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Most super-resolution microscopy methods depend on steps
that contribute to the formation of image artefacts. Here
we present NanoJ-SQUIRREL, an ImageJ-based analytical ap-
proach providing a quantitative assessment of super-resolution
image quality. By comparing diffraction-limited images and
super-resolution equivalents of the same focal volume, this ap-
proach generates a quantitative map of super-resolution de-
fects, as well as methods for their correction. To illustrate
its broad applicability to super-resolution approaches we apply
our method to Localization Microscopy, STED and SIM im-
ages of a variety of in-cell structures including microtubules,
poxviruses, neuronal actin rings and clathrin coated pits. We
particularly focus on single-molecule localisation microscopy,
where super-resolution reconstructions often feature imperfec-
tions not present in the original data. By showing the quanti-
tative evolution of data quality over these varied sample prepa-
ration, acquisition and super-resolution methods we display the
potential of NanoJ-SQUIRREL to guide optimization of super-
resolution imaging parameters.
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Introduction
Super-resolution microscopy is a collection of imaging ap-
proaches achieving spatial resolutions beyond the diffraction
limit of conventional optical microscopy (~250 nm). No-
tably, methods based on Localization Microscopy (LM) such
as Photo-Activated Localization Microscopy (PALM) (1) and
Stochastic Optical Reconstruction Microscopy (STORM) (2)
can achieve resolutions better than 30 nm. Due to their easy
implementation and the large set of widely accessible re-
sources developed by the research community these meth-
ods have become widespread (3–6). The quality and reso-
lution achieved by super-resolution is largely dependent on
factors such as the photophysics of fluorophores used (7),
chemical environment of the sample (7, 8), imaging condi-
tions (4, 5, 8, 9) and analytical approaches used to produce
the final super-resolution images (9, 10). Balancing these
factors is critical to ensure that the recovered data accurately
represents the underlying biological structure. Thus far data
quality assessment in super-resolution relies on researcher-
based comparison of the data relative to prior knowledge of
the expected structures (11, 12) or benchmarking of the data

against other high-resolution imaging methods such as Elec-
tron Microscopy (1). An exception exists in the Structured
Illumination Microscopy (SIM) field (13), where analytical
frameworks exist for quantitative evaluation of image quality
(14, 15). The simplest, most robust way to visually identify
defects in super-resolution images is the direct comparison
of diffraction-limited and super-resolved images of a sample.
Assuming that the images represent the same focal volume,
the super-resolution image should provide an improved reso-
lution representation of the reference diffraction-limited im-
age. While this allows for identification of common large
scale artefacts, such as misrepresentation or disappearance of
structures (16), details significantly smaller than the diffrac-
tion limit of the microscope cannot be validated. In addition
as this analysis is performed empirically it is subject to hu-
man bias and interpretation.

Here we present SQUIRREL, a new analytical approach
to quantitatively map local image errors and hence assist
in their reduction. This is implemented as an easy-to-use,
open-source ImageJ and Fiji (18) plugin (dubbed NanoJ-
SQUIRREL), exploiting high-performance GPU-enabled
computing. SQUIRREL is founded solely on the premise
that a super-resolution image should be a high-precision rep-
resentation of the underlying nanoscale position and photon
emission of the imaged fluorophores. Although based on the
principle of comparing conventional and super-resolution im-
ages, in contrast to other approaches, it requires no a priori
knowledge of the expected structural properties of the sam-
ple or photophysics of the labels used. Therefore, assum-
ing the imaged field-of-view has a spatially invariant point-
spread-function (PSF), application of a resolution rescaling
transfer function to the super-resolution image should pro-
duce an image with a high degree of similarity to the orig-
inal diffraction-limited one. Variance between these images
beyond a noise floor can be used as a quantitative indicator
of local macro-anomalies in the super-resolution represen-
tation (Fig. 1). We show that, when using a conventional
diffraction limited image as a reference, SQUIRREL is able
to identify artefacts on scales ∼ 150 nm within a ∼ 600 nm
depth focal volume. Identification of artefacts on a smaller
scale can be achieved by cross-validations of different super-
resolution methods. This is demonstrated in LM, Stimulated
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Fig. 1. Overview of quantita-
tive error mapping with SQUIR-
REL a) Representative workflow
for SQUIRREL error mapping. b)
Fixed microtubules labelled with
Alexa Fluor 647 imaged in TIRF.
c) Raw - single frame from raw
dSTORM acquisition of structure
in b, SR - super-resolution recon-
struction of dSTORM data set, Con-
volved SR - super-resolution image
convolved with appropriate RSF,
Error map - quantitative map of
errors between the reference and
convolved SR images. d) SuReSim
(17) filament tracing used to gen-
erate e, yellow filament is made
to be present in reference image
but absent in super-resolution im-
age. e) Simulated reference im-
age, super-resolution image, and
super-resolution image convolved
with RSF and error map. Yellow
arrowheads indicate position of yel-
low filament seen in d. Scale bars
= 1 µm.

Emission Depletion (STED) microscopy (19) and SIM. As a
result we demonstrate that mapping of local errors can be
used to compare, rank and identify discrepancies between
super-resolution images from different methods. By fusing
multiple super-resolution images we further show that it is
possible to minimize reconstruction algorithm-specific arte-
facts, while providing insight into optimal super-resolution
imaging conditions.

Results
SQUIRREL algorithm. The SQUIRREL method (Super-
resolution Quantitative Image Rating and Reporting of Er-
ror Locations), implemented as the NanoJ-SQUIRREL plu-
gin, is provided as part of the NanoJ high-performance super-
resolution data analysis package. It takes advantage of ana-
lytical features associated with NanoJ-SRRF (16) and NanoJ-
VirusMapper (20). SQUIRREL operates on the assump-
tion that all super-resolution images are representations of
fluorescently labelled biological structures rendered at sub-
diffraction limit resolutions and signal intensities propor-
tional to the local sample labelling density. Thus, by inducing
artificial resolution loss in a super-resolution image SQUIR-
REL generates a new image with a high degree of similarity
to an equivalent diffraction-limited one. Quantitative com-
parison between these two images results in the generation of
an error map highlighting regions of high dissimilarity. Such
regions point out potential defects in the super-resolution im-
age. The algorithm requires three inputs: a reference im-
age (generally diffraction-limited), a super-resolution image,
and a representative resolution scaling function (RSF) image.
The RSF can be estimated through optimisation, provided
by the user, or for images where the resolution is a ∼10-
fold improvement on the diffraction limit, approximated to
the PSF of the microscope (Sup. Note 1). Importantly, the
RSF should be chosen such that convolution of the super-
resolution image with the RSF maximizes similarity to the

reference image. The process of error mapping starts by the
calculation of IRS, the image created by applying the RSF to
the super-resolution image.

IRS = [IST×α+β]⊗RSF

where IST(x,y) = IS(x−∆x,y−∆y)
(1)

RSE =

√∑
x,y

(ID(x,y)− IRS(x,y))2

n
(2)

RSP =

∑
x,y

(ID(x,y)− ID)(IRS(x,y)− IRS)√∑
x,y

(ID(x,y)− ID)
√∑

x,y
(IRS(x,y)− IRS)

(3)

M(x,y) = |ID(x,y)− IRS(x,y)| (4)

Here, IRS is calculated by convolving IST (the result of apply-
ing a constant translation correction ∆x,∆y to IS), with the
RSF following linear intensity rescaling of IST by constants
α and β (eq. 1, Fig. 1a). The translation is needed to cor-
rect for aberrant shifts in the super-resolution image IS aris-
ing from uncorrected sample drift, differences between the
optical path used to collect the reference diffraction-limited
image ID and IS, or offsets introduced by reconstruction al-
gorithms. α and β are required to help match the intensity
range of IRS with that of ID. The global similarity between
IRS and the reference diffraction-limited image ID can be
calculated through a root-mean-square-error (eq. 2), named
RSE for Resolution Scaled Error, and a Pearson correlation
coefficient, named RSP for Resolution Scaled Pearson coef-
ficient (eq. 3). Here n represents the total number of pixels
(where necessary, the dimensions of IRS are scaled to match
those of ID), ID the average value of ID and IRS the aver-
age value of IRS. The constants ∆x,∆y,α,β can be esti-
mated by optimisation as described in Sup. Note 2. An er-
ror map M can be generated by calculating the pixel-wise
absolute difference between ID and IRS (eq. 4, Fig. 1a).
The root-mean-square-error represented by RSE and Pear-
son correlation coefficient represented by RSP are adapted
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from simple metrics classically used to evaluate data simi-
larity, and provide complementary information for assessing
image quality. The RSE represents the intensity distance be-
tween both images; this measurement is more sensitive to
differences in contrast and brightness than the RSP, where
the intensity distances are normalised by the mean of each
image. The RSP is based on a normalised correlation and its
value is truncated between -1 and 1. It thus provides a global
score of image quality which can be compared across differ-
ent super-resolution modalities. While other metrics could
be adapted for super-resolution images, such as the structural
similarity index (SSIM) (21), here we show that the RSE,
RSP and error map provide a robust, detailed evaluation of
super-resolution image quality suitable for optimising super-
resolution experiments. Notwithstanding, both the reference
and super-resolution images need to represent the same focal
volume. Sup. Note 3 explores how out-of-focus informa-
tion affects SQUIRREL metrics. It highlights that widefield
based references on thick samples compromise the metrics’
fidelity, while this effect will be minimal in optical-sectioning
systems such as total internal reflection fluorescence (TIRF),
confocal or lattice-light sheet microscopes.

Validation with real and simulated data. To demonstrate
the capacity of SQUIRREL to identify defects in a super-
resolution image, we have collected diffraction-limited total
internal reflection fluorescence microscopy (TIRF) images
of Alexa Fluor 647 immunolabelled microtubules (Fig. 1b)
and a corresponding direct STORM (dSTORM) (22) dataset.
From these we produced an error map indicating areas of
high dissimilarity (Fig. 1c). Regions surrounding filament
junctions and overlapping filaments, where the increased lo-
cal density of fluorophores limits the capacity for single-
molecule localisation, were particularly dissimilar. Based on
this, we generated two simulated dSTORM datasets using the
SuReSim software (17) (Fig. 1d): a simulated optically re-
alistic reference dataset containing all the traced filaments,
and a structural artefact dataset in which a filament was re-
moved. Comparison of the associated reference diffraction-
limited images produced an error map that clearly highlights
the absence of the selected filament (Fig. 1d). Equally, Fig.
S3 shows a similar effect on a SIM acquisition. This result
exemplifies the power of SQUIRREL to identify large scale
image artefacts in instances where subjective comparison of
the widefield (i.e. Simulated Reference) and super-resolution
(i.e. Simulated SR) images would be insufficient. To define
the smallest scale on which SQUIRREL can identify arte-
facts, we carried out simulations of an 8 molecule ring struc-
ture of varying size. Here, SQUIRREL shows the capacity to
quantify image anomalies as small as 100 nm for a noise-free
reference, and 150 nm for typical signal-to-noise ratios (Sup.
Note 4).

Comparison between image quality and resolution.
While image resolution is commonly used as a reporter of im-
age quality, in the case of super-resolution studies these two
factors weakly correlate (11, 12, 23). One of the favoured
methods used in super-resolution and electron microscopy to
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Fig. 2. Error mapping and FRC analysis a) Super-resolution image of fixed Alexa
Fluor 647-labelled microtubules reconstructed via MLE. Scale bar = 5 µm. b) Corre-
sponding TIRF image. Scale bar = 5 µm. c) Error map for super-resolution image in
a using b as the reference. d) Local mapping of FRC values for the super-resolution
image in a. e) Left: Merge of FRC map (magenta) and error map (green, binned to
match FRC map). Right: Map of error-resolution space showing where the boxed
regions A, B, C and D are located. f) Enlargements of the super-resolution (left) and
widefield (right) boxed regions indicated on panels a-e. Scale bars = 1 µm.

estimate global resolution across an entire image is Fourier
Ring Correlation (FRC) (23). For FRC mapping we assem-
bled and packaged an algorithm within NanoJ-SQUIRREL
capable of forming a FRC resolution map of an image by
block-wise analysis (Sup. Fig. S5). In Figure 2 we map
the local FRC-estimated resolution of a dSTORM dataset for
comparison against the SQUIRREL error map. Highlighting
various regions of the dataset (Fig. 2a-b), we show that high
FRC resolution does not necessarily associate with low error
(Fig. 2c-f). In comparison, SQUIRREL error mapping al-
lows for direct visual detection of structural anomalies with-
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out coupling quality to a resolution description. As expected,
the accuracy of error maps is limited by the resolution of the
reference image, the signal-to-noise ratio of the reference and
super-resolution images, and the accuracy of the chosen RSF.
Nonetheless, SQUIRREL provides a realistic description of
local image quality beyond the capacity of a simple resolu-
tion estimate.
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Scale bars = 200 nm.

Super-resolution cross-validation. The resolution of the
error maps produced by SQUIRREL is limited by the reso-
lution of the reference image used. Therefore, in the case of
a diffraction-limited reference, the resolution map will only
highlight large scale artefacts (Sup. Note 4). It is possible,
however, to cross-validate different super-resolution meth-

ods using a super-resolution reference. As a pilot sample
we chose the prototypic poxvirus, vaccinia virus (VACV).
The major infectious form of VACV, mature virions (MVs),
are brick shaped particles measuring 360x270x250 nm (24).
MVs are composed of three main viral substructures: a bi-
concave dumbbell shaped core containing the viral genome,
two proteinaceous structures termed lateral bodies sitting
within the core concavities, and a single lipid bilayer mem-
brane that encompasses these structures (Fig. S6a). We
recently described these structures in detail using SIM and
STED, mapping a subset of molecular constituents of the
virus (20). MVs provide an ideal test case for SQUIRREL
as virion substructures cannot be discriminated by conven-
tional fluorescence microscopy but are sufficiently large to be
perceived as independent structures by most super-resolution
methods. To generate same field-of-view widefield, SIM,
STED, maximum likelihood estimation (MLE) and super-
resolution radial fluctuations (SRRF), where MLE and SRRF
images were reconstructed from the same LM dataset, recom-
binant viruses containing a GFP-tagged lateral body protein
(and Alexa Fluor-647-tagged anti-GFP nanobodies for LM
imaging) were bound to gridded coverslips and imaged us-
ing different optical devices. As various imaging modalities
have different optical paths, the acquired images cannot be
directly aligned due to optical aberrations. To correct this
we have developed a non-rigid registration algorithm, pro-
vided in NanoJ-SQUIRREL, which captures the field distor-
tion of each image against a reference (SIM image in this
example, Fig. 3a). Using this information a B-spline based
local translation is applied to each image, thus generating
new images where there is ideal uniform alignment between
modalities (Sup. Note 5). In Fig. 3b we show the evolution
of error maps for a single virus when using widefield, SIM,
STED or SRRF images as a reference. As lateral bodies are
considerably smaller than the diffraction limit, when using
a widefield reference image, defects could not be perceived,
with RSP values approaching 1.0. Using a super-resolution
reference immediately highlights dissimilarities between the
super-resolution images. These errors reflect asymmetries
and inconsistencies along and within lateral bodies; the RSP
and RSE also suggest a non-linear intensity scaling across the
super-resolution methods. Figure S6b-c shows the RSP and
RSE value distributions of 90 viruses analysed from multi-
ple fields-of-view. Interestingly, the range of values in these
distributions demonstrates that there is a high degree of vari-
ability between super-resolution images generated by differ-
ent methods. However, by applying SQUIRREL researchers
have the potential to filter super-resolution datasets for struc-
tures with a high-degree of correlation across various meth-
ods prior to further analysis.

Minimisation of analytical artefacts. We next asked if
SQUIRREL error mapping could be applied to rank, parti-
tion and fuse super-resolution reconstructions (Fig. 4a); the
potential for such an approach has previously been demon-
strated using Richardson-Lucy deconvolution to merge re-
constructions with different resolutions (25). To test this a
dSTORM dataset of Alexa Fluor 647 immunolabeled micro-
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tubules was analyzed using three distinct algorithms: Thun-
derSTORM using a multi-emitter MLE engine (26); SRRF
(16); and QuickPALM using a centre-of-mass engine (3). As
these methods have the capacity to analyze the same dataset
this allowed us to use a single reference diffraction-limited
image to rank the reconstructions (Fig. 4c). When doing
so we found that, being based on distinct analytical engines,
each method yielded a different super-resolution reconstruc-
tion where markedly different error distributions could be
seen at the same location (Inset Fig. 4b). As the error maps
provide spatial details on the local accuracy of each algo-
rithm, they can be converted into weights (Fig. 4d, Sup.
Note 6), and the lowest error features of each reconstruction
used to generate a new composite image with minimal de-
fects (Fig. 4e). These results demonstrate that image fusion
provides an avenue to improve super-resolution by combin-
ing information generated using different analytical methods
capable of producing images of similar resolution. In addi-
tion the RSP and RSE metrics calculated using SQUIRREL
enable ranking of images according to their quality, thereby
informing researchers on how quality evolves with imaging
parameters.

Improving image acquisition. Error mapping provides re-
searchers with the means to quantitatively determine how
different acquisition parameters may improve the quality
of super-resolution images. To test this, a 60,000 frame
dSTORM acquisition of sub-diffraction, periodically orga-
nized neuronal actin rings was acquired (Fig. 5) (27, 28).
Particle localisation was performed, and the localisations
used to generate 120 separate super-resolution reconstruc-
tions consisting of 500 to 60,000 frames (Fig. 5b). At low
frame counts reconstructions showed no periodicity and the
error maps exhibited large, widespread errors. As additional
frames were included, reconstruction errors decreased and
the expected repetitive pattern emerged (Fig. 5d). Surpris-

ingly, the RSP value peaked at 29,000 frames rather than
converging at a maximum (Fig. 5e), while inclusion of more
than 29,000 frames in the reconstruction led to a small de-
crease in the RSP value. The same trend was observed for the
RSE value, which reached a minimum at 29,000 frames (Fig.
5f). To evaluate if the number of frames used for the super-
resolution reconstruction had an impact on the visibility of
structural details, we quantified the expected periodicity (200
nm) of the actin rings (Fig. 5g). Clearly defined periodic-
ity emerged only when 29,000 or more frames were used for
reconstruction (Fig. 5h). Consistent with this, the visibil-
ity index of actin rings (Fig. 5i, basis described in Methods
and (16)) reached a maximum at 28,500 frames. Addition of
more frames to the reconstructed super-resolution image re-
sulted in deterioration of actin ring visibility. The RSP and
RSE value peaks, validated by structural analysis, suggest
that beyond this maximum quality peak point the unwanted
contribution of free label and false detections is greater than
the partially depleted correct structural labelling. Fourier
analysis (28) of the 29,000 frame reconstruction was in agree-
ment with previously reported values (Fig. 5j). These results
indicate that a finite number of frames (29,000) as determined
quantitatively by NanoJ-SQUIRREL were optimal for imag-
ing neuronal actin rings, and that any frames acquired beyond
this point did not improve image quality. Notably, this infor-
mation has enormous potential for time-saving during both
image acquisition and analysis for any repeatedly performed
long acquisition. For the case demonstrated, the acquisition
should be done in half the time achieving a higher quality
than in a longer acquisition, with this estimation performed
quantitatively instead of being based on a subjective human
guess. We further performed a similar analysis calculating
the evolution of resolution for the same dataset (through FRC
calculation, Fig. S7). While FRC analysis indicates im-
proved resolution as the number of frames is increased, the
resolution stabilises if 29,000 or more frames are used with-
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out any deterioration in resolution beyond this point. Again,
as in Fig. 2, this indication that image resolution and image
quality are weakly related, and that error mapping provides a
more sensitive metric for data reliability.

Optimising sample preparation. Sample labelling is a ma-
jor element influencing super-resolution imaging quality. LM
methods in particular depend on labelling density and fluo-
rophore photoswitching behaviour compatible with the an-
alytical method chosen (10, 16). To ascertain if SQUIR-
REL image quality readouts can guide optimisation of sam-
ple labelling we applied SQUIRREL error analysis to DNA-
PAINT based imaging. This method relies on the transient
hybridization of complementary DNA templates; the ‘dock-
ing’ strand which is appended to the target protein and the
fluorescently labelled ‘imager’ strand which is added to the
sample media. When combined with LM reconstruction al-
gorithms, it is possible to detect and localise these tempo-
rary immobilisation events as a fluorescent spot (29, 30).
As bleached fluorophores are not permanently attached to
the structure of interest, the on/off kinetics of DNA-PAINT
are dictated by the concentration of imager strand utilized
(31, 32). Thus we asked if SQUIRREL error analysis could
be applied to determine the optimal imager strand concen-
tration for super-resolution imaging of clathrin-coated pits
(CCPs). CCPs appear as diffraction-limited spots in wide-
field microscopy images (Fig. 6a), and as 100-200 nm
rounded pits by super-resolution microscopy (33). Docking
strand-labelled clathrin light chain was imaged for 20,000
frames using five different dilutions of imager strand (Fig.
6b). SQUIRREL was used to rank the quality of images
produced using three different reconstruction algorithms;
MLE, SRRF, and CoM. Displayed in Figure 6c-f are the
SQUIRREL-generated error maps for each algorithm at its
most and least compatible imager strand concentrations (Fig.
6c-f). Interestingly, the quality of the reconstructed images
depended on the combination of imager strand concentration
and algorithm used, with the three algorithms showing op-
timal performance at different imager strand concentrations
(Fig. 6h-i). The error maps illustrate the interdependence
of sample preparation and algorithm choice as well as how
sub-optimal sample preparation leads to increased errors and
subsequent disappearance of structures (Fig. 6f, MLE), in-
creased background signal (Fig. 6f, MLE, SRRF) and bridg-
ing between structures (Fig. 6f, CoM). Collectively these re-
sults demonstrate the utility of SQUIRREL to identify the
optimal sample preparation and algorithm combination for a
given LM experiment.

Discussion
Super-resolution imaging techniques have been established
for more than a decade. Yet the fidelity of the data gener-
ated is still highly dependent on sample preparation, imaging
and data analysis conditions. The complexity of optimising
these various parameters without a clear definition of image
quality often leads to the erroneous inclusion of image de-
fects. Researchers often benchmark super-resolution images

using ‘conventional’ counterparts to validate the preservation
of the imaged structures. The NanoJ-SQUIRREL software
package provides a quantitative approach to assess super-
resolution image quality, thereby improving upon subjective
visual inspection with error maps and global metrics. We
demonstrate that this approach can generate a metric of im-
age quality (Fig. 1a, equations (2) to (4)), uncover the pres-
ence of image defects (Fig. 1-3), and guide researchers to
improved imaging conditions (Fig. 4-6). In most publica-
tions researchers use a global resolution value as an indica-
tor of image quality. However FRC resolution is often not
homogeneous throughout a sample, as seen in Fig. 2. We
show that background regions lacking structure frequently
have low FRC values which contribute to an overly optimistic
estimate of the overall resolution in an image. As an exam-
ple, the FRC value obtained by averaging only local FRC
values in regions of the image containing microtubules in
Fig. 2 is 75 nm, compared to the global FRC value of 67
nm. To improve this we have also implemented an algorithm
in SQUIRREL to map local resolution values (estimated by
FRC) in tandem to error maps. Using this we demonstrate
that local resolution does not necessarily correlate with local
image quality. Thus, while resolution is important and tradi-
tionally used as the hallmark of a good super-resolution im-
age, it should by no means be used as the definition of image
quality. The performance of SQUIRREL image error report-
ing is dependent on the quality of the reference image. While
error maps identify discrepancies between the reference and
super-resolution images, they cannot indicate which image
the error stems from. This is best illustrated when comparing
different super-resolution modalities (Fig. 3), in which there
is noticeable error conservation when SIM is used as the ref-
erence image. This places the responsibility of identifying
the source of image errors, or alternatively exclusion of high-
error regions from further analysis, on the user. Several pub-
lications provide guidelines on optimising super-resolution
imaging (4, 5, 7, 10, 34, 35). Importantly, SQUIRREL ex-
tends these works by providing a critical quantitative evalu-
ation of how imaging parameters impact upon the fidelity of
the final super-resolution image. We show how image quality
can be improved at multiple stages of super-resolution imag-
ing, including sample labelling (Fig. 6), choice of imaging
modalities (Fig. 3), acquisition settings (Fig. 5) and anal-
ysis parameters (Fig. 4). We demonstrate that SQUIRREL
provides a quick and easy approach to immediately improve
super-resolution data acquisition and quality: from fusion of
multiple super-resolution images of the same structure into
a new super-resolution estimate of higher quality (Fig. 4b);
to informing LM data acquisition to assure optimal through-
put and peak quality while preventing oversampling (Fig. 5);
and finally, guiding LM labelling conditions such that they
are most compatible with the chosen analytical method. Al-
though here we have focused on the application of SQUIR-
REL to LM images, it can be used with any super-resolution
modality provided a reference image is also acquired. Being
an open-source ImageJ plugin, NanoJ-SQUIRREL is highly
accessible, cross-platform and easily extendible. In the fu-
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ture, we envisage that SQUIRREL will be used for continual
monitoring of super-resolution image quality during acqui-
sition. Such a feedback approach could be paired with au-
tomated procedures that allow for adaptation of acquisition
parameters to assure optimal image quality, reduced acquisi-
tion times, and alleviation of data storage requirements.

Software Availability. NanoJ-SQUIRREL can be down-
loaded and installed in ImageJ and Fiji automatically by
following the instructions in the manual, available here:
https://bitbucket.org/rhenriqueslab/nanoj-squirrel.
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Methods
Cell lines and primary cells. HeLa cells were kindly pro-
vided by Prof Mark Marsh, MRC LMCB, UCL and cultured
in phenol-red free DMEM (Gibco) supplemented with 2 mM
GlutaMAX (Gibco), 50 U/ml penicillin, 50 µg/ml strepto-
mycin and 10% fetal bovine serum (FBS; Gibco). CHO cells
were cultured in phenol red-free Minimum Essential Medium
Alpha (MEMα; Gibco) supplemented with 10% FBS (Gibco)
and 1% penicillin/streptomycin (Sigma). Rat hippocampal
neurons and glial cells were harvested from embryonic day
18 pups, following established guidelines of the European
Animal Care and Use Committee (86/609/CEE) and approval
of the local ethics committee (agreement D13-055-8), and
cultured in Neurobasal medium (Gibco) supplemented with 2
mM GlutaMAX-I (Gibco) and B27 supplement (Gibco). All
cells were grown at 37°C in a 5% CO2 humidified incubator.

Sample preparation for Widefield and TIRF-SMLM
imaging of fixed microtubules. For TIRF-SMLM imaging
of microtubules, 13 mm diameter, thickness #1.5 coverslips
were washed overnight in 1:1 HCl:methanol and washed 5
times in ddH2O and twice in 90% isopropyl alcohol. Cover-
slips were then incubated overnight in poly-L-lysine (0.01%)
(Sigma Aldrich) and rinsed twice in PBS. HeLa cells were
seeded on these coverslips and grown overnight in 12-well
plates. Cells were fixed with 4% PFA in cytoskeleton buffer
(10 mM MES, pH 6.1, 150 mM NaCl, 5 mM EGTA, 5 mM
glucose, 5 mM MgCl2) for 15 min at 37°C, washed 3x with
PBS, then permeabilised with 0.1% Triton X-100 in PBS
for 10 min and blocked in 2.5% BSA in PBS for a further
30 min. Samples were then labelled with 2 µg/ml anti-α-
tubulin (DM1A mouse monoclonal, Sigma Aldrich) in 2.5%
BSA in PBS for 1 hour, followed by 3x washes with PBS
and labelling with Alexa Fluor 647-labelled goat anti-mouse
secondary antibody (Invitrogen) (2µg/ml in 2.5% BSA in
PBS) for 1 hour. Samples were washed 3x with PBS and
fixed again in 4% PFA in cytoskeleton buffer for 10 min,
before being washed 3x with PBS. Samples were mounted
on a parafilm-formed gasket (1) in STORM buffer (150 mM
TRIS, pH 8, 10 mM NaCl, 1 % glycerol, 1 % glucose, 1 %
BME), sealed with clear nail varnish (Maybelline) and im-
aged within 3 hours of mounting.
For widefield super-resolution imaging of microtubules for
image fusion, CHO cells were seeded on ultra-clean (1) 8
mm diameter thickness #1.5 coverslips (Zeiss) at a density of
0.1×106 per 35 mm dish. Fixation was performed with 4%
PFA in a modified version of cytoskeleton stabilising buffer
(CSB) (5 mM KCl, 0.1 mM NaCl, 4 mM NaHCO3, 11 mM
Na2HPO4, 2 mM MgCl2, 5 mM PIPES, 2 mM EGTA, pH
6.9) for 15 min at 37°C, followed by washing with the same
CSB (without PFA). Additional permeabilization was per-
formed (0.05% Triton X-100 in CSB) for 5 min followed by
three washing steps using 0.05% Tween-20 in the modified
version of CSB and blocking in 5% BSA (Sigma) for 40 min.
Microtubules were stained and submitted to a secondary fixa-
tion step as described above. 100 nm TetraSpeck beads (Life
Technologies) were added at a dilution of 1:1000 in PBS

for 10 min to each coverslip. Coverslips were mounted on
clean microscope slides (1) in 100 mM mercaptoethylamine
(Sigma) at pH 7.3 and all imaging was performed within 3
hours of mounting.

Sample preparation and imaging of actin and CCPs in
fixed neurons and glial cells. Rat hippocampal neurons or
glial cells (from embryonic day 18 pups) were cultured on 18-
mm coverslips at a density of 10000 /cm2 or 4000 /cm2, re-
spectively. After 9 days in culture, samples were fixed using
4% PFA in PEM (80 mM PIPES, 2 mM MgCl2, 5 mM EGTA,
pH 6.8) for 10 min. Preparation of actin-stained neurons for
SMLM was performed similarly to the protocol described
in (2), with minor modifications. After blocking, neurons
were incubated with a mouse anti-map2 primary antibody
(Sigma Aldrich, catalogue #M4403) for 1h30 at RT, then with
a Alexa Fluor 488 labelled donkey anti-mouse secondary an-
tibody (Thermo Fisher) for 45 min at RT, then with 0.5 mM
phalloidin-Alexa Fluor 647 (Thermo-Fisher) overnight at 4
°C. Neurons were mounted in a modified STORM buffer (50
mM Tris, pH 8, 10 mM NaCl, 10% glucose, 100 mM mercap-
toethylamine, 3.5 U/ml pyranose oxidase, 40 µg/mL catalase)
complemented with 0.05 mM phalloidin-Alexa Fluor 647, to
mitigate phalloidin unbinding during acquisition and imaged
immediately.
For PAINT imaging (3) of CCPs in glial cells, fixed neuron
samples were incubated with a rabbit anti-clathrin primary
antibody (abCam, catalogue #21679) overnight at 4 °C, then
with an anti-rabbit DNA-conjugated secondary antibody (Ul-
tivue) for 1 hour at room temperature.

VACV sample preparation. 2.5×106 VACV particles (WR
strain, EGFP-F18 in tk locus (4)) were diluted in 100 µl
1 mM TRIS, pH 8, sonicated for 3x 30s and incubated on
gridded #1.5 glass-bottom petri dishes (Zell-Kontakt GmbH)
for 1 hour at room temperature and fixed with 4 % PFA
in PBS for 15 min. Samples were quenched with 50 mM
NH4Cl in PBS for 10 min, washed in PBS, and incubated
in permeabilization/blocking buffer (1% Triton X-100, 5%
BSA, 1 % FBS in PBS) for 30 min. Samples were labelled
in blocking/permeabilisation buffer overnight at 4 °C or 2
hours at room temperature with anti-GFP nanobodies (Chro-
motek), labelled in-house with Alexa Fluor 647 NHS-ester
(Life Technologies) with a dye-to-protein ratio of approxi-
mately 1, as previously described (5). Samples were then
washed 3x with PBS, fixed in 4% PFA in PBS for 10 min,
quenched with 50 mM NH4Cl in PBS for 10 min and washed
in PBS.

Imaging. Fixed microtubule samples were imaged by
TIRF-SMLM on a N-STORM microscope (Nikon Instru-
ments), using a 100× TIRF objective (Plan-APOCHROMAT
100×/1.49 Oil, Nikon) with additional 1.5× magnification.
A reference TIRF image was acquired with 5% power 647
nm laser illumination and 100 ms exposure time, before
SMLM data acquisition of 40 000 frames at 100% power 647
nm illumination with 405 nm stimulation and an exposure
time of 30 ms per frame.
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Widefield and super-resolution imaging of fixed microtubules
for fusion was carried out on a Zeiss Elyra PS.1 inverted
microscope system, using a 100× TIRF objective (Plan-
APOCHROMAT 100×/1.46 Oil, Zeiss) and additional 1.6×
magnification. The sample was illuminated with a 642 nm
laser operating at 100% laser power. 45000 frames were ac-
quired with a 20ms exposure time per frame.
Neuron samples were imaged on a N-STORM microscope
using a 100× objective (Plan-APOCHROMAT 100×/1.49
Oil, Nikon). The sample was illuminated at 100% laser
power at 647 nm. A sequence of 60,000 images at 67 Hz
was acquired.
DNA-PAINT imaging of CCPs in glial cells was performed
on a N-STORM microscope using a 100× objective as above.
The same glial cell (present in low numbers in hippocampal
cultures) was imaged in serial dilutions of Imager-650 (2 mM
stock, from lower to higher concentration) in Imaging Buffer
(Ultivue). The sample was illuminated at 647 nm (50% laser
power) and a sequence of 20,000 images at 33 Hz was ac-
quired for each Imager-650 dilution, before switching to a
higher concentration of Imager-650 in Imaging Buffer.
VACV samples were imaged in STORM buffer on a Zeiss
Elyra PS.1 system, using a 100× TIRF objective with ad-
ditional 1.6× magnification (as above) for SIM, SRRF and
SMLM acquisition. Buffer was exchanged to PBS and STED
images were acquired on a Leica SP8, re-localising the same
ROI based on the grid. SMLM data acquisition parameters
were 30 000 frames at 100% laser power 647 nm illumina-
tion with 405 nm stimulation and an exposure time of 33 ms
per frame.

Reconstruction algorithms for dSTORM data. The
freely available software packages ThunderSTORM (6),
SRRF (7) and QuickPALM (8) were used for super-
resolution image reconstruction in Figs. 2, 3, 4 and 6. Images
labelled ‘MLE’ were reconstructed with ThunderSTORM
with the integrated PSF method with maximum likelihood
fitting and multi-emitter fitting enabled. Drift correction was
performed post-localization and images were rendered using
a normalized 20 nm Gaussian. Images labelled ‘SRRF’ were
analysed with the most appropriate parameters for each in-
dividual data set and drift corrected during analysis. Images
labelled ‘CoM’ were reconstructed using QuickPALM with
the default parameters, following drift correction of the raw
data using the NanoJ-SRRF package. The particle tables
from QuickPALM were then loaded into ThunderSTORM
for rendering using a normalized 20 nm Gaussian. Images
in Fig. 5 were rendered with ThunderSTORM using a nor-
malized 20 nm Gaussian from particle tables generated with
SMAP, a MATLAB based software package developed by the
Ries group at the EMBL, Heidelberg. Localizations were de-
termined using a probability based method after background
subtraction by wavelet filtering and lateral drift was corrected
by cross-correlation.

Super-resolution image simulation with SuReSim. In
order to simulate disappearance of a filament from a realistic

microtubule network, a real super-resolution image of micro-
tubules (Fig. 1c) was used as a support for SuReSim data
simulation. Raw data of blinking Alexa 647-labelled micro-
tubules imaged using TIRF were reconstructed using Thun-
derSTORM maximum likelihood multi-emitter fitting and
then loaded into the SuReSim software and all filaments were
traced using the editor function and the WIMP file saved.
SuReSim was used to generate a simulated super-resolution
reconstruction of all filaments, which was then convolved by
a Gaussian PSF to generate a simulated reference image. The
object in the WIMP file corresponding the to filament high-
lighted in Fig. 1d-e was deleted, and SuReSim was used
again to render a simulated super-resolution reconstruction,
except this time missing a filament.

Visibility analysis. To quantify the quality of the super-
resolution reconstructions of parallel actin rings, a normal-
ized visibility similar to that described in Geissbuehler et al.
(9) was calculated as follows. Average intensity profiles were
plotted for a 0.5×1 µm stretch of axon containing 5 actin
rings (region shown in Fig. 5h) for each of the 120 recon-
structed images. The MATLAB function findpeaks was
used to find the 5 peak positions in the average profile mea-
sured from the 60000 frames reconstruction, and mean pair-
wise visibility was calculated as follows.

v̄ =
1
2

4∑
i=1

(
Imax,i− Imin,i→i+1

Imax,i + Imin,i→i+1
+
Imax,i+1− Imin,i→i+1

Imax,i+1 + Imin,i→i+1

)
(5)

Imax,i and Imax,i+1 are the intensities at peak positions i and
i+ 1 respectively, where i denotes the index of the actin ring
in the sampled region, and Imin,i→i+1 is the intensity at the
midpoint of two adjacent peaks. Higher visibilities corre-
spond to a greater ability to differentiate between two struc-
tures up to a maximum value of v̄ = 0.5.

Colour maps. Colour maps used for displaying images
(‘NanoJ-Orange’), error maps (‘SQUIRREL-errors’) and
FRC maps (‘SQUIRREL-FRC’) are provided in the NanoJ-
SQUIRREL software package.
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Supplementary Note 1: Extracting the Resolution Scaling Function
The Resolution Scaling Function (RSF) can be estimated in 3 different ways: A) automatically during the Error-Map generation
procedure; B) approximated to the Point-Spread-Function of the microscope; C) derived when the reference PSF and super-
resolution PSF is known. These processes are described below:

A. Automatic RSF generation. For the majority of cases, a symmetric normalized Gaussian function (G(x,y)) (Eq. S1)
provides a good numerical approximation to the RSF. Studies in microscopy have shown that the PSFs of widefield, Total Inter-
nal Reflection Fluorescence Microscopy (TIRF), Laser Scanning Confocal Microscopy (LSM) and Spinning Disk Microscopy
(SD) can be, in a simplified manner, approximated to Gaussian functions (1–3). Similarly, in super-resolution methods, the final
images generally present a Gaussian-like PSF (2–5). The RSF in itself is expected to be a function that by convolution would
convert the super-resolution PSF (PSFS) into the reference image PSF (PSFD) (Eq. S2); if both of these are assumed to follow
a Gaussian distribution, then the RSF will be well approximated by a Gaussian. However, the σ value describing the Gaussian
RSF is unknown but can be estimated during optimisation. Sup. Note 2 provides an analytical description of this process.

G(x,y) = 1
2πσ2 e

(−(x2+y2)/(2σ2)) (S1)

PSFD ≈ PSFS⊗RSF (S2)

B. Approximation of RSF to the PSF. When the resolution of the super-resolution dataset is considerably high (<30 nm,
∼10-fold improvement upon the diffraction limit), the Point-Spread-Function (PSF) of the microscope provides a good approx-
imation of the RSF. In such cases, the user will be able to provide a PSF rendering to the Error-Map calculation procedure,
as a proxy to the RSF. For simplicity, we provide as part of NanoJ-SQUIRREL an algorithm capable of extracting a model
PSF from an image composed of sparse sub-diffraction PSF-like particles (Fig. S1). Alternatively, the user can also derive a
theoretical PSF based on a diffraction model; the PSF Generator ImageJ-plugin (6) is an excellent tool in such cases, providing
PSF rendering capability and maintaining an extensive library of PSF models.

Fig. S1. The extract PSF algorithm, part of NanoJ-SQUIRREL. This method will search for peaks in the image (local maxima) and
fit a 2D Gaussian function to each (of varying amplitude, centre, background and σ). This fitting estimates the centre of each peak with
a sub-pixel accuracy. Each peak is then extracted, aligned and re-rendered in a list of images representing all the detected peaks. An
initial estimate is generated by an average projection of all extracted peaks. A final estimate is then regenerated by a weighted average
projection where each peak component is weighted by its Pearson correlation coefficient against the previous average projection.

C. Derived when the reference PSF and super-resolution PSF are known. Through Eq. S2, the RSF matrix can be
estimated if both PSFD and PSFS are known. These two last matrices can be extracted either from real data, or estimated by
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underlying analytical models. For a noise free case, the calculation of the RSF can be done in Fourier space, by calculating the
inverse transform of the division between the Fourier transformed PSFD and Fourier transformed PSFS.
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Supplementary Note 2: Estimating the Error Map, RSE and RSP
The process of estimating an Error Map via SQUIRREL is divided in 3 subsequent steps represented in Fig. 1a and described
below. The following notation will be used to denote the different images during this process:

• ID: reference image

• RSF: resolution scaling function

• IRSF: resolution scaling function integrated over finite pixels

• IS: original super-resolution image

• IST = IS(x−∆x,y−∆y): super-resolution image registered to reference image

• ISTγ = IST×α+β: registered super-resolution image following linear intensity rescaling

A. Registration of Super-Resolution Reconstructions against the Reference image. The first step of registration is
the estimation of ∆x,∆y (Eq. 1), through cross-correlating the reference and the super-resolution images. For this purpose,
the cross-correlation is calculated through a fast Hartley transform (FHT), taking advantage of the threaded Parallel Colt library
(7). ∆x,∆y can then be estimated by calculating the spatial difference between the coordinates of the correlation matrix peak
intensity value and its geometric centre. To detect the coordinates of the peak correlation value, we selectively upscale the
correlation matrix via bi-cubic spline interpolation (8) and find its maximum. This process has been previously described in
(9). Finally, we employ a bi-cubic spline translation of the super-resolution image to maximise its overlap to the reference
image.

B. Image intensity rescaling and RSF estimation. The intention of this step is to linearly rescale the intensity of the super-
resolution estimate IS and convolve it with IRSF in a manner that will maximise its similarity to the reference image ID. To
do so, the unknown variables α and β defining the intensity rescaling shown in Eq. 1 need to be estimated. Additionally, if
an RSF is not input, the SQUIRREL algorithm will automatically estimate its matrix by an approximation to a 2D Gaussian
function (Eq. S3) of unknown σ. Similarly to (10), we integrate the Gaussian function over finite pixels (Eq. S4-S5). The
estimation of these two (if RSF is known) or three variables (if unknown) is achieved in SQUIRREL through a highly threaded
implementation of a Particle Swarm Optimiser (PSO) (11, 12). PSO optimisation is a derivative-free, metaheuristic optimisation
approach taking few assumptions about the optimisation problem posed and is capable of searching a large space of candidate
solutions. Eq. S6 defines the least-squares minimisation, where the result of ISTγ(α,β)⊗ IRSF(σ) is scaled down to the same
width and height as ID by pixel averaging prior to their subtraction.

RSF(x,y) = 1
2πσ2 e

(−(x2+y2)/(2σ2)) (S3)

IRSF(x,y) = ∆Ex(x,y)∆Ey(x,y) (S4)

∆Ex(x,y)≡ 1
2erf

(
x+ 0.5√

2σ

)
− 1

2erf
(
x−0.5√

2σ

)
∆Ey(x,y)≡ 1

2erf
(
y+ 0.5√

2σ

)
− 1

2erf
(
y−0.5√

2σ

) (S5)

Joint Optimisation α,β,σ : argmin
α,β,σ

‖ID− ISTγ(α,β)⊗ IRSF(σ)‖2 (S6)

C. Calculation of error map, RSE and RSP. Given that α, β and RSF are now known, the Resolution Scaled Error (RSE)
can be calculated through Eq. 2, the Resolution Scaled Pearson coefficient (RSP) by Eq. 3 and the error map by equation 4.
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Supplementary Note 3: Out-of-focus effects on the Error Map
When using microscopes with poor optical sectioning, for example widefield systems, discrepancies between the reference and
super-resolution images can arise from out-of-focus structures. To assess the impact of this effect, a structure was simulated
at a linear tilt to the focal plane such that one end of the structure was 750 nm below the focal plane, the centre was in focus,
and the other end was 750 nm above the focal plane. SQUIRREL analysis was performed (Fig. S2). Firstly, a ‘defect-free’
single molecule data set was produced by simulating three-dimensional blinking molecules using a Born and Wolf optical
model (6). This image sequence was then analysed using ThunderSTORM (13) to produce a realistic super-resolution image
and then compared with a simulated widefield image of the same structure (Fig. S2a, c). The error map shows that the super-
resolution reconstruction was, as expected, accurate for the in-focus regions of the structure in the middle of the image but in
poor agreement with the out-of-focus regions of the sample. Next we investigated whether errors arising from out-of-focus
fluorescence would mask errors within the focal plane. To do this, a deliberately artefactual single molecule data set was
produced where periodic regions of the structure were absent; this was again reconstructed using ThunderSTORM analysis
(Fig. S2b). The error map generated through comparison with the defect-free widefield image (Fig. S2c) clearly demonstrates
that while the errors arising from out-of-focus fluorescence are still present, the errors resulting from structural mismatch are
also clearly identifiable as periodic peaks in the error map.

Super-resolution
distribution
to simulate

Example frame
from simulated

data set
Super-resolution
reconstruction Error map

Defect-free
widefield simulation

z=-750nm z=+750nm
z=0nm

a

b

c

1
5
0

2
0
0
0

RSP=0.878

RSP=0.833

RSE=1377.1

RSE=1588.2

Fig. S2. Impact of out-of-focus fluorescence on error maps, RSP and RSE values a) Test structure for defect-free super-resolution
simulation; example frame from simulated single molecule data set where there is an axial tilt along the x-dimension; result of running
the simulated data set through ThunderSTORM analysis; error map generated between the reconstructed image and a simulated
defect-free widefield image (c). b) As in a, except here there are periodic defects in the super-resolution image which are not present
in the widefield image. c) Defect-free widefield image produced of the tilted structure shown in (a). Scale bars 500 nm.
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Fig. S3. Application of SQUIRREL analysis to SIM data. Actin imaged using standard widefield microscopy followed by SIM at two
different laser intensities. SQUIRREL analysis was run on the two SIM images, both using the widefield image as the reference. With
an increased laser intensity a high SNR is achieved (top row), yielding more structural detail in the SIM image than with a decreased
laser intensity (bottom row). Fine details are lost (inset) and artefactual background patterning (error map) becomes apparent at low
SNR. Main image scale bars = 5 µm, inset scale bars = 1 µm.
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Supplementary Note 4: Size and Signal-to-Noise sensitivity of SQUIRREL
To estimate the resolution scale to which SQUIRREL is able to identify super-resolution anomalies, we here designed a simu-
lated super-resolution imaging experiment where controlled defects can be incorporated into a known structure. To this effect,
we have simulated an 8-molecule ring structure where the separation between adjacent molecules (∆d) can be varied (Fig.
S4a).
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Fig. S4. Resolution and signal-to-noise sensitivity of SQUIRREL a) Geometry of an 8-molecule ring structure for simulations, where
∆d indicates the separation between adjacent molecules. b-d) Representative simulated super-resolution images with varying numbers
of randomly removed molecules from the ring structure with ∆d values of b) 160 nm, c) 100 nm, d) 20 nm, rendered with Gaussian
distributions of σ=20 nm. Scale bars = 200 nm. e-g) Representative simulated widefield images of rings with no molecules missing at
three different signal-to-noise ratios (SNR) for ∆d values of e) 160 nm, f) 100 nm, g) 20 nm, where the widefield PSF is approximated
to a Gaussian distribution of σ=135 nm. Scale bars = 200 nm. h) RSP values generated by SQUIRREL for simulated super-resolution
images with no molecules missing with different SNR widefield images used as the reference. Error bars represent standard deviation
of n=10 repeats. i) RSP values generated by SQUIRREL for super-resolution images with varying numbers of molecules missing when
a noise-free widefield image is used as the reference. Error bars represent standard deviation of n=100 repeats. j-m) Mean RSP values
mapped for number of molecules removed against ∆d for widefield reference images with j) no noise (n=100), k) SNR = 2 (n=10), l)
SNR = 5 (n=10), m) SNR = 10 (n=10).

‘Perfect’ super-resolution images were simulated for different sized rings with all 8 molecules present, and artefactual super-
resolution images were generated through random removal of various numbers of molecules from the ring (Fig. S4b-d).
Widefield images with all 8 molecules present were also generated to serve as SQUIRREL reference images. These either
feature no noise, or have one of three different signal-to-noise ratios (SNR) (Fig. S4e-g). When the super-resolution image
contained no artefacts, the RSP values were dictated by the SNR of the reference image, with higher SNR yielding higher
RSP values (Fig. S4h). The RSP does not significantly vary when changing the size of the ring structure for a constant SNR.
Next, the sensitivity of SQUIRREL was assessed for artefactual super-resolution images with up to 5 molecules absent when
compared with a noise-free reference image with all 8 molecules present (Fig. S4i). When there were no molecules removed
from the super-resolution image, the RSP steadily increased with ∆d; however, when molecules were removed from the super-
resolution image the opposite relationship was observed, with the RSP decreasing at larger values of ∆d. This relationship
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became more pronounced with greater numbers of removed molecules (i.e. more artefactual images). For ∆d less than 100 nm,
the RSP values were not significantly different to the perfect super-resolution images regardless of the number of molecules
absent from the structure. This is due to the lack of resolution support in the widefield image. However, the RSP indicated the
presence of artefacts at all larger ∆d values. The larger error bars associated with the RSP values for increasingly artefactual
super-resolution images are due to the random nature of multiple molecule removals. The relationship between the degree of
image artefacts (i.e. number of missing molecules) and the size of the structure (i.e. ∆d) is displayed in Fig. S4j. The combined
effect of reference image SNR, extent of super-resolution image defects and structure size is plotted similarly in Fig. S4k-m.
As in Fig. S4h RSP values are consistently lower for low SNR, and as in Fig. S4j there is higher variation in RSP values for
more extreme defects and larger structures. Based on these results, we conclude that SQUIRREL is sufficiently sensitive to
describe defects occurring on a scale down to ∼150 nm, with even smaller scales possible for high SNR.
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Fig. S5. FRC mapping. Resolution mapping by FRC is carried out by inputting two independent super-resolution images of the same
field-of-view imaged under the same conditions. For the case of SMLM data, these two such images can be generated by separating
the data in half, for example by having odd and even frames producing two independent super-resolution reconstructions. Within the
algorithm, the two data reconstructions are divided into blocks and for each block the FRC value is calculated as described in (14). If
sufficient correlations for FRC resolution estimation is found in a block, an equivalent region is colour coded to this value in an FRC
resolution map. If not, the equivalent region is colour coded according to natural neighbour interpolation (15).

8 | Supplementary Information Culley et al. | NanoJ-SQUIRREL

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 17, 2017. ; https://doi.org/10.1101/158279doi: bioRxiv preprint 

https://doi.org/10.1101/158279


Supplementary Note 5: Multi-Image Elastic Registration
In multi-image elastic registration, the image is divided into a user-selected number of blocks (similarly to Fig. S5). For each
block, an optimal ∆x,∆y translation is calculated such that local similarity between the block in the image currently being
registered and the block in the reference image is maximised. This calculation is done by cross-correlation, in the same manner
described in Sup. Note 2. If a block does not support sufficient correlation against its given reference block, ∆x,∆y will
be predicted by interpolation based on the values of neighbouring blocks. An elastic translation matrix is then calculated by
inverse distance weighting (16) and applied to the corresponding image by bi-cubic spline interpolation (8).
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Fig. S6. Comparative image quality between super-resolution methods while imaging vaccinia virus lateral bodies a) Schematic
of vaccinia structure, red highlights the lateral bodies with the remaining major structural components shown in grey. b) Violin plots
of RSP values when comparing MLE and SRRF reconstructions against widefield, SIM and STED reference images for 90 individual
viruses from the images in Fig. 3a. Arrowheads indicate values for the example virus in Fig. 3b. c) As in b, but RSE values.
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Supplementary Note 6: Image Fusion
Image fusion provides a super-resolution estimate merging the best traits of multiple super-resolution reconstructions through
a weighted average. For this purpose, the fusion process weights the local information of each reconstruction according to its
local error to achieve a final estimate of higher quality than any of its components. The process starts by the calculation of
R(n,x,y) as the root-mean-square-error (RMSE) of each reconstruction n for a small 3x3 window (Eq. S7). Here M(n,x,y)
corresponds to the error map matrix (Eq. 4) for the n-th super-resolution reconstruction provided. Next a matrix Rmax(x,y) is
also calculated, containing the maximum value of R(n,x,y) for each pixel across N total reconstructions (Eq. S8). A weight
matrix for each super-resolution reconstruction can then be calculated through Eq. S9 (note the truncation of the denominator to
1 in order to avoid a zero-division). For theW (n,x,y) calculation we have chosen to use the RMSE over the 3x3 as described in
Eq. S7 instead ofM(n,x,y) directly to provide local error smoothing, minimising sharp pixel-wise changes between individual
dominant pixels from each reconstruction. The final fusion image ISF(x,y) is generated through a weighted average (Eq. S10).

R(n,x,y) =

√√√√1
9

1∑
i=−1

1∑
j=−1

M(n,x+ i,y+ j)2 (S7)

Rmax(x,y) = max({R(n,x,y) : n= 1, ...,N}) (S8)

W (n,x,y) = Rmax(x,y)
max(R(n,x,y),1) (S9)

ISF(x,y) =
∑N
n=1 IS(n,x,y)×W (n,x,y)∑N

n=1W (n,x,y)
(S10)
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Fig. S7. Fourier Ring Correlation resolution for neuronal actin rings Average FRC values for reconstructions obtained with an
accumulative number of frames, in the same manner as Fig. 5e-f. .
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Supplementary Methods
SIM actin imaging. For comparison of different SNR ratios, FluoCells prepared slide #2 (Invitrogen) with BPAE cells stained
with Texas Red-X phalloidin was imaged on a Zeiss Elyra PS.1 system, using a 63× NA 1.4 objective with additional 1.6×
magnification for SIM and widefield acquisition. Low SNR images were acquired with a 561 nm laser at 0.05 % laser power,
using 100 ms exposure time, and 5 grid rotations. High SNR images were acquired with a 561 nm laser at 5 % laser power,
100 ms exposure, 5 grid rotations. Widefield images were acquired with a 561 nm laser at 0.2 % laser power, 100 ms exposure
time. SIM reconstructions were generated with the Zeiss Elyra Zen software using automatic settings.

Simulation of structures with out-of-focus information. For assessing the impact of out-of-focus fluorescence on SQUIR-
REL analysis, a test structure was simulated consisting of three semicircles of radius 500 nm and axial tilt ranging from -750
nm to +750 nm. A widefield representation of this structures was produced via convolution with a 3D PSF generated using the
ImageJ PSF Generator plugin (6) with the following settings: Born and Wolf optical model, numerical aperture 1.4, wavelength
640 nm, z-range 1500 nm, z-step size 2 nm. Single molecule blinking data sets were generated with custom-written simulation
software with the same PSF used for rendering molecule appearances, and were binned into 100nm ‘camera’ pixels. This was
performed for both the defect-free structure and an artefactual equivalent where 100 nm stretches of the structure had been
deleted. These data sets were analysed using weighted-least-squares fitting in ThunderSTORM (13) and rendered with 20 nm
Gaussian distributions.

Culley et al. | NanoJ-SQUIRREL Supplementary Information | 13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 17, 2017. ; https://doi.org/10.1101/158279doi: bioRxiv preprint 

https://doi.org/10.1101/158279


Supplementary Bibliography
1. Bo Zhang, Josiane Zerubia, and Jean-Christophe Olivo-Marin. Gaussian approximations of fluorescence microscope point-spread function models. Applied Optics, 46(10):1819, 4 2007. ISSN

0003-6935. doi: 10.1364/AO.46.001819.
2. Eric Betzig, George H Patterson, Rachid Sougrat, O Wolf Lindwasser, Scott Olenych, Juan S Bonifacino, Michael W Davidson, Jennifer Lippincott-Schwartz, and Harald F Hess. Imaging intracellular

fluorescent proteins at nanometer resolution. Science (New York, N.Y.), 313(5793):1642–5, 2006. ISSN 1095-9203. doi: 10.1126/science.1127344.
3. Michael J Rust, Mark Bates, and Xiaowei W Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods, 3(10):793–5, 10 2006. ISSN

1548-7091. doi: 10.1038/nmeth929.
4. Travis J. Gould, Daniel Burke, Joerg Bewersdorf, and Martin J. Booth. Adaptive optics enables 3D STED microscopy in aberrating specimens. Optics Express, 20(19):20998, 9 2012. ISSN

1094-4087. doi: 10.1364/OE.20.020998.
5. D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig. Extended-resolution

structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349(6251):aab3500–aab3500, 8 2015. ISSN 0036-8075. doi: 10.1126/science.aab3500.
6. H Kirshner, F Aguet, D Sage, and M Unser. 3-D PSF fitting for fluorescence microscopy: implementation and localization application. Journal of microscopy, 249(1):13–25, 1 2013. ISSN 1365-2818.

doi: 10.1111/j.1365-2818.2012.03675.x.
7. Piotr Wendykier and James G Nagy. Parallel Colt: A High-Performance Java Library for Scientific Computing and Image Processing. ACM Transactions on Mathematical Software, 37(3):31–31,

2011. ISSN 00983500. doi: 10.1145/1824801.1824809.http.
8. Edwin Catmull and Raphael Rom. A Class of Local Interpolating Splines. In Computer Aided Geometric Design, volume 14, pages 317–326. Elsevier, 1974. ISBN 9780120790500. doi:

10.1016/B978-0-12-079050-0.50020-5.
9. Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup. Efficient subpixel image registration algorithms. Optics letters, 33(2):156–8, 1 2008. ISSN 0146-9592. doi: 10.1364/OL.33.000156.

10. Carlas S Smith, Nikolai Joseph, Bernd Rieger, and Keith A Lidke. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nature Methods, 7(5):373–375, 2010. ISSN
1548-7091. doi: 10.1038/nmeth.1449.

11. J Kennedy and R Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942–1948. IEEE, 1995. ISBN 0-7803-2768-3.
doi: 10.1109/ICNN.1995.488968.

12. Y Shi and R Eberhart. A modified particle swarm optimizer. In 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence
(Cat. No.98TH8360), pages 69–73. IEEE, 1998. ISBN 0-7803-4869-9. doi: 10.1109/ICEC.1998.699146.
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