transformations [9], or on reaction rules that codes for variable environments at reaction 

centers (see [7] and method section). That latter reaction rule system codes for changes in 

atom bonding environments where the reaction is taking place and the environment can range 

from including only the atoms participating to the reaction center to the entire set of atoms 

and molecules participating to the reaction. The advantage of that latter approach is that the 

size of the environment (named diameter) can be tuned to control the combinatorial explosion

of possible products.

The degree of plasticity in metabolic networks that is uncovered by variable reaction center 

diameter is actually revealing an intrinsic feature of organisms linked to their adaptability, i.e. 

enzyme promiscuity. Promiscuity stands for the ability of enzymes to catalyze more than one 

reaction or to accept more than one substrate, a mechanism, which can be traced to the 

evolutionary origins of enzymatic functions. Mimicking nature, such enzyme versatility can 

provide novel ways for biosynthesizing metabolite and even bioproducing non-natural 

molecule. To that end, the variable diameter method has shown itself to be specially well-

suited for modeling the mechanisms of enzyme promiscuity as it has already enabled the 

experimentally validated discovery of a novel metabolite in E. coli and of the promiscuous 

enzymes producing it [21]. 

In this study, we make use of RetroPath2.0 to exemplify how variable reaction rule diameters 

can be used to complete the metabolome of E. coli. More precisely, we used as a source set all

the metabolites present in E. coli iJO1366 model [43]. We first tested two rules sets 

aforementioned, a set of about 100 reaction rules part of the BNICE framework [42] and a set 

of 50 reaction rules developed with the Sympheny software [9]. The reaction rules coded in 

the form of SMARTS string are provided in Supplementary at MyExperiment.org, along with 
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the EC numbers corresponding the rules. While the two rule sets were not developed to code 

only for E. coli reactions, for each EC number there is a corresponding enzyme annotated in 

E. coli so we kept all rules in the two sets. We then tested reaction rules with variable 

diameters using the procedure described in the method section to code for all E. coli 

metabolic reactions extracted from iJO1366 model. Rules were calculated for each reaction 

with diameters ranging from 2 to 16. The Table below provides the number of compound 

generated running RetroPath2.0 for one iteration on the metabolites of the iJO1366 model and

the rules sets mentioned above (see Method section for additional details).

Table 2. Compounds generated by RetroPath2.0 using various reaction rules applied on E. 

coli iJO1366 model metabolites [43]. All numbers correspond to compounds having different 

InChIs at the connectivity level. 

Reaction rule set

Nbr compounds

generated

E. coli model 

coverage (1)

MS peaks 

coverage (2)

Median nbr 

cmpds per peak

Averaged nbr 

cmpds per peak

E. coli Model [43] 751 100.0 12.3 1 1.5

Sympheny [9] 9448 48.2 40.4 3 6.3

BNICE [42] 8421 68.8 45.3 3 5.8

D16 (3) 1230 82.0 23.1 1 2.0

D10 2992 83.6 25.6 1 2.3

D8 5055 84.2 28.1 1 2.7

D6 11981 84.7 46.6 2 3.1

D4 37450 86.8 60.6 2 5.7

D2 162480 91.7 79.9 8 16.9
(1) The E. coli model contains 751 compounds (with different connectivity InChIs). The column report the % of these 751 

compounds generated by the different rule sets. (2) The MS spectra were downloaded from Metabolight [44] and the OpenMS 

workflow described in the Method section retrieved a total of 800 distinct peaks. The column report the % of peak assigned to at 

least one compound generated by the rule sets. (3) The number indicates the diameter

Table 2 shows that the number of compound generated increases as the diameter decreases. 

This is consistent with the fact that shorter diameters will accept more substrates than higher 

ones and will thus produce more products. Although they were not constructed with 

diameters, the BNICE and Sympheny rule sets generally correspond to small environments 
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comprising only few atoms and bonds around reaction centers, which explain why these two 

systems generate more products than high diameter rule sets. Nonetheless, even with high 

diameters, all variable diameter rule sets produce more molecules found in E coli model than 

the BNICE and Sympheny rule sets. This might indicates that the variable rule sets 

correspond to a more accurate coding of metabolic reactions than the other systems.

To further probe the coverage of the various rules sets listed in Table 2 we searched if the 

compounds produced could be found in MS spectra. To this end, we downloaded MS spectra 

from Metabolight [44] where masses have been measured on E. coli cell extracts. The spectra 

downloaded corresponded to a study aimed at probing the dynamics of isotopically labeled 

molecules (i.e. 13C labeled glucose) [45]. Since we are concerned here with wild type E. coli 

metabolome, we considered only the spectra where E. coli cells had not yet been exposed to 

labeled glucose (spectra acquired at time t=0). All compounds generated by our various rules 

sets were prepared to be read by OpenMS nodes [23] and a workflow was written with these 

nodes to annotate the MS spectra peaks (cf. Method section for details). 

The results presented in Table 2 shows that as the diameter decreases the number of peak 

assignment increases, which is not surprising considering that the number of compounds 

generated increases as well. We observe that the Sympheny and BNICE rules sets give results 

similar to those obtained by the D6 rule set, albeit with a higher number of annotations per 

peak.

In all cases the rules sets produced compounds not present in the E. coli model but with 

corresponding masses in the MS spectra. Table S2 in Supplementary give a list of 40 such 

compounds having an identifier in MetaNetX [11] and produced by three identical reactions 

(i.e., reactions having the same substrates and products) generated using the Sympheny, 

BNICE and D6 rule sets. The compounds were produced by 53 reactions, some compounds 

being produced by more than one reaction. We note that the 40 compounds have been 

generated by rule sets for which at least one gene in E. coli has been annotated with the same 
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corresponding EC number. The 40 compounds are thus potential new E. coli metabolites and 

their presence should be further verified using for instance MS/MS analysis.

3. Conclusions

In this paper we have presented a general method allowing one to explore the chemical space 

around a given molecule, or around a given set of molecules. The originality of the method is 

that the exploration is performed through chemical reactions rules. We have given a set of 

rules allowing us to generate any isomer of any given molecule of the chemical space. We 

also provide examples making use of reaction rules computed from enzymatic reactions. 

Using rules computed on known reactions has a definite advantage regarding the 

(bio)synthetic accessibility of the molecule produced, which not necessarily is the case for 

other techniques producing molecules de novo [33,37,40,49,50,51,52]. 

Our method has been implemented into RetroPath2.0, a workflow running on the KNIME 

analytics platform [18]. RetroPath2.0 can easily be used with source molecules and reaction 

rules different that those presented in the paper. For instance the workflows provided in 

Supplementary can be used with the reaction SMARTS rules and fragment libraries (as source

compounds) of the DOGS software (inSili.com LLC [4]) developed for de novo drug design, 

other technique evolving molecules toward specific activities or properties [40, 50-52] could 

also be implemented in RetroPath2.0 provided that one first codes reaction rules in SMARTS 

format. 

Aside from searching molecules having interesting properties and activities RetroPath2.0 can 

also be used to complete metabolic maps by proposing new metabolites biosynthesized 

through promiscuous enzymes, these new metabolites can in turn be used to annotate MS 

spectra and to that end we provide an interface with OpenMS [23]. Finally, RetroPath2.0 was 

originally developed to enumerate pathways producing a given target product from a source 

set of reactants. While we have benchmarked the workflow in the context of metabolic 

engineering [17] it can also be used for synthesis planning as long as synthesis reaction rules 

are available.
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4. Methods

4.1. Generating reaction rules

All our reaction rules are represented in the form of reaction SMARTS [14]. Reaction rules 

used for canonical augmentation are provided in Figure 1and for isomer transformation in 

Figures 3, 4 and S2. Enzymatic reaction rules were computed taking enzymatic reactions from

MetaNetX version 2.0 [11]. To compute rules, we first performed an Atom-Atom Mapping 

(AAM) using the tool developed by [46] (Figure 8 A). Next, multiple substrates reactions 

were decomposed into components (panel C and D in Figure 8). There are as many 

components as there are substrates and each component gives the transformation between one

substrate and the products. Each product must contain at least one atom from the substrate 

according to the AAM. This strategy enforces that only one substrate can differ at a time from

the substrates of the reference reaction when applying the rule.

The following step consisted in computing reactions rules as reaction SMARTS for each 

component. We did it for diameters 2 to 16 around the reaction centre (panels C and D in 

Figure 8) by removing from the reaction components all atoms that were not in the spheres 

around the reaction centre atoms.

We extracted more than 24,000 reaction components from MetaNetX reactions, each one of 

those leading to a rule at each diameter (from 2 to 16).

We provide in Supplementary at MyExperiment.org a subset of 14,300 rules for E. coli 

metabolism. The rules were selected based on the MetaNetX binding to external databases 

and the iJO1366 whole-cell E. coli metabolic model [43]. We also provide enzymatic rules 

enabling the biosynthesis of aminoglycosides from Glucose. The reactions were extracted 

from the map00524 KEGG map [47], and rules were computed as above on reactions for 

which a MetaNetX identifier could be retrieved. The resulting set comprised 94 rules 

calculated for each diameters ranging from 2 to 16.
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Figure 8. RetroPath2.0 rules and corresponding SMARTS for reaction 2.6.1.93 at 

various diameters.  (A)  Full reaction 2.6.1.93 with atom mapping. (B) The list of broken 

bonds (-1) and bonds formed (+1) is given by their atom numbers. (C) The corresponding 

SMARTS for the component modelling promiscuity on 6’-Oxo-paromamine: Substrate + L-

Glutamate = Product + 2-Oxoglutarate. (D) The corresponding SMARTS for the component 

modelling promiscuity on L-Glutamate: Substrate + 6’-Oxo-paramamine = Neamine + 

Product. C and D. Rules are encoded as reaction SMARTS and characterized by their 

diameter (∞ purple, 6 blue or 2 green), that is the number of bonds around the reaction centre 

(atoms 19, 20 and 23, 24) defining the atoms kept in the rule. 
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4.2. RetroPath2.0 core algorithm

The RetroPath2.0 workflow essentially follows an algorithm proposed by some of us [16, 17] 

and its workflow implementation, which has already been described in details [17], is 

summarized in Figure 9. We here focus on the different usages of RetroPath2.0 for the use 

cases provided in section 2. 

In all cases the workflow performs the generation of structures in a breadth-first way by 

applying iteratively the same procedure. An iteration starts by applying reaction rules to each 

of the compounds of a source set. For each compound, the products are computed using the 

RDKit KNIME nodes one-component or two-component reactions [19]. Products are 

sanitized (removal of structures having incorrect valence), standardised and duplicates are 

merged. The set of products will become the new source set for the next iteration. The 

workflow iterates until a predefined number of iterations is reached or until the source set is 

empty.

In the case of isomer augmentation (workflow RetroPath2.0-Mods-isomer-augmentation, 

sections 2.1) the initial source set is composed of a single carbon atom and the rule used is R1 

in Figure 1, since it is the only rule that will produce acyclic molecules. The rule is fired on 

the source set, and the products become the new source set in the next iteration. The workflow

is iterated a number of times equal to N-1, where N is the number of atoms one wishes the 

final molecule to have.
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In the case of isomer transformation (workflow RetroPath2.0-Mods-isomer-transformation, 

sections 2.1 and 2.2) the initial source set is composed of a molecule that is filled with the 

appropriate number of hydrogens using the RDKit KNIME node Add Hs. At each iteration 

rules are fired on the source set and the products obtained become the new source set for the 

next iteration. As an additional last step of each iteration, products that have already been 

processed in a previous iteration are filtered out before building the next source set. This 

necessitates maintaining a set (named sink) comprising all molecules so far generated. All 

products that have already been obtained are removed from the product set and the remaining 

molecules are (i) added to the sink set and (ii) used as the new source set for the next 

iteration. This avoids applying reactions on the same products during subsequent iterations.  

Disconnected structures are removed from the results by filtering out any product 

having several disconnected components (according to the SMILES representation). 

When enumerating alkane, disconnected structures represents between 50 and 66% 

(depending of the alkane size) of the generated structures before filtering and merging

duplicates. To generate the results of Table 1, since we are enumerating alkanes (no multiple 

bonds or cycles), the rule to be used is R1 in Figure 3. To enumerate the isomers of the 

monomers in section 2.2, if we prohibit the transformation of multiple bonds into cycles and 

thus keep the number of single, double and triple bonds constant, the rules to be used are R1, 

R5 and R9 in Figure 3 (also found in Figure S2 since the monomers used do not contain triple 

bonds). Since this algorithm can become computationally intensive, we also provide an 

additional workflow (called RetroPath2.0-Mods-isomer-transformation-queue) to deal with 

memory management. This workflow illustrates how to introduce a FIFO data structure for 

the source set (i.e. queue containing structures upon which rules will be fired) and use it for 

iteratively firing rules on small chunks of structures (e.g. chunk of 20 structures), new 

products obtained are then added to the source queue. Interestingly, the breadth-first approach

for generating the structures can be replaced by a depth-first approach by replacing the queue 

(first in, first out structure) by a stack (last in, first out structure).”
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In the case of inverse-QSAR (workflow RetroPath2.0-Mods-iQSAR, section 2.3), the source 

set initially comprises the molecules used in the training set when building the QSAR. At 

each iteration, one or two molecules are chosen at random from the source set depending on 

the rule set that is being used (one molecule with enzymatic reaction rules, two molecules 

with isomer transformation rules). Rules are then fired on the selected molecules and an 

activity is predicted for each product using the QSAR equation. The source set is updated 

retaining molecules according to a selection tournament procedure borrowed from [40]. 

Briefly, the initial source set (i.e. the set of structures used at the start of the current iteration) 

is merged with the product set (i.e. the set of structures obtained after firing the rules). This 

merged set is then randomly split into 10 subsets and the 10 top best structures from each 

subset are retained according to their predicted activity. Finally, all the retained structures are 

pooled together to form the updated source set to be used at the next iteration. The workflow 

is iterated a (user) predefined number of times.

In the case of E. coli metabolic network completion (workflow RetroPath2.0-Mods-

metabolomics, section 2.4), we provide three workflows. The first workflow is RetroPath2.0, 

which is fully described in [17] and is similar to the isomer transformation one. Here, 

RetroPath2.0 produces a list of molecules obtained using E. coli enzymatic reaction rules (see

section 3.1). The second workflow takes as input the products generated by RetroPath2.0, 

computes the exact mass for each product and prepare files to be read by OpenMS nodes for 

MS data peak assignment [23]. The last workflow is build with OpenMS nodes, it reads 

several MS data file in mzML format, two lists of adducts in positive and negative modes, and

the files generated by the second workflow (containing RetroPath2.0 generated product with 

masses). The workflow searches for each compound the corresponding peak in the MS 

spectra. The workflow was parameterized for metabolomics analysis as described in OpenMS

manual [48], the AccurateMassSearch node was set to negative ion mode as the experiment 

were carried out with an LTQ-Orbitrap instrument operating in negative FT mode (cf. 

protocols in [44]).
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Further details on how to run all the above workflows are provided in the Supplementary at 

MyExperiment.org

Figure 9. RetroPath2.0 KNIME workflow. Inner view of the "Core" node where the

computation takes place. The "Source, Sink..." and "Rules" nodes parse the source, sink and

rules input files provided by the user and standardize data so that it  can be processed by

downstream nodes. Definitions for source, sink, and rule sets are provided in the text. The

outer  loop  ("Source"  loop)  iterates  over  each  source  compounds,  while  the  inner  loop

("Length" loop) allows to iterate the process up to a maximum number of steps predefined by

the user. The nodes (i) "FIRE", (ii) "PARSE", (iii) "UPDATE SOURCE..." and (iv) "BUILD"

are sequentially executed at each inner iteration. Respectively, they (i) apply all the rules on

source compounds, (ii) parse and standardize new products, (iii) update the lists of source and

sink compounds for the next iteration and (iv) merge results that will be written by the node

"Write global results". Once the maximum number of steps is reached (or no new product is

found),  the  "Compute  scope"  node  identify  the  scope  linking  each  source  to  the  sink

compounds, then these results are written by the node "Write per source results". Only the

main nodes involved in the process are shown.
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