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Abstract 25 
Probabilistic sequence learning involves a set of robust mechanisms that enable the extraction 26 
of statistical patterns embedded in the environment. It contributes to different perceptual and 27 
cognitive processes as well as to effective behavior adaptation, which is a crucial aspect of 28 
decision making. Although previous research attempted to model reinforcement learning and 29 
reward sensitivity in different risky decision-making paradigms, the basic mechanism of the 30 
sensitivity to statistical regularities has not been anchored to external tasks. Therefore, the 31 
present study aimed to investigate the statistical learning mechanism underlying individual 32 
differences in risky decision making. To reach this goal, we tested whether implicit 33 
probabilistic sequence learning and risky decision making share common variance. To have a 34 
more complex characterization of individual differences in risky decision making, hierarchical 35 
cluster analysis was conducted on performance data obtained in the Balloon Analogue Risk 36 
Task (BART) in a large sample of healthy young adults. Implicit probabilistic sequence 37 
learning was measured by the Alternating Serial Reaction Time (ASRT) task. According to 38 
the results, a four-cluster structure was identified involving average risk-taking, slowly 39 
responding, risk-taker, and risk-averse groups of participants, respectively. While the entire 40 
sample showed significant learning on the ASRT task, we found greater sensitivity to 41 
statistical regularities in the risk-taker and risk-averse groups than in participants with average 42 
risk-taking. These findings revealed common mechanisms in risky decision making and 43 
implicit probabilistic sequence learning and an adaptive aspect of higher risk taking on the 44 
BART. Our results could help to clarify the neurocognitive complexity of decision making 45 
and its individual differences. 46 

47 
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1. Introduction 48 
Decisions about skill-based actions are usually automatic in our daily routine, for instance, 49 
while we drive a car, do sports, or navigate in the operating system of our laptops. Making 50 
risky decisions, such as having one more drink before driving or driving a car beyond a speed 51 
limit, also involves automatic processes and gut feelings. We assume that decisions on both 52 
skill-based actions and risky situations necessitate the sensitivity to sequential or statistical 53 
regularities. An increased sensitivity to environmental regularities, which is also referred to as 54 
probabilistic sequence learning or statistical learning, has been shown to be crucial in healthy 55 
daily functioning, because it contributes to the acquisition of perceptual, motor, and cognitive 56 
skills, and to effective behavior adaptation (Batterink, Reber, Neville, & Paller, 2015; 57 
Chaudhuri & Fiete, 2016; Nemeth, Janacsek, & Fiser, 2013). Although probabilistic sequence 58 
learning and risky decision making could be connected, the majority of studies on risk-related 59 
behavior has focused on the effect of reward contingencies, task structure, different 60 
personality traits and/or clinical symptoms (e.g., Bornovalova et al., 2009; Brand, Labudda, & 61 
Markowitsch, 2006; Fein & Chang, 2008; Schiebener, Wegmann, Pawlikowski, & Brand, 62 
2012), and the direct investigation of the association between this learning mechanism and 63 
risk-related behavior has been missing from the field. Learning per se has been linked to the 64 
adaptive nature of risk-related behavior (Bechara, Damasio, Tranel, & Damasio, 2005; Euser 65 
et al., 2013), but the involvement of the ability to acquire statistical contingencies has been 66 
unclear. Here we aim to fill in this gap by analyzing task-solving strategies during a 67 
sequential risk-taking task with probabilistic underlying structure in a large population-based 68 
sample and testing its relations to probabilistic sequence learning measured by an independent 69 
perceptual-motor four-choice reaction time task that involves implicit learning of statistical 70 
regularities. 71 
 72 
The Balloon Analogue Risk Task (BART) has been considered as a valid measure of 73 
naturalistic risk-taking behavior by modeling the day-to-day sequential processing of risk 74 
(Helfinstein et al., 2014; Lejuez et al., 2002; Schonberg et al., 2012; Schonberg, Fox, & 75 
Poldrack, 2011). In this task, participants are asked to inflate an empty virtual balloon. Each 76 
balloon pump is associated with either a reward or a balloon burst. The probability of a 77 
balloon burst increases with each successive pump, but the regularity that determines balloon 78 
bursts following a pump is unknown to participants. In previous experiments, probabilities of 79 
balloon bursts have usually been chosen from a uniform distribution, and participants have 80 
had to infer these probabilities by trial and error learning (Schonberg et al., 2011). As the 81 
appearance of gains (balloon increase) and losses (balloon burst) follows a probabilistic 82 
structure, expectations about stimulus-response contingencies might not be established on the 83 
basis of purely explicit task-solving strategies.  84 
 85 
Previous results also suggest that the sequential processing of risk in the BART evokes 86 
expectations about outcome contingencies (Kardos et al., 2016; Kiat, Straley, & Cheadle, 87 
2016), and the process of expectation formation is a crucial element of probabilistic sequence 88 
learning, as well. According to this argument, the BART might share common variance with 89 
other external measures of probabilistic sequence learning. This assumption also follows from 90 
another line of research suggesting interactions between different learning/memory systems 91 
(for a review, see Robertson, 2012) and learning transfer between learning/memory tasks 92 
(Mosha & Robertson, 2016). However, it has also been shown that multiple task-related 93 
sequential regularities could be acquired in parallel (Goschke & Bolte, 2012), based on which 94 
the lack of relation between learning two different dimensions of sequences (i.e., the sequence 95 
of spatial positions in the perceptual-motor task and the sequence of response-outcome 96 
probabilities in the BART) is also possible. 97 
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As the BART is a widely used tool in the clinical and experimental literature (Lauriola, 98 
Panno, Levin, & Lejuez, 2014), previous work has already attempted to go beyond the 99 
common behavioral variables to describe performance and thus capture more processes of 100 
task solving. Schmitz, Manske, Preckel, and Wilhelm (2016) differentiated variables related 101 
to risk taking, task performance, impulsive decision making, and reinforcement sequence 102 
modulation. Using a shortened version of the BART, on the basis of two empirical studies on 103 
adolescents and young adults (among whom a significant proportion showed deviant 104 
behavior), the authors suggested that the number of balloon bursts was the most consistent 105 
correlate of risk taking with a high predictive validity, and the use of RT-based scores 106 
indicating impulsive decision making was limited.  107 
 108 
With the same purpose, to more clearly characterize the underlying psychological/cognitive 109 
processes determining BART performance, another line of research has focused on 110 
developing formal models of task. Wallsten, Pleskac, and Lejuez (2005) compared alternative 111 
models of the BART and found that a four-parameter model provided the best fit to data. This 112 
model indicated that the decision makers assumed stationary burst probabilities over pumps, 113 
they learned – updated their opinion about burst probabilities – in a Bayesian fashion over 114 
balloon trials, their initial risk preferences were evaluated prior to responding, and their 115 
response consistency remained constant over trials. The study of Pleskac, Wallsten, Wang, 116 
and Lejuez (2008) added to these findings by providing evidence that decision makers 117 
adapted their mental representation and learning processes according to the actual stochastic 118 
structure of the decision task when a modified version of the BART was applied. It was also 119 
suggested that the ill-defined, nonstationary characteristic of the original task, which was 120 
related to learning processes, hindered its predictive validity to identify real-world risk taking 121 
behavior. Meanwhile, on data derived from a BART version with fixed bursting probability 122 
over trials, van Ravenzwaaij, Dutilh, and Wagenmakers (2011) found that a simplified, two-123 
parameter (risk taking and response consistency) version of the model introduced by Wallsten 124 
et al. (2005) showed adequate parameter recovery instead of the four-parameter model.  125 
 126 
The advantage of cognitive modeling over analyzing the standard behavioral variables of the 127 
BART has been shown, for instance, in the study of Rolison, Hanoch, and Wood (2012), 128 
where no difference was found between younger and older adults in risky behavior according 129 
to the standard BART score, but modeling results revealed that older adults were initially 130 
more risk averse and then adjusted their behavior according to experience. Similarly, 131 
differences in those psychological processes that model parameters represent were found in 132 
the study of Wichary, Pachur, Kościelniak, Rydzewska, and Sedek (2017) between young and 133 
older adults experiencing initial good and bad luck in the BART (see also Koscielniak, 134 
Rydzewska, & Sedek, 2016). In addition, Wichary, Pachur, and Li (2015) revealed striking 135 
gender differences in model parameters between individuals with excessive risk taking 136 
(prisoners) and control participants. 137 
 138 
Although using other analytic approaches, learning in the BART has also been quantified by 139 
tracking how participants increase the number of balloon pumps after they have gained some 140 
experience with the task during earlier balloon trials (Campbell, Samartgis, & Crowe, 2013; 141 
Euser et al., 2013; Euser, van Meel, Snelleman, & Franken, 2011; Fecteau et al., 2007; 142 
Koscielniak et al., 2016; Lim, Yuen, & Tong, 2015; Vigil-Colet, 2007), and how they change 143 
their behavior on a particular trial according to the outcome on the preceding trial (Courtney 144 
et al., 2012; Kohno et al., 2015). In addition, an increasing number of studies has focused on 145 
how response time of participants could indicate the change of decision-making processes 146 
throughout the BART (e.g., Euser et al., 2011; Hassall, Holland, & Krigolson, 2013; Pleskac 147 
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& Wershbale, 2014; Schonberg et al., 2012). These studies quantified different decision 148 
making mechanisms within the BART; however, these mechanisms have not been assigned to 149 
external measures of implicit acquisition of statistical regularities that could characterize 150 
sequential decision making.  151 
 152 
While the above-mentioned studies have been promising in understanding the cognitive 153 
processes underlying the BART, it is not clear whether the combination of basic behavioral 154 
indices might describe distinctive task-solving profiles, which could further promote the 155 
investigation of individual differences in risky decision making. Specifically, more accurate 156 
task-solving profiles could contribute to revealing the exact relationship between probabilistic 157 
sequence learning and BART performance, which otherwise would have remained hidden. 158 
For a better characterization of individual differences in risky decision making, classification 159 
of participants on the basis of their behavioral performance using different clustering methods 160 
seems to be an advantageous approach (Bergman, Magnusson, & El-Khouri, 2003; Kóbor, 161 
Takács, Urbán, & Csépe, 2012). Therefore, in this study, we performed hierarchical cluster 162 
analysis to capture individual differences in BART performance. In two steps, we tested 163 
whether the BART and an implicit probabilistic sequence learning task share common 164 
variance as both tasks involve probabilistic underlying structure. First, we checked the 165 
potential associations between the component measures of the BART and probabilistic 166 
sequence learning. Second, the sequence learning performance of the clusters of participants 167 
with different task-solving strategies were compared. 168 

 169 
2. Material and Methods 170 
 171 
2.1 Participants 172 
The sample consisted of 180 healthy young adults. Mainly the undergraduate students of 173 
Eötvös Loránd University participated in this study. Descriptive characteristics of the sample 174 
are presented in Table 1 (see the column labeled as “Total sample”). All participants had 175 
normal or corrected-to-normal vision and none of them reported a history of any neurological 176 
and/or psychiatric condition. All participants provided written informed consent before 177 
enrolment and received course credits for taking part in the experiment. The study was 178 
approved by the United Ethical Review Committee for Research in Psychology (EPKEB) in 179 
Hungary (approval number: 30/2012). The study was conducted in accordance with the 180 
Declaration of Helsinki. 181 
 182 

PLEASE INSERT TABLE 1 HERE 183 
 184 
2.2 Tasks 185 
 186 
2.2.1 BART  187 
The general structure and appearance of the BART was the same as described in previous 188 
studies (Fein & Chang, 2008; Kóbor et al., 2015; Takács et al., 2015). Participants were 189 
instructed to collect as many points as possible by inflating an empty virtual balloon on a 190 
screen. Accumulated score for a given balloon, which simultaneously increased with the size 191 
of the balloon after each successful pump, were displayed in the middle of the balloon. Two 192 
response keys on a keyboard were designated either to pump (Z) the balloon or to finish the 193 
actual trial and collect (C) the accumulated score. Instead of collecting the score from the 194 
actual balloon, there were two possible outcomes as a results of a further pump: An increase 195 
in the size of the balloon together with an increase in the score inside (positive feedback) or a 196 
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balloon burst (negative feedback) could have happened. The balloon burst ended the actual 197 
trial, and the accumulated score on that balloon was lost.  198 
 199 
Importantly, each successful pump increased the probability of a balloon burst and the 200 
accumulated score being lost. The regularity determining balloon bursts was unknown to 201 
participants and followed three principles: (1) balloon bursts for the first and second pumps 202 
were disabled; (2) the maximum number of successful pumps for each balloon was 19; (3) the 203 
probability of a balloon burst was 1/18 for the third pump, 1/17 for the fourth pump, and so on 204 
for each further pump until the 20th, where the probability of a balloon burst was 1/1. 205 
Compared to the typical variant of the task (Lejuez et al., 2002), we modified the increase of 206 
payoffs to motivate participants to take higher risk and gain more reward (cf. Fein & Chang, 207 
2008). Namely, we assumed that because of the higher appealing characteristic of reward, 208 
participants would be more prone to test the structure of the task. Therefore, reward score 209 
increased by one point at each successful pump: Participants could gain one point for the first 210 
pump, two for the second (i.e., the accumulated score for a given balloon was three), three for 211 
the third (i.e., the accumulated score was six), and so on. Our previous studies (Kardos et al., 212 
2016; Kóbor et al., 2015; Takács et al., 2015) indicate that behavioral results have been 213 
similar in this variant of the task to that of the typical variant (Lejuez et al., 2002).  214 
 215 
In the middle of the balloon, participants always saw the total accumulated score for a given 216 
balloon. The labels “Total score” depicting the points in the permanent bank, “Last balloon” 217 
depicting the points collected from the previous balloon, and response key options constantly 218 
appeared on the screen during the experiment. After collecting the accumulated reward, a 219 
separate screen indicated the gained score. This screen or the other presenting balloon burst 220 
was followed by the presentation of a new empty (small-sized) balloon indicating the 221 
beginning of the next trial. 222 
 223 
In this version of the BART, participants had to inflate 30 balloons. In order to maximize 224 
reward, the optimal or advantageous number of pumps was 13, but participants had to infer 225 
this information by trial-and-error learning. Therefore, approaching this particular value by 226 
increasing the number of pumps in time could be regarded as the evolvement of sensitivity to 227 
the underlying statistical regularities. 228 
 229 
2.2.2 ASRT task 230 
The Alternating Serial Reaction Time (ASRT) task was used to measure implicit probabilistic 231 
sequence learning (Nemeth et al., 2010). In this task, the target stimulus was a picture of a 232 
dog’s head, which appeared in one of four horizontally arranged and equally spaced empty 233 
circles on the screen in each trial (Nemeth, Janacsek, Polner, & Kovacs, 2013). Participants 234 
were instructed to press a key (Z, C, B, or M on a QWERTY keyboard) corresponding to 235 
target location as quickly and accurately as they can. The target stimulus remained on the 236 
screen until the participants’ correct response, and the next target was presented on the screen 237 
after 120 ms delay. Unbeknownst to the participants, the presentation of stimuli followed an 238 
eight-element sequence, within which pattern (P) and random (r) elements alternated with 239 
each other (e.g., 2 – r – 1 – r – 3 – r – 4 – r; where numbers denote the four locations on the 240 
screen from left to right, and r’s denote randomly chosen locations out of the four possible 241 
ones). In each block, this eight-element trial sequence was repeated 10 times after five warm-242 
up trials consisting only of random stimuli (altogether 85 trials in each block).  243 
 244 
As a results of the trial sequence, some patterns of three successive elements (henceforth 245 
referred to as triplets) occur more frequently than others in the ASRT task. In the example 246 
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above, 2X1, 1X3, 3X4, and 4X2 (X indicates the middle element of the triplet) occurred often 247 
since their third elements could have either been a pattern or a random element. However, 248 
1X2 and 4X3 occurred less frequently since their third element could have only been random. 249 
The former triplet types were labeled as “high-frequency” triplets while the latter types were 250 
labeled as “low-frequency” triplets (Nemeth, Janacsek, & Fiser, 2013). The third element of a 251 
high-frequency triplet was more predictable from the first element of the triplet than in the 252 
case of low-frequency triplets. Accordingly, each target stimulus was categorized as either the 253 
third element of a high- or a low-frequency triplet, and the accuracy and reaction time (RT) of 254 
the response to this item were compared between the two triplet types.  255 
 256 
While high frequency triplets could be expected with 62.5% of probability, low frequency 257 
triplets had a 37.5% probability to occur. Following the standard analysis protocol of previous 258 
studies (J. H. Howard, Jr. & Howard, 1997; Nemeth, Janacsek, & Fiser, 2013), two types of 259 
low-frequency triplets were eliminated from the analysis: repetitions (e.g., 111, 444) and trills 260 
(e.g., 121, 242). Repetitions and trills were low frequency for all participants, and participants 261 
often show pre-existing response tendencies to them (D. V. Howard et al., 2004). By 262 
eliminating these triplets, we could ensure that any high- versus low-frequency differences 263 
were due to learning and not to pre-existing tendencies. Probabilistic sequence learning is 264 
reflected in the increasingly faster and more accurate responses to high-frequency triplets 265 
compared to that to low-frequency ones over the course of the task (S. Song, J. H. Howard, 266 
Jr., & D. V. Howard, 2007b). In addition, it has been shown that accuracy decreases on low-267 
frequency (less predictable) triplets as a results of probabilistic sequence learning (D. V. 268 
Howard et al., 2004). Consequently, the obtained learning measure could also be considered 269 
as an index of probabilistic sequence learning. It is important to note that the task remained 270 
implicit for the participants, and according to previous studies, even after an extended 271 
practice, participants were not able to discover the hidden sequence (D. V. Howard et al., 272 
2004). 273 
 274 
2.3 Procedure 275 
The ASRT task consisted of 45 blocks with 85 trials in each. Participants were allowed to take 276 
a short break between blocks. In a separate experimental session 24 hours after completing the 277 
ASRT task, we administered the BART, other neuropsychological tests, and questionnaires 278 
measuring the different aspects of cognition, personality, and social behavior. Here we only 279 
report results of the BART and the ASRT task. 280 
 281 
2.4 Statistical Analyses 282 
 283 
2.4.1 BART variables 284 
We followed a theory-driven approach (Appelt, Milch, Handgraaf, & Weber, 2011) as well as 285 
considered the most frequently published behavioral indices of the BART when deciding 286 
about the individual component measures characterizing BART performance. The choice of 287 
these variables is also critical in regard to the obtainable cluster solution (Morris, Blashfield, 288 
& Satz, 1981). Three variables were determined. First, the mean adjusted number of pumps 289 
across balloons (MAP; mean number of pumps on balloons that did not burst) is 290 
conventionally used to measure risk-taking behavior (Lejuez et al., 2002), and it could also 291 
indicate how participants learn from positive feedback. In other words, higher MAP could 292 
mirror a more optimal task-solving strategy. Second, the number of balloon bursts (i.e., pop 293 
number) not only indicates the level of risk taking (Schmitz et al., 2016) but also the effect of 294 
negative feedback throughout the task. Besides general risk-taking behavior and insensitivity 295 
to losses, higher pop number could mirror higher propensity to test the structure of the task 296 
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and a step towards optimal task-solving strategy. In addition, it seems that participants pay 297 
more attention to losses than to gains (Rolison et al., 2012). According to Schmitz et al. 298 
(2016), the number of balloon bursts has been a less ambivalent indicator of risk taking than 299 
the MAP. Therefore, in this study, we consider variability in the MAP as an indicator of 300 
variability in optimal task solving, while variability in the number of balloon bursts is 301 
assumed to be related to variability in risk taking and optimal task solving, as well. The third 302 
variable we used was the median response time (RT) of pumps across balloons calculated for 303 
each participant. Response time was measured from the presentation of the (empty or 304 
increased) balloon until the initiation of the next pump. Balloon pumps with RT equal to or 305 
below 100 ms and equal to or higher than 3000 ms were excluded from calculating the 306 
median of all RTs in order to eliminate attentional lapses and premature responses (cf. Hassall 307 
et al., 2013; Kardos et al., 2016; Matzke & Wagenmakers, 2009). According to previous 308 
studies (Hassall et al., 2013; Pleskac & Wershbale, 2014; Wallsten et al., 2005), RT of 309 
balloon pumps could be indicative of how participants explore the reward structure of the task 310 
and make risk assessment before each decision. Basically, generally slower RTs could be 311 
related to more controlled, deliberate pumps and the exploration of reward contingencies 312 
throughout the task (Haffke & Hübner, 2015; Pleskac et al., 2008). 313 
 314 
Although the overall quality (effectiveness) of decision making as well as the adaptation to 315 
task requirements (in line with task instructions) could be captured by the total score 316 
(Koscielniak et al., 2016; Schmitz et al., 2016), we did not use this variable for clustering. A 317 
certain value on this variable accumulates the outcome of many different processes and 318 
strategies underlying decision making, and previously, it has been related to scholastic 319 
achievement and working memory but not to risk-taking variables (Schmitz et al., 2016). As 320 
we intended to characterize performance by combining different pieces of information 321 
conveyed by each component measure of the BART, we regarded the total score only as a 322 
measure to externally validate our cluster solution. An appropriate cluster solution should 323 
show differences on a related overall performance variable (i.e., the total score) that has not 324 
been used for clustering (Morris et al., 1981). 325 
 326 
2.4.2 ASRT task performance 327 
Statistical analyses of the ASRT performance followed the protocol established in previous 328 
studies (J. H. Howard, Jr. & Howard, 1997; Romano, Howard, & Howard, 2010). Five-block-329 
long segments of data were collapsed into larger epochs; thus, we altogether analyzed 9 330 
epochs of the ASRT task. Epochs are labeled consecutively in this paper (1, 2, etc.). For each 331 
participant and epoch, we calculated mean accuracy (percentage of correct responses) and 332 
median RT (only for correct responses), separately for high- and low-frequency triplets. Then 333 
we calculated a learning score as the difference between triplet types in RT (RT for low-334 
frequency triplets minus RT for high-frequency triplets) and accuracy (accuracy for high-335 
frequency triplets minus accuracy for low-frequency triplets). Larger score in both measures 336 
indicates larger probabilistic sequence learning.  337 
 338 
2.4.3 The association between BART variables and ASRT task performance 339 
In order to check whether any variability is shared between the two, theoretically related 340 
functions, statistical analysis was performed in two steps. First, we calculated Pearson’s linear 341 
correlations between the component measures of the BART and ASRT learning scores. 342 
Second, as a more fine-grained characterization of performance, for identifying subgroups of 343 
distinctive task-solving strategies, we performed an agglomerative hierarchical cluster 344 
analysis with the clustering variables of MAP, number of pops, and median RT of balloon 345 
pumps. We used squared Euclidean distance as the similarity measure and Ward’s method as 346 
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the type of cluster fusion (Morey, Blashfield, & Skinner, 1983). Before performing the cluster 347 
analysis, the three clustering variables were standardized (they were transformed into z 348 
scores). After the hierarchical cluster analysis, to further improve the obtained cluster solution 349 
and create more homogeneous subgroup, we performed K-means cluster analysis. This 350 
iterative method moves (relocates) some cases from one cluster to another if this reduces the 351 
total error sum of squares of the original cluster solution (Bergman et al., 2003; Takács, 352 
Kóbor, Tárnok, & Vargha, 2014). To evaluate probabilistic sequence learning and compare 353 
probabilistic sequence learning performance of subgroups obtained from the final cluster 354 
solution, mixed design analyses of variance (ANOVAs) were conducted. Greenhouse-Geisser 355 
epsilon (ε) correction was used when necessary. Original df values and corrected p values (if 356 
applicable) are reported together with partial eta-squared (ηp

2) as the measure of effect size. 357 
We used LSD (Least Significant Difference) tests for pair-wise comparisons. 358 
 359 
3. Results 360 
 361 
3.1 Change in behavioral performance during the BART  362 
To check whether participants have tried to optimize their performance during task solving, 363 
we analyzed the change in behavior over time. We calculated the MAP and the number of 364 
balloon bursts for the first, second, and third 10 balloons, respectively, for the whole sample. 365 
First, a one-way repeated measures ANOVA with BIN (1-10, 11-20, 21-30 balloons) as a 366 
within-subjects factor was performed on the MAP. The main effect of BIN was significant, 367 
F(2, 358) = 38.37, ε = .883, p < .001, ηp

2 = .177. Pair-wise comparisons showed that the MAP 368 
gradually increased in the whole sample as the task progressed (Mfirst bin = 7.4, Msecond bin = 8.5, 369 
Mthird bin = 8.9, all comparisons are significant, ps ≤ .008). 370 
 371 
Second, the same ANOVA was performed on the number of balloon bursts. The main effect 372 
of BIN was significant, F(2, 358) = 19.34, p < .001, ηp

2 = .098. Pair-wise comparisons showed 373 
that the number of balloon bursts increased from the first to the second and third bins (Mfirst bin 374 
= 3.5, Msecond bin = 4.2, Mthird bin = 4.4; first vs. second: p < .001; first vs. third: p < .001), but 375 
there was no difference between the second and third bins (p = .172). These finding suggest 376 
that participants were sensitive to statistical regularities underlying the BART as they tried to 377 
test the structure of the task, at least during the first 20 balloons. 378 
 379 
3.2 BART clusters 380 
Cluster analysis was performed using the overall MAP, number of balloon bursts, and 381 
response time variables, calculated across 30 balloons. The final cluster solution included four 382 
clusters explaining 67.58% of the variance (considering error sum of squares). The Silhouette 383 
coefficient of the cluster solution was .681. This coefficient indicates the quality of cluster 384 
cohesion and separation, it ranges between -1 and 1, and values greater than .5 indicates 385 
reasonable partitioning of the data. The average of the Homogeneity coefficient (HC) was 386 
0.667. HC is the average of the pairwise distances within a cluster; larger values indicate more 387 
heterogeneous clusters, and an average HC less than 1 indicates good cluster structure. (For 388 
more details on evaluating cluster solutions, see Vargha, Bergman, and Takács (2016)). 389 
 390 
Detailed demographic and behavioral properties of the four clusters and the entire sample are 391 
presented in Table 1 and Figure 1. We labeled and interpreted the clusters on the basis of their 392 
descriptive characteristics shown on BART behavioral measures and following the notion that 393 
higher MAP and higher number of balloon bursts could indicate more optimal, while higher 394 
RT could indicate more deliberate task solving. Accordingly, the first cluster involved 395 
participants with moderate or average risk-taking (41.7%), the second cluster captured slowly 396 
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responding participants (8.3%), the third cluster consisted of risk-taker participants (23.9%), 397 
and the fourth cluster consisted of risk-averse ones (26.1%). Participants’ mean values on 398 
BART outcome measures in the Average cluster were close to that of the total sample, except 399 
the RT, which was slightly faster. Slowly responding participants experienced relatively low 400 
number of balloon bursts and produced relatively low MAP. Number of balloon bursts and the 401 
MAP were even lower in the Risk-averse cluster, which was otherwise described by average 402 
RTs. The mean of MAP in the Risk-taker cluster was closer to the optimal level than in other 403 
clusters, and participant in this subgroup also experienced a high number of balloon bursts. 404 
According to pair-wise comparisons, each cluster differed from all the others on the total 405 
score: The Risk-taker cluster achieved the highest total score, the Average cluster was the 406 
second, the Slow cluster was the third, and the Risk-averse cluster achieved the lowest total 407 
score (all ps ≤ .043). 408 
 409 

PLEASE INSERT FIGURE 1 HERE 410 
 411 
3.3 Associations between the BART and the ASRT task 412 
One participant was removed from the following analyses because of high error ratio on the 413 
ASRT task (a mean of 74% for the entire task): This case was an extreme outlier, being well 414 
below the lower whisker of the sample’s accuracy data represented as a boxplot (sample’s 415 
accuracy: M = 95.40%, SD = 2.95%). Therefore, n = 179 in the remainder of the paper. 416 
 417 
3.3.1 Correlation analysis 418 
Regarding the whole sample, there was no significant correlation between either the accuracy 419 
learning score of the ASRT task and BART measures (MAP: r = .002, p = .983; pop: r = -420 
.013, p = .864; RT: r = -.019, p = .798; total score: r = -.011, p = .881; df = 177 in all 421 
analyses), or the RT learning score of the ASRT task and BART measures (MAP: r = -.069, p 422 
= .361; pop: r = -.090, p = .232; RT: r = -.065, p = .386; total score: r = -.052, p = .491; df = 423 
177 in all analyses). We also plotted each learning index against each component measure of 424 
the BART, and no indication was found for linear or quadratic relations (for the sake of 425 
brevity, these figures are not included). 426 
 427 
3.3.2 Between-cluster differences on the ASRT task  428 
Learning on the ASRT task among the BART strategic clusters was tested with a three-way 429 
mixed ANOVA on accuracy with TRIPLET (high- vs. low-frequency) and EPOCH (1-9) as 430 
within-subjects factors and CLUSTER (Average, Slow, Risk-taker, Risk-averse) as a 431 
between-subjects factor. Accuracy data as a function of epoch and trial type for each cluster 432 
are shown in Figure 2. We first present the task-related (within-subjects) effects. The 433 
significant main effect of TRIPLET, F(1, 175) = 344.55, p < .001, ηp

2 = .663, revealed 434 
probabilistic sequence learning in the entire sample since participants were less accurate on 435 
low-frequency triplets than on high-frequency triplets. The significant main effect of EPOCH, 436 
F(8, 1400) = 30.55, ε = .537, p < .001, ηp

2 = .149, also indicated learning, as it changed 437 
mainly due to the decreasing accuracy on low-frequency triplets throughout the task (cf. D. V. 438 
Howard et al., 2004). Specifically, participants became less accurate on low-frequency triplets 439 
than on high-frequency ones as the task progressed, reflected by the significant interaction of 440 
TRIPLET*EPOCH, F(8, 1400) = 14.76, ε = .904, p < .001, ηp

2 = .078. 441 
 442 
In regard to the between-subjects effects on ASRT accuracy measures, the main effect of 443 
CLUSTER did not reach significance, F(3, 175) = 1.91, p = .131, ηp

2 = .032, showing that 444 
overall accuracy did not reliable differ between the BART clusters. However, the 445 
TRIPLET*CLUSTER interaction was significant, F(3, 175) = 3.48, p = .017, ηp

2 = .056, 446 
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indicating differences between the BART clusters in probabilistic sequence learning. Learning 447 
score was greater in the Risk-taker and Risk-averse clusters than in the Average cluster (ps < 448 
.010, see Figure 3). The EPOCH*CLUSTER interaction only tended to be significant, F(24, 449 
1400) = 1.57, ε = .357, p = .089, ηp

2 = .026. Nevertheless, the TRIPLET*EPOCH*CLUSTER 450 
interaction was not significant, F(24, 1400) = 0.784, ε = .904, p = .747, ηp

2 = .013, suggesting 451 
that the time course of probabilistic sequence learning was similar across the BART clusters. 452 
 453 
The same ANOVA was performed on RTs. In regard to the task-related effects, the entire 454 
sample showed probabilistic sequence learning (significant main effects of TRIPLET, F(1, 455 
175) = 439.93, p < .001, ηp

2 = .715, and EPOCH, F(8, 1400) = 268.06, ε = .416, p < .001, ηp
2 456 

= .605). In addition, participants were increasingly faster on high- than on low-frequency 457 
triplets (significant interaction of TRIPLET*EPOCH, F(8, 1400) = 30.22, ε = .896, p < .001, 458 
ηp

2 = .147). 459 
 460 
Considering the effect of cluster assignment on ASRT RT measures, the main effect of 461 
CLUSTER was not significant, F(3, 175) = 0.753, p = .522, ηp

2 = .013, indicating that overall 462 
RT was similar across BART clusters. The non-significant TRIPLET*CLUSTER interaction, 463 
F(3, 175) = 1.34, p = .263, ηp

2 = .022, suggested that probabilistic sequence learning 464 
measured by RT did not differ between BART clusters. Similarly, the time course of learning 465 
was comparable across BART clusters (non-significant interactions of EPOCH*CLUSTER, 466 
F(24, 1400) = 0.882, ε = .416, p = .550, ηp

2 = .015, and TRIPLET*EPOCH*CLUSTER, F(24, 467 
1400) = 0.848, ε = .896, p = .663, ηp

2 = .014).  468 
 469 
In sum, there was evidence for probabilistic sequence learning on both accuracy and RT 470 
learning measures in the entire sample. In the case of the accuracy learning measure, this was 471 
modulated by participants’ assignment to BART clusters. 472 
 473 

PLEASE INSERT FIGURE 2 HERE 474 
 475 

PLEASE INSERT FIGURE 3 HERE 476 
 477 

4. Discussion 478 
This study tested whether implicit probabilistic sequence learning and risky decision making 479 
share common variance. To this end, we investigated whether subgroups of participants 480 
performing a sequential risk-taking task with probabilistic underlying structure would have 481 
been characterized by different sensitivity to statistical regularities measured by an 482 
independent probabilistic sequence learning task. According to the results, we successfully 483 
identified four different clusters on the basis of usual behavioral measures of the BART. We 484 
classified participants as average risk-taking, slowly responding, risk-taker, or risk-averse, 485 
respectively. Probabilistic sequence learning was measured by the ASRT task, in which the 486 
entire sample, irrespective of cluster assignment, showed significant learning (cf. J. H. 487 
Howard, Jr. & Howard, 1997; Nemeth et al., 2010; Nemeth, Janacsek, Polner, et al., 2013). 488 
More importantly, we found evidence for greater sensitivity to statistical regularities on the 489 
ASRT task in terms of accuracy in the risk-taker and risk-averse subgroups than in 490 
participants with average risk-taking for the first time.  491 
 492 
We could not have detected association between risky decision making and probabilistic 493 
sequence learning if only correlational analysis had been conducted between the individual 494 
component measures of the BART and learning scores of the ASRT task. Although our first 495 
interpretation of correlational results could have been that no relation was discovered between 496 
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the two constructs, we have chosen to follow a more detailed description of task-solving 497 
profiles with the assumption that this approach might have helped to indirectly reveal the 498 
presence of statistical learning in the BART. Since the type of sequence is different in the two 499 
tasks in many aspects (predicting the appearance of a stimulus at a certain spatial position vs. 500 
predicting the probability of a specific outcome), it has also been possible to assume no 501 
relation between the two performance (cf. Goschke & Bolte, 2012). Eventually, our results 502 
obtained by clustering suggest that real-world sequential decision making and probabilistic 503 
sequence learning are related, at least in some degree. However, as this association could not 504 
be directly demonstrated by correlational analysis, we emphasize that further studies should 505 
be conducted to support this conclusion with the use of simple or more complex statistical 506 
methods. In addition, these studies might directly change the underlying statistical regularities 507 
during particular phases of the BART and track whether this manipulation yields a change in 508 
performance. 509 
 510 
According to the behavioral measures of risk-related performance, participants in the risk-511 
taker group should have been more prone to test the structure of the task as they showed a 512 
higher number of risky decisions (see Table 1). Since these participants also showed greater 513 
learning in the ASRT task, they might have been inherently, i.e., in a trait-like manner, 514 
sensitive to statistical regularities found in both tasks. In addition, they were also found to be 515 
less impulsive from a certain aspect as their score was significantly lower on the UPPS Lack 516 
of Premeditation scale than that of the other groups (see Table 1, cf. Kaufman et al., 2010). 517 
Findings of previous studies suggested that optimal risk taking in the BART was associated 518 
with enhanced cognitive capacities shown by neuropsychological and self-report measures as 519 
well as by the change in neural activity of the prefrontal cortical areas and along the fronto-520 
striatal network (Bogg, Fukunaga, Finn, & Brown, 2012; Lee et al., 2009). Similarly, it is 521 
therefore conceivable that risk-taker participants could have been able to generalize their 522 
advantageous cognitive capacities over different but related domains of learning and 523 
adaptation; however, this assumption should be further tested and the present results should 524 
be replicated in an independent sample.  525 
 526 
In the case of risk-averse participants, who also showed greater sensitivity to statistical 527 
regularities in the ASRT task, the BART performance essentially differed from that of the 528 
risk-taker or average participants. Risk aversion could be considered as default human 529 
tendency in uncertain decision making tasks such as the BART (Heilbronner, Hayden, & 530 
Platt, 2010; Lauriola et al., 2014), which should be inhibited in order to achieve an optimal or 531 
close-to-optimal performance. This notion has further been supported by the decreased risk-532 
taking propensity in previous BART studies testing healthy participants across different 533 
versions of the task (Benjamin & Robbins, 2007; Helfinstein et al., 2014; Lauriola et al., 534 
2014; Lejuez et al., 2003; Lejuez et al., 2002; Schonberg et al., 2012; Seaman, Stillman, 535 
Howard, & Howard, 2015). According to the results on the change in behavioral performance 536 
during the BART, risk-averse participants could have also acquired statistical contingencies 537 
during sequential risk taking, but they might have been influenced by other factors such as 538 
individual risk preferences, their current emotional or motivational states, experience with the 539 
previous balloon or with similar gambling situations, and general problem-solving strategies 540 
(Brand et al., 2006; Kardos et al., 2016; Kóbor et al., 2015; Schonberg et al., 2011; Sonuga-541 
Barke, Cortese, Fairchild, & Stringaris, 2015). The latter components also play important role 542 
in decision making, and it is unknown to what extent the BART performance reflects 543 
differences in probabilistic sequence learning or in these components. A further study 544 
manipulating the underlying statistical regularities of the BART could clearly disentangle 545 
trait-like sensitivity to statistical regularities (observed in the case of risk-taker participants) 546 
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and those adaptation mechanisms that enable close-to-optimal behavior on the task according 547 
to the experienced response-outcome contingencies. However, it would remain an issue 548 
whether probabilistic sequence learning is modulated by the above-mentioned factors at 549 
different phases of the task. 550 
 551 
Beyond risk-taker and risk-averse participants, the applied clustering method provided the 552 
possibility to identify a relatively special subgroup, the slow responders. Slower response 553 
time could be related to explorative, more deliberative risk assessment behind decision 554 
making processes (Pleskac & Wershbale, 2014), which, in regard to the achieved total score 555 
on the BART, might not be the most effective task-solving strategy. This observed pattern 556 
could also mirror some aspects of a model-based strategy used by the participants (for the 557 
two-system reinforcement learning architecture, see Daw, Gershman, Seymour, Dayan, & 558 
Dolan, 2011); however, the latter explanation should be further tested and until then treated 559 
with caution as the slowly responding group was the most heterogeneous and the smallest in 560 
sample size. 561 
 562 
In this study, group differences emerged in the accuracy learning measure but not in the RT 563 
learning measure. It has been suggested that accuracy and RT reflect different aspects of 564 
probabilistic sequence learning in the ASRT task (S. Song, J. H. Howard, & D. V. Howard, 565 
2007a; Song et al., 2007b). The widening gap between RTs for high- and low-frequency 566 
triplets represents mastering the structure of the task via the automatization of predictable 567 
responses (J. H. Howard, Jr. & Howard, 1997; Nemeth, Janacsek, & Fiser, 2013). Although 568 
RT has been used as the conventional learning measure in the ASRT task, probabilistic 569 
sequence learning consists of multiple processes (Nemeth, Janacsek, Király, et al., 2013), and 570 
other measures could go beyond the automatization of responses. Namely, accuracy has been 571 
a particularly good indicator of prediction errors (Song et al., 2007a), which have also been 572 
thought to reflect learning of statistical regularities (J. H. Howard, Jr. & Howard, 1997; Song 573 
et al., 2007a; Song et al., 2007b). In particular, as participants gain experience about the 574 
underlying statistical regularity of the task (i.e., they learn the high-frequency triplets), they 575 
implicitly generate predictions about the likely spatial position of the next stimulus. If the next 576 
stimulus is a low-frequency triplet, occurrence of a prediction error is more likely because 577 
they expect the high-frequency triplets to a greater extent. As a consequence, overall accuracy 578 
also decreases, which pattern has often been reported in probabilistic learning tasks (Curran, 579 
1997; Feeney, Howard, & Howard, 2002; D. V. Howard & Howard, 2001; J. H. Howard, Jr. 580 
& Howard, 1997; Schvaneveldt & Gomez, 1998). Thus, in the present study, participants with 581 
distinctive risk-taking profiles differed in the prediction-related processes of statistical 582 
learning.  583 
 584 
This particular finding could originate from the fact that the BART is not a speeded RT task, 585 
and in this version, participants had unlimited time to initiate a pumping response or to collect 586 
the accumulated reward. Response time variability in the BART has been indicative of 587 
different task-solving strategies involving slower, more deliberative decisions and faster, 588 
more automatized decisions (Hassall et al., 2013; Pleskac & Wershbale, 2014). Therefore, 589 
overall response time, which was merely one of the BART component measures considered in 590 
our analysis, might have only been partially related to the RT learning score of the ASRT 591 
task. However, no indication was found for this relation here. Nevertheless, to more precisely 592 
measure the underlying processes of probabilistic sequence learning, further studies should 593 
test both learning measures (accuracy and RT) when investigating the relation of statistical 594 
learning and risk-taking behavior. 595 
 596 
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Another crucial implication of the obtained cluster solution is that a single or a couple of 597 
behavioral measures of BART performance might not reliably predict maladaptive risk-taking 598 
behavior or the chance to further develop certain psychiatric conditions (e.g., substance 599 
abuse/dependence, bipolar disorder, ADHD, etc.). Our results demonstrate that high MAP 600 
score does not necessarily indicate excessive risk taking or increased level of impulsivity. 601 
Indeed, risk-taker participants collected the largest amount of reward in the BART and 602 
outperformed others in a probabilistic sequence learning task, during which they were 603 
completely unaware of the acquired regularities. To proceed with these findings, the 604 
association between performance on the BART and on the ASRT task should be examined in 605 
a concurrent study with clinical populations having atypical fronto-striatal functioning, as 606 
their relation has not been clarified in the case of impaired performance. 607 
 608 
Although we found evidence for connections between probabilistic sequence learning and 609 
risky decision making, the exact stage of decision making that is related to probabilistic 610 
sequence learning remains uncertain. According to the unified neuroeconomic model of 611 
decision making proposed by Sonuga-Barke et al. (2015), decision-making processes involve 612 
different psychological stages, which are controlled by distributed and interacting neural 613 
circuits. As both implicit and explicit processes affect the different stages of decision making, 614 
which, due to the structure of the BART, can be tested separately, further studies should 615 
clarify the exact nature of the relation we found here using neuroimaging methods. 616 
 617 
Taken together, the present study went beyond the quantification of basic behavioral indices 618 
related to BART performance towards a complex characterization of task solving, which more 619 
clearly reflected individual differences in risky decision making. Results showed common 620 
underlying processes in risky decision making and statistical learning. In addition, we 621 
highlighted an adaptive aspect of distinctive risk-taking profiles, which could provide testable 622 
assumptions for further neuroimaging studies. Finally, our results could contribute to the 623 
refinement of complex neurocognitive models of decision making that is an essential factor in 624 
both healthy and impaired daily functioning. 625 
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Tables 890 
 891 
Table 1. Descriptive data of demographic variables, BART performance, and rating scales in 892 
the four strategic clusters and the total sample. 893 

Cluster 
Average  
M(SD) 

Slow 
M(SD) 

Risk-taker 
M(SD) 

Risk-averse 
M(SD) 

F/χ2 
Total sample 

M(SD) 

n 75 15 43 47 -- 180 

HC 0.42 2.38 0.63 0.54 -- -- 

Gender [Male/Female] 14/61 2/13 6/37 6/41 0.97 28/152 

Age [years] a 21.3 (3.3) 22.5 (4.6) 21.7 (4.8) 21.8 (4.5) 0.41 21.6 (4.1) 

Education [years] a 14.7 (2.0) 15.6 (3.1) 14.5 (1.9) 14.5 (2.2) 1.26 14.7 (2.2) 

Mean adjusted pumps 8.1 (1.0) 7.2 (2.0) 11.1 (1.2) 5.8 (1.1) 144.11*** 8.2 (2.2) 

Number of balloon bursts b 12.0 (2.1) 10.2 (3.5) 17.2 (2.9) 7.9 (2.2) 95.27*** 12.0 (4.1) 

Response time [ms] a 383 (80) 1000 (293) 395 (76) 441 (106) 50.24*** 452 (204) 

Total score 746.2 (208.1) 627.9 (234.1) 906.6 (224.6) 490.0 (170.9) 32.63*** 707.8 (254.3) 

BIS TS 61.6 (11.6) 63.6 (11.6) 57.5 (10.3) 61.3 (11.7) 1.72 60.7 (11.4) 

UPPS Urgency 2.27 (0.51) 2.61 (0.57) 2.22 (0.52) 2.38 (0.61) 2.31 2.31 (0.55) 

UPPS Premeditation 2.15 (0.49) 2.09 (0.60) 1.79 (0.47) 2.07 (0.55) 4.74** 2.04 (0.53) 

UPPS Perseverance a 1.99 (0.54) 2.08 (0.59) 1.79 (0.43) 1.99 (0.64) 4.08 1.95 (0.55) 

UPPS Sensation Seeking 2.71 (0.58) 2.71 (0.57) 2.71 (0.68) 2.71 (0.52) < 0.01 2.71 (0.58) 
Note. Data on one participant’s age (belonging to the Risk-averse cluster) and on another’s education (belonging 894 
to the Average cluster) were missing because of technical reasons. a In case of violating the assumption of 895 
normality, Kruskal-Wallis test was performed. b In case of violating the assumption of homogeneity of variances, 896 
the robust Welch test of equality of means was performed. HC = Homogeneity coefficient; BIS TS = Barratt 897 
Impulsiveness Scale total score. UPPS = Urgency, Lack of Premeditation, Lack of Perseverance, and Sensation 898 
Seeking. The Barratt Impulsiveness Scale (Patton, Stanford, & Barratt, 1995, translated to Hungarian by Anna 899 
Székely, Zsolt Demetrovics, and Sándor Rózsa, see also; Varga et al., 2012) and the four facets of the UPPS 900 
Impulsive Behavior Scale (Whiteside & Lynam, 2001) were used to assess trait impulsivity. 901 
***p < .001; ** p < .01 902 

903 
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Figure Legends 904 
 905 
Figure 1. Behavioral profiles of the four clusters on the three BART variables used for 906 
clustering. Error bars denote standard error of mean. MAP = mean adjusted number of pumps, 907 
Bursts = Number of balloon bursts, RT = Response time. 908 
 909 
Figure 2. Temporal dynamics of probabilistic sequence learning. Data are presented on the 910 
accuracy measure across epochs (1-9) as a function of trial type (high- vs. low-frequency 911 
triplets), separately for each cluster. (A) Average, (B) Slow, (C) Risk-taker, (D) Risk-averse. 912 
Error bars denote standard error of mean. 913 
 914 
Figure 3. Learning score measure in accuracy for each strategic cluster. Learning score: 915 
difference between high- and low-frequency triplets. Error bars denote standard error of 916 
mean. 917 
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