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Neurons in the primary visual cortex (V1) predominantly respond to a patch of the visual input,
their classical receptive field. These responses are modulated by the visual input in the surround [2].
This reflects the fact that features in natural scenes do not occur in isolation: lines, surfaces are gen-
erally continuous, and the surround provides context for the information in the classical receptive
field. It is generally assumed that the information in the near surround is transmitted via lateral con-
nections between neurons in the same area [2]. A series of large scale efforts have recently described
the relation between lateral connectivity and visual evoked responses and found like-to-like connec-
tivity between excitatory neurons [16, 18]. Additionally, specific cell type connectivity for inhibitory
neuron types has been described [11, 31]. Current normative models of cortical function relying on
sparsity [27], saliency [4] predict functional inhibition between similarly tuned neurons. What com-
putations are consistent with the observed structure of the lateral connections between the excitatory
and diverse types of inhibitory neurons?

We combined natural scene statistics [24] and mouse V1 neuron responses [7] to compute the
lateral connections and computations of individual neurons which optimally integrate information
from the classical receptive field with that from the surround by directly implementing Bayes rule.
This increases the accuracy of representation of a natural scene under noisy conditions. We show
that this network has like-to-like connectivity between excitatory neurons, similar to the observed one
[16, 18, 11], and has three types of inhibition: local normalization, surround inhibition and gating
of inhibition from the surround - that can be attributed to three classes of inhibitory neurons. We
hypothesize that this computation: optimal integration of contextual cues with a gate to ignore context
when necessary is a general property of cortical circuits, and the rules constructed for mouse V1
generalize to other areas and species.
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1 Introduction

In recent years, several studies relating the connectivity between neurons and their in vivo activity have
focused on the mouse primary visual system. It has been shown that excitatory neurons with similar orien-
tation tuning connect to each other with higher probability than to those tuned to the orthogonal orientation
[16, 18], and when they do connect, they have higher strength [6]. The connectivity rate is even higher
between neurons which correlate well in response to natural scenes [16, 15]. Bock et al. [3] demonstrated,
using optical physiology followed by electron microscopy (EM), a different rule for inhibitory neurons, with
their inputs being nonspecific. This general principle of "like-to-like" connectivity when synaptic weights
have reached their steady state is expected using a "cells which fire together, wire together" Hebbian princi-
ple [32, 33, 25].

Multiple inhibitory cell types have been described [30, 11]. While in general very complex, the rela-
tion between connectivity and cell type can still be well explained by bundling the morphological neuron
types into three classes: pyramidal-targeting interneurons that target excitatory neurons and themselves,
inhibitory-selective interneurons that target other classes of interneurons, and master regulators that are in-
discriminate inhibitors [11]. A similar pattern of connections is observed using three inhibitory cell broad
classes defined by transgenic lines [31].

How does this observed structure relate to the proposed computations of the cortical circuits?
One line of normative models (which start by postulating a computation) focuses on sparsity, the prop-

erty that only a small fraction of neurons are activated by any natural image [28, 27, 29]. These models are
successful at defining the classical receptive field properties of simple cells in V1. However, they predict
anti-Hebbian lateral connections between excitatory neurons. These predictions remain generally true for
extensions of the sparse coding models to spiking networks [40]. In networks with separate inhibitory and
excitatory neurons [14], requiring sparsity leads to Hebbian connectivity between inhibitory and excitatory
neurons, with no excitatory to excitatory connections.

Another very fruitful line of study has been based on Gaussian scale mixture models for the statistics of
natural images [36]. These statistics have been successfully used in a model of visual processing in which
the optimization is for redundancy reduction [34], having an efficient representation of the image in the
absence of noise. The implementation is based on surround normalization [4], and results in predictions for
V1 to act similarly to a saliency map: producing stronger representation for features which occur in isolation
and are not in the vicinity of other similar features. Recent instantiations of this line of models also include
a gating mechanism [5].

It has been shown in primates that contours are salient [20], and associated models rely on like-to-like
connectivity [21]. Like-to-like connectivity of lateral and top-down connections have also been involved
in models of perceptual organization in mid-level vision in primates [38, 26]. However these models and
their extensions typically do not include knowledge of cell types involved, and there is not an exact, formal
description of the computations involved.

Neurons in cortical circuits have to perform computations in the presence of noise (for a review see [8]),
and possibly deal with an absence of information in the case of occlusions. Several studies on Bayesian
inference focus on optimal integration of information from different sensory modalities about one feature
[22].

In this study we focus on a multitude of features and their covariances, and propose that the goal of the
lateral connections is to optimally integrate information from the context to minimize the influence of noise
or gaps.
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2 Results

We assume a normative model in which the lateral connections optimally integrate information from the
features which are present in the surround by direct implementation of Bayes rule.

We start by assuming a simple neural code for the excitatory neurons: the firing rate of the neuron maps
monotonically to the probability of the feature the neuron codes for to be in the presented image,

fnk,x = g(p(Fn
k |imx)) (1)

where fnk,x represents the firing rate of a neuron coding for feature Fk at location n in response to image x,
p(Fn

k |imx) represents the probability of feature k being present in image x and g is a monotonic function.
An example of such a feature is superimposed on a natural image in Figure 1a. We also assume that the
sum of probabilities of all features in a patch is one, for every image, thereby implying a normalization of
excitatory neuronal activities in a spatial region.∑

k

g−1(fnk,x) = 1,∀n, x (2)

Such a normalization can be implemented by a specific inhibitory cell type, which is untuned, receives the
average inputs of the excitatory neurons in its classical receptive field, and projects equally to excitatory
neurons in its patch. Its connectivity matches well with the pyramidal targeting inter-neurons (PTI) category
[11] and corresponds quite well to the parvalbumin-expressing inter-neurons [31]. For simplicity, we assume
a linear mapping of the probability of feature presence and firing rate (g = 1) in the rest of the paper, as the
qualitative conclusions are not dependent on this choice.

We show that a network of neurons can directly implement Bayes rule to optimally integrate the infor-
mation from the surround (Methods sections 4.2 and 4.3). Intuitively, the activity of a neuron representing a
feature is influenced by the probability that another feature is present in a surrounding patch and the statistics
of co-occurrences of these features in natural scenes. The activity of a neuron representing feature j in patch
m given image x, in this network can be written as:

fmj,x =
1

pmx
fcmj,x

N∏
n6=m

(
1 +

∑
k

Wmn
jk fnk,x

)
(3)

where pmx represents a normalization coefficient for patch m in image x, fcnk,x = g(p(Fn
k |imn

x)) represents
the classical receptive field response of the neuron and Wmn

jk is a synaptic weight. The connection weights
result from the relative probability of feature co-occurrences above the chance (Methods Equation 19) and
with an identity gain function (g = 1), map linearly to the response rate:

Wn1n2
k1k2 =

〈
fn1k1,xf

n2
k2,x

〉
x〈

fn1k1,x

〉
x

〈
fn2k2,x

〉
x

− 1 (4)

where Wn1n2
k1k2 is the synaptic weight between pair (k1, k2) of filters located respectively at (n1, n2) and x

spans the set of natural images used (in our case, the Berkeley Segmentation DataSet).
The firing rate computation requires first summing the contributions from the lateral connections cor-

responding to a set of neurons in a surrounding patch, and then multiplying the contributions from each
set with the classical receptive field response. However, this requires quite complicated computations to be

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/158360doi: bioRxiv preprint 

https://doi.org/10.1101/158360
http://creativecommons.org/licenses/by-nc-nd/4.0/


realized by individual neurons. These could potentially be realized by computations of dendritic branches.
Under the assumption that the effects of the surround are small, the computation becomes simpler (Methods
equation 18): all the lateral connections need to be summed, and their net influence to have a multiplicative
effect on the classical receptive field input of the neuron.

To compute the predicted connectivities for mouse primary visual cortical neurons, we apply this theory
to a set of simple cells. We generate a dictionary of features these neurons represent by constructing a
parameterized set of models from V1 electrophysiological responses [7]. These correspond to 18 filters, one
ON only, one OFF only, and 16 filters which contain both ON and OFF Gaussian subfields (Figure 1d and
Methods section 4.5) at different respective relative intensities and orientations. In order to relate the activity
of the neurons to the probability of a feature being present in the image as in equation 1, we convolved the
image with the respective filters, rectified and then normalized the convolved output so that all values lie
between 0 and 1.

We used the Berkeley Segmentation Dataset [24] to compute the probabilities of occurrences and co-
occurrences of these features in natural scenes. We generated a grid of receptive fields in which the distance
between gridpoints is approximately equal to the size of the classical receptive field (see Methods section
4.5). This allows the assumption that surround patches provide information which is independent of the
patch in the classical receptive field (Figure 1b).

This results in a high dimensional matrix that characterizes the connection between each pair of filters
at each position in the image. To reduce the dimensions and size of this matrix, we assume translational
invariance: only the relative position of two filters is important. We limit it in space to three times the size
of the classical receptive field (see Methods section 4.5), as the relative co-occurrence probabilities decrease
significantly above this scale. The resulting connectivity matrix is 4 dimensional, with the dimensions: cell
type of the source, cell type of the target and relative spatial position of the source and target in x and
y directions. We present several individual 2D slices through this matrix (figure 1e) corresponding to a
specific source and target.

To compare model predictions with experimental data, we assume that one neuron in the model can be
mapped to a set of neurons coding for similar features in the data. Connection weights in the model can then
be interpreted as corresponding to a combination of connection probabilities and connection strength in the
data. Experimentally, it has been shown that the connection probabilities and connection strength correlate
well [6]. Therefore, we can compare the predicted structure to either connection strength or connection
probabilities depending on which data is available.

The computation of optimal weights using equation 4 produces both positive and negative weights, with
a balanced average (it should be noted that this balance is in addition to the local normalization generated
by implementing Methods equation 30). Functional inhibitory connections between excitatory neurons
implementing surround inhibition can be mediated by a second class of inhibitory neurons: the somatostatin
positive neurons [31] and the master regulators in [11]. This is the main class of interneurons which are
known to mediate surround inhibition [1].

These connections can be mapped on to a neural circuit by considering different ways of splitting the
synaptic weights in equation 4 into excitatory and inhibitory terms. One possibility is to consider the exci-
tatory term to be like-to-like and given by

(〈
fcn1

k1,xfcn2
k2,x

〉
x

)
/
(〈

fcn1
k1,x

〉
x

〈
fcn2

k2,x

〉
x

)
. The inhibitory term, −1 is

then untuned (independent of fcn2k2,x) suggesting weak/non-existent orientation tuning of the interneurons
mediating surround inhibition. This mapping is consistent with some experimental results [13]. For weakly
correlated features, the excitatory and inhibitory terms are almost equal, leading to approximate balance.
The splitting of the connection weights in to inhibitory and excitatory components in this manner results in
relatively large inputs for both excitation and inhibition, resulting in a practical limitation of the spatial ex-
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tent of the contextual integration window. Similar predictions with weaker overall connections would result
from equating the inhibitory term with the minimum over the set of connection weights, and assigning the
values above this minimum to the excitatory connections.

A different (and possibly more natural) mapping results from requiring that positive weights correspond
to excitatory connections, and negative weights to inhibition. This mapping requires the inhibitory connec-
tions to be dependent on fcn2k2,x and the class of inhibitory neurons responsible for surround inhibition will
be tuned to orientation. This mapping is consistent with the several experimental results [1, 23]. For the
remainder of the paper, we will assume this latter mapping. This mapping predicts the excitatory connection
weights as being proportional to the correlation of the responses to natural scenes, qualitatively similar to
reported results [6].

The relation between excitatory neurons’ connection strength and their orientation tuning is summa-
rized in Figure 1g. It shows a bar plot representing the mean of all positive synaptic weights for the neurons
representing filters which have an orientation tuning, as a function of the relative orientation ∆θ between
the individual subfields. The graph for excitatory connections qualitatively matches the connection prob-
ability as a function of the difference in orientation tuning (Figure 1f) reported experimentally [16]. The
dependence on orientation tuning is only one of the variables and exact position and phase contribute to the
computation of the synaptic weight. Note that while the theory qualitatively reproduces the dependence of
synaptic weights on the difference in orientation tuning, it also predicts that sometimes cells of the same
orientation but different phase (for example, panels 1 and 5 in Figure 1d) can have an inhibitory effect on
each other (corresponding panels 1 and 5 in Figure 1e).

Figure 1h shows the dependence of the maximum and minimum positive and negative synaptic weights
respectively onto a target neuron k1 from all neurons a fixed distance away, measured in terms of receptive
field size. The plot also shows the distance dependence of the mean positive and negative synaptic weights.
Assuming an exponential spatial decay, the spatial constant is D = 0.8 times the classical receptive field
size. The spatial constant was calculated using the first two data-points in the curve for distance-dependence
of the mean positive synaptic weights (cyan curve in Figure 1h). This is in accordance with previous studies
[2], which suggest that the near surround extends over a range which is similar in size to the classical
receptive field. Using the cortical magnification of 30deg/mm [10, 39], with a receptive field size of 7deg
[7] and a spatial constant of D = 0.8 × receptive field size results in an average spatial constant of 187µm.
While quite short, this distance is similar to the measured distances [19] of 114µm extrapolated from multi-
patch recordingsas measured in mouse auditory cortex.

To get insight into how optimal lateral connections might facilitate decoding of information present
in neuronal activity by downstream neuronal populations, we reconstructed natural images after adding
Gaussian noise (to simulate neuronal noise) to the activities of the filters (Figure 2a). We constructed maps
of activities of each filter, and used the inverted filters to reconstruct the original image from all neuron
activities (Methods Section 4.7 and Figure 3). We find that including such connections leads to higher
reconstruction fidelity, thereby suggesting an improvement in decoding performance.

To quantify reconstruction fidelity, we calculated the Pearson correlation coefficient r between the in-
put and reconstructed natural images. We find that the correlation coefficient is significantly larger for
reconstruction with all lateral connections than with feedforward connections only. This can be seen in
the distribution of the difference between the two correlation coefficients (Figure 2b, mean µ = 0.0165,
standard error of mean sem = 0.0021, ttest with p-value p = 2.78 × 10−13). Reconstructed images and
distributions of correlation coefficients for each of the respective cases can be seen in Figure 3. Although
the mean of the difference between the two correlation coefficients is low, it uses lateral connections that
do not require any supervised training. It is likely that repeated inclusion of information from the lateral
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connections through multiple layers in the visual information processing hierarchy would eventually lead to
much larger differences.

When statistics of the input images do not match natural scene statistics, the optimal lateral connections
can be detrimental to encoding accuracy. Could there be a mechanism to switch off the optimal context
integration if the statistics do not match those of natural scenes? We test a mechanism that has an additional
inhibitory gate, which inhibits the neurons implementing surround inhibition (Figure 1c). Indeed, such
inhibition can be provided by neurons corresponding to the VIP [31] and inhibitory selective inter-neurons
[12]. From a decoding perspective, this would imply that the reconstruction fidelity should be worse with
all lateral connections included than with the positive lateral inputs alone. To test this, we used pixelated
white noise images as input and reconstructed them from the activities (Methods Section 4.7 and Figure 3
therein). The white noise images consist of statistically independent patches with sizes similar to those of
the subfields in our filter models. An example input image is shown in Figure 2c. In this case, we find as
expected that the reconstruction based on the activity including only the positive lateral connections is better
than reconstruction from activity that includes all lateral connections. This can be seen in the distribution
of the difference between the two correlation coefficients (Figure 2d, mean µ = 0.0108, standard error of
mean sem = 0.0002, ttest with p-value p = 1.57 × 10−101). This distribution was obtained by generating
200 instances of white noise images with different random seeds and performing the reconstructions as
described above for each instance (see Methods Section 4.7). Again, reconstructed images and distributions
of correlation coefficients for each of the respective cases can be seen in Figure 3

3 Discussion

We have presented a normative model of cortical circuit computations, in which the lateral connections
among neurons serve to optimally (in a Bayesian sense) integrate information from features in the surround.
Using the BSDS database of natural images [24] and classical receptive fields parameterized using mouse
V1 neuron responses [7], we have computed a relation between probabilities of feature co-occurences and
the synaptic weights for lateral connections which optimally integrate these features.

Mapping these connections and computations onto a network of neurons, we find that excitatory neurons
show like-to-like connectivity, qualitatively in agreement with dependence of connection probability on the
difference in orientation tuning that has been reported experimentally in mouse V1. Our model predicts that
the strength of lateral connections between excitatory neurons should be proportional to correlations in their
activity in response to natural scenes.

The mapping suggests two forms of inhibition - local normalization of excitatory neuronal activity in a
patch (corresponding to classical receptive fields) and inhibition arising from the surround (extra-classical
receptive fields) - that we attribute to the PV and SST-expressing interneurons respectively. When the
statistics of the input image do not match those of static natural images (as can happen during when an animal
is running), a gating mechanism which enables ignoring of contextual information is needed. This could
be accomplished by a third form of inhibition mediated by VIP interneurons, in which there is increased
activity of VIP interneurons and reduced activity of SST cells. This would effectively result in dis-inhibition
of the surround, thereby allowing better processing of movement [9, 17]. When the non-linearity g is taken
to be identity (g = 1), it also predicts that inputs from lateral connections should combine multiplicatively
with the feedforward input to drive a neuron’s activity (thus affecting its gain).

We have also shown that including contributions from lateral connections to the feedforward activity
leads to better decoding performance, when the statistics of the input image match those of natural images.

For simplicity, we have restricted ourselves to a simple basis set of filters that would extract information
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about oriented edges present in natural scenes, as our focus is on the biological predictions of this theory.
However, the computation of the lateral connections need not be intrinsically limited to simple cells corre-
sponding to early vision. A more extensive exploration of the computational properties of a network with
such lateral connections at multiple levels is beyond the scope of the current study.

In the current study we also focus on the first order correlations. In our model, the dependence of the
surround features on their own surround can be included in the second term in Methods equation 8, but it has
to be partly ignored in Methods equation 13. It remains of interest to see when multiple applications of the
surround are feasible. It also remains of interest if groups of multiplicative inputs, as needed for Methods
equation 22 can be implemented by complex dendritic trees, or if the somewhat simpler Methods equation
23 is needed.

We have described the rules of lateral connectivity at steady state. They are similar to the connections
resulting from Hebbian learning. However a full exploration of the stability of these weights under natural
conditions is beyond the current work’s scope.

Models of sensory processing derived directly from statistical properties of natural images (e.g [28])
optimize for a linear basis such that the responses to natural images are as statistically independent as pos-
sible. The learned basis functions show properties resembling those of simple cell receptive fields in V1,
but suggest functional inhibition between excitatory neurons. In our study, we start with a data-driven pa-
rameterization of receptive fields of mouse V1 neurons, compute synaptic weights between these neurons
and demonstrate like-to-like connectivity between excitatory neurons. It is interesting to note that the for-
mula we obtain for synaptic weights (equation 4) is formally similar to the steady state synaptic weights
between excitatory and inhibitory neurons obtained in [14] from their correlation-measuring (CM) learning
rule; however as it targets inhibitory neurons it serves a different function.They find that inhibitory neurons
in their model decorrelate excitatory neurons and suggest a mapping of these onto PV interneurons. In
contrast, we started with a proposed context integration computation for lateral connections and in mapping
these to a network of neurons, suggest that PV interneurons locally normalize excitatory neuronal activity
in a patch.

Taking into account sensory non-linearities, Schwartz and Simoncelli [35] developed a non-linear model
of neuronal processing that removes statistical redundancy and increases independence between neuronal
responses to natural stimuli via a gain control signal (computed as a weighted sum of neighboring neurons’
responses) that divisively normalizes a neuron’s response. The weights used to compute the gain control
signal were chosen to maximize the independence of neuronal responses to natural stimuli. In their elegant
study, Coen-Cagli et al. [4] used similar principles of redundancy reduction and natural image statistics to
infer contextual interactions between the RF and surround that would lead to optimal coding of images. Us-
ing a mixture of Gaussian scale mixtures, they develop a statistical model in which the spatial heterogeneity
of an image is inferred. This leads to a generalized form of divisive normalization from each RFs surround;
surround suppression is engaged when the image patch falling on the RF and surround is homogeneous and
is absent when it is heterogeneous. They validated this model against experimental data in a later study
[5] and formulated it as a flexible normalization model that includes a gating mechanism. The framework
we use here is very similar; however, we start with a different proposed role (as opposed to redundancy
reduction) for lateral connections: optimal integration of context. Our framework allows us to explicitly
map these interactions onto a network and suggest exact expressions for E-E excitatory synaptic weights
and effective E-SST-E inhibitory synaptic weights. Our model suggests that under low contrast, occlusions
or high noise conditions, it is beneficial for the center neuron to use available information from all surround
neurons to provide the best possible representation it can. It is likely that both these models coexist in the
brain, with the optimal integration of context being more apparent at low contrast, occlusions or other high
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noise conditions and redundancy reduction dominating at high contrast. It would be of particular interest
to develop a model which combines the need for optimal integration of context at low contrast values to a
redundancy reduction [5] at higher contrast values as a lot of the model structures are similar.

While the connectivity matrix between the predicted cell types and their functional responses is very
high dimensional, we were able to test with our current quite simple model a surprisingly large number of
statistics: like to like connectivity, distance dependence, three types of inhibitory neurons and their statistics
of connectivity. However, continuous development of methods of functional connectivity [18, 11] will
result in a finer structure and comparisons with this finer structure will probably point to the needs of
including some of the terms and principles which we currently ignore: higher order correlations, more
complex receptive fields, redundancy reduction, predictions of future stimuli etc.

Models which start with from a functional perspective are rare in in computational neuroscience [27, 37]
and even when capturing just a part of the biological complexity, they form useful entry points for more
complex models.
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(a) Example input image (b) Extraclassical receptive fields (c) Inhibitory cell types
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Figure 1: Optimal Context Integration. a) Sample image from the BSDS dataset, with a superimposed
classical receptive field, and highlighting a surround patch (RF2) with good predictive power. b) Classical
receptive fields are the result of feedforward connections, while extraclassical receptive fields fields are
assumed to be the result of lateral or feedback connections. c) Three forms of inhibition are required in
the model: one for local normalization, one for mediating the surround inhibition and one which gates the
surround inhibition when the statistics of the surround are different from those in natural scenes. We propose
that these map to classes of inhibitory neurons previously characterized [11]. d) A subset of basis filters were
constructed using estimates of spatial receptive field (RF) sizes from in-vivo recordings. e) The resulting
synaptic weights onto the target neuron representing the left-most filter in (d) located at position ~x1 from the
neurons representing filters k2 = (1, ..., 8) at position ~x2. Synaptic weights were calculated at distances (~x)
in steps of the receptive field (RF) size in each direction around k1. f) Connection probability as a function
of difference in preferred orientation observed experimentally (from [16]). g) Predicted average synaptic
weight as a function of difference in orientation. h) Synaptic weights fall off as distance from neurons
representing filter k1 increases.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/158360doi: bioRxiv preprint 

https://doi.org/10.1101/158360
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) Input natural image
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Figure 2: Image reconstruction from noisy representations. Inclusion of optimal lateral connections leads
to higher reconstruction/decoding fidelity for natural images. For white noise images, inclusion of optimal
lateral connections hurts the reconstruction, but an inhibition of the inhibitory connections (via activation of
VIP neurons) leads to better reconstruction fidelity. (a) Input natural image. (b) Distribution of difference in
correlation coefficients computed with all lateral connections and without lateral connections for a test set of
200 natural images from the BSDS dataset (mean µ = 0.0165, standard error of mean sem = 0.0021, ttest
with p-value p = 2.78× 10−13). (c) Unstructured white noise input image. (d) Distribution of difference in
correlation coefficients computed including only lateral connections with positive weights and with all lateral
connections for a set of 200 white noise images (mean µ = 0.0108, standard error of mean sem = 0.0002,
ttest with p-value p = 1.57× 10−101).
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4 Methods

We first outline the computation of the optimal integration of information from nearby patches (section
4.2) under a simple neuronal code (section 4.1), in general (equation 17) and under an approximation for
small contributions from each each nearby image patch (equation 18). Subsequently we show their imple-
mentation in a network (section 4.3 equations 22 and 23) and the relation between probabilities of feature
co-occurrences and the synaptic weight which optimally integrates these features (equation 26). We subse-
quently describe the set of features parameterized from Durand et al. [7] (Section 4.5) and apply them to a
database of natural scenes from [24].

4.1 Neuronal code

We assume the firing rate of neurons to represent the probability of a feature to be present in one location of
the image.

fnk,x = g(p(Fn
k |imx)) (5)

where fnk,x represents the firing rate of a neuron coding for feature Fk at location n in response to image x
and g is a monotonic function. For every image and every location a normalization over features is imposed:∑

k

p(Fn
k |imx) =

∑
k

g−1(fnk,x) = 1 (6)

such that the sum over the probabilities of different features adds up to one. For simplicity, We will generally
assume a linear mapping g(x) = x, however the conclusions of the study are not dependent on this choice.

4.2 Optimal context integration

We subdivide the image into multiple (N) sections corresponding to the sizes of classical receptive fields.

p(Fn
k |imx) = p(Fn

k |im1
x, ..., im

N
x ) (7)

We first look at the integration of information from two patches: where patch 1 is the classical receptive
field and patch 2 is the surround. The proof of optimal integration of the information from the surround will
first be given for how the code for feature j, Fj at location 1, F 1

j , representing image x (imx), with the patch
im1

x in the classical receptive field is influenced by the patch im2
x present in the extra classical receptive

field.
For these two patches, equation 7 can be expended as:

p(F 1
j |im1

x, im
2
x) =

∑
k

p(F 1
j |im1

x, im
2
x, F

2
k )p(F 2

k |im1
x, im

2
x) (8)

where the sum is over the k cells coding for the classical receptive fields in image patch 2.
We make several simplifying assumptions:

First, we assume that the only information neuron F 1
j has about the patch 2 comes from the neurons with

classical receptive fields in that region:

p(F 1
j |im1

x, im
2
x, F

2
k ) ≈ p(F 1

j |im1
x, F

2
k ) (9)
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Using the approximation in equation 9, the probability of the feature F 1
j being present in imx is :

p(F 1
j |im1

x, im
2
x) =

∑
k

p(F 1
j |im1

x, F
2
k )p(F 2

k |im1
x, im

2
x) (10)

We use Bayes rule for the first term:

p(F 1
j |im1

x, F
2
k ) =

p(F 1
j |im1

x)p(F 2
k |im1

x, F
1
j )

p(F 2
k |im1

x)
(11)

The probability described in equation 8 becomes:

p(F 1
j |im1

x, im
2
x) = p(F 1

j |im1
x)
∑
k

p(F 2
k |im1

x, F
1
j )

p(F 2
k |im1

x)
p(F 2

k |im1
x, im

2
x) (12)

The terms p(F 2
k |im1

x, F
1
j ) and p(F 2

k |im1
x) are approximately independent on the image presented. As-

suming independence will allow us to implement the operation in 12 using a neuronal network. Thus for
this term we make a second simplifying assumption is that:

p(F 2
k |im1

x, F
1
j ) ≈ p(F 2

k |F 1
j ) (13)

p(F 2
k |im1

x) ≈ p(F 2
k )

Applying this assumption on 11:

p(F 1
j |im1

x, F
2
k ) =

p(F 1
j |im1

x)p(F 2
k ∩ F 1

j )

p(F 1
j )p(F 2

k )
(14)

The probability described in equation 8 becomes:

p(F 1
j |im1

x, im
2
x) = p(F 1

j |im1
x)
∑
k

(
1 +

p(F 1
j ∩ F 2

k )− p(F 1
j )p(F 2

k )

p(F 1
j )p(F 2

k )

)
p(F 2

k |imx) (15)

The re-arrangement of terms in 15 allows us to split the contributions as a sum of classical (feed-forward)
and extra-classical (lateral) terms below, given the normalization condition 6.

p(F 1
j |im1

x, im
2
x) = p(F 1

j |im1
x)

(
1 +

∑
k

p(F 1
j ∩ F 2

k )− p(F 1
j )p(F 2

k )

p(F 1
j )p(F 2

k )
p(F 2

k |imx)

)
(16)

When going beyond two patches, to an arbitrary number, we use a third approximation: that each of these
patches provide independent information to the neuron coding for feature Fj in patch 1. The probability of
feature Fj in patch 1 becomes:

p(F 1
j |imx) = p(F 1

j |im1
x, ..., im

N
x )

= p(F 1
j |im1

x)
N∏

n6=1

(
1 +

∑
k

p(F 1
j ∩ Fn

k )− p(F 1
j )p(Fn

k )

p(F 1
j )p(Fn

k )
p(Fn

k |imx)

)
(17)

If the contributions of each of the patches is very small, the higher order terms in equation 17 can be
ignored, and the probability of feature Fj becomes:

p(F 1
j |imx) = p(F 1

j |im1
x, ..., im

N
x )

= p(F 1
j |im1

x)

1 +
∑
k

N∑
n6=1

p(F 1
j ∩ Fn

k )− p(F 1
j )p(Fn

k )

p(F 1
j )p(Fn

k )
p(Fn

k |imx)

 (18)
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4.3 Cue combination under a simple neural code

Using the notation:

W 1n
jk =

p(F 1
j ∩ Fn

k )− p(F 1
j )p(Fn

k )

p(F 1
j )p(Fn

k )
(19)

equation 17 becomes:

p(F 1
j |imx) = p(F 1

j |im1
x)

N∏
n6=1

(
1 +

∑
k

W 1n
jk p(F

n
k |imx)

)
(20)

and equation 18 becomes:

p(F 1
j |imx) = p(F 1

j |im1
x)

1 +
∑
k

N∑
n6=1

W 1n
jk p(F

n
k |imx)

 (21)

Using a simple neural code mapping g(x) = x in which the firing rates represent linearly the probability,
the middle term can be interpreted as a synaptic weight.

The activity of the neurons representing feature j in patch 1 given image x is

f1j,x =
1

p1x
fc1j,x

N∏
n6=1

(
1 +

∑
k

W 1n
jk f

n
k,x

)
(22)

where p1x represents a normalization coefficient for patch 1 in image x and fcnk,x = g(p(Fn
k |imn

x)) represents
the classical receptive field response of the neuron. This requires the effects from the lateral connections
corresponding to a group of neurons to sum, and each group to be applied multiplicatively.

Equation 18 becomes,

f11,x =
1

p1x
fc11,x

1 +
∑
k

N∑
n6=1

W 1n
1k f

n
k,x

 (23)

This requires the lateral connections to all be summed up and together to have a multiplicative effect.

In general, the formula for the synaptic weight,

Wn1n2
k1k2 =

p(Fn1
k1 ∩ Fn2

k2 )

p(Fn1
k1 )p(Fn2

k2 )
− 1 (24)

can be expressed based on average activities of the cells, when x spans a representative set of natural scenes,
as:

Wn1n2
k1k2 =

〈
fn1k1,xf

n2
k2,x

〉
x〈

fn1k1,x

〉
x

〈
fn2k2,x

〉
x

− 1 (25)

Such a set of weights can be realized using Hebbian learning in an unsupervised manner. However as an
approximation, to compute these weights we used the classical receptive field responses of the cells

Wn1n2
k1k2 ≈

〈
fcn1k1,xfc

n2
k2,x

〉
x〈

fcn1k1,x

〉
x

〈
fcn2k2,x

〉
x

− 1 (26)
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4.4 Normalization network

For an image patch, the we require the activity of the excitatory neurons in any patch n in any image x to be
normalized: ∑

k

fnk,x = 1 (27)

Condensing all the effect of the lateral connections into one term:

Lm
j,x =

N∏
n6=1

(
1 +

∑
k

Wmn
jk fnk,x

)
(28)

the equation for the firing rate becomes:

fnk,x =
1

pnx
fcnk,xL

n
k,x (29)

with:
pnx =

∑
k

fcnk,xL
n
k,x (30)

This can be implemented as a network in which a set of neurons responsible for normalization have a
divisive effect on the pyramidal neurons, are patch specific (have a classical receptive field of similar size
to the pyramidal neurons), are untuned, inhibit equally all the pyramidal neurons in their image patch and
receive inputs equal to the average of the inputs of the pyramidal neurons in the patch.

4.5 Classical receptive fields parameterization

We constructed basis filters by averaging estimates of spatial receptive field (RF) sizes from 212 recorded
V1 cells [7]. The basis set consisted of four classes of spatial RFs observed experimentally: ON, OFF and
two versions of ON/OFF cells with the first having a stronger ON subfield and the second a stronger OFF
subfield. Using the average sizes of all recorded V1 units, we modeled each subfield as a 2D Gaussian with
standard deviation σ = 0.5× average subfield size, which was measured to be 4.8 degrees for the OFF
subfields and 4.2 degrees for the ON subfields.
The relative orientation between the two subfields for each ON/OFF class was varied from 0 to 315 degrees
uniformly in steps of 45 degrees, resulting in a total of 18 filters for each spatial location. For the ON/OFF
class, the distance between the centers of the two subfields was chosen to be 5 degrees (which equates to
roughly 2σ). In accordance with data, the amplitude of the weaker subfield was chosen to be half that of
the stronger subfield which was set to unity. The two subfields were then combined additively to form a
receptive field whose size was 7 degrees (with size being defined as roughly equal to the distance between
the two subfields plus sigma). A subset of these filters are shown in Figure (1c).

4.6 Computation of synaptic weights

We computed the synaptic weights in equation 26 as follows: Each input image x in the dataset was con-
volved with a basis filter k and the output was rectified and normalized so that at every spatial location n,
the sum over all filters is unity in accordance with equation 6. An element of this rectified and normalized
output corresponds to fcnk,x.
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The feature co-occurence probabilities,
〈
fcn1k1,xfc

n2
k2,x

〉
x

in the numerator for the synaptic weight for-
mula in equation 26 are then computed by further pairwise convolution of the above output for each possible
pair of filters in the basis set.

We computed synaptic weights Wn1n2
k1k2 between every pair (k1, k2) of filters located respectively at

(n1, n2) in the basis set described above, where x spans the set of images in the Berkeley Segmentation
DataSet. We assumed translational invariance of the statistics of the image, so that

Wn1n2
k1k2 = Wn3n4

k1k2 (31)

if
~n1− ~n2 = ~n3− ~n4 (32)

Using this assumption, for every feature/filter k, synaptic weights from target filters were calculated
at 3 distances in steps of 0.5 × the RF size in each direction around k, so that we have synaptic weights
on a (7 × 7) grid. Sample synaptic weights from all filters in Figure (1c) onto the first (leftmost) filter in
Figure (1c) obtained using this procedure are shown in Figure (1d) .

4.7 Reconstruction using activities and optimal synaptic weights

To get insight into how optimal lateral connections might facilitate decoding of information present in neu-
ronal activity, we reconstructed natural images and images consisting of pixelated white noise from the re-
spective neuronal activities. The pixelated white noise image was constructed by first generating a (16×16)
random array and then replicating each element of this array into a (4 × 4) sub-array (each pixel is then
roughly 0.5 × average subfield size), so that the entire image was effectively a (64× 64) array. The recon-
struction was performed as follows. For a given input image x, we calculated the effective activity An1

k1,x of
neuron/filter k1 at location n1 using,

An1
k1,x = fcn1k1,x +

∑
n2,k2

Wn1n2
k1k2 fc

n2
k2,x (33)

To reconstruct images from the activities, we convolved the activities computed using Equation 33 with
the inverses of the filters in our basis set. Specifically, the activity An1

k1,x corresponding to filter k1 was
convolved with the inverse of k1 (obtained by flipping k1 about the horizontal and vertical axes) and the
convolutions for all filters were summed together.

The reconstruction fidelity was quantified using the Pearson correlation coefficient r between the input
and reconstructed images. The top row in Figure 3 shows the input image (panel a) and the reconstructed
images based on the activity from the classical receptive field alone (panel b, r = 0.60), including all lateral
connections (panel c, r = 0.63) and including only the positive lateral connections (panel d, r = 0.61)
respectively.

The second row in Figure 2 shows the distribution of Pearson correlation coefficients between the input
and the reconstructed natural images with feedforward input only (Figure 3 f), with all lateral connections
(Figure 3 g) and with only the positive lateral connections (Figure 3 h) for all test images in the Berkeley
Segmentation Dataset. The correlation coefficient is significantly larger for reconstruction with all lateral
connections than with feedforward connections only. This can be seen in the distribution of the difference
between the two correlation coefficients (Figure 3 e, mean µ = 0.0165, standard error of mean sem =
0.0021, ttest with p-value p = 2.78× 10−13).

When statistics of the input images do not match natural scene statistics, the optimal lateral connections
can be detrimental to encoding accuracy. To test this, we generated 200 instances of pixelated white noise
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images with different random seeds as input and reconstructed them from the activities as above (an example
is shown in the third row in Figure 3). The white noise images consist of statistically independent patches
with sizes similar to those of the subfields in our filter models. The reconstruction based on the activity from
the classical receptive field alone (third row panel j, r = 0.69) is better than reconstruction from activity that
includes all lateral connections (third row panel k, r = 0.67). The reconstruction from activity that includes
only the positive lateral connections is also better than the one with all lateral connections included (third
row panel l, r = 0.69) and is similar to the one with feedforward inputs alone. The beneficial effect of this
gating mechanism can be seen in the distribution of the difference between the two correlation coefficients
(Figure 2 d, mean µ = 0.0108, standard error of mean sem = 0.0002, ttest with p-value p = 1.57×10−101).
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Figure 3: Image reconstruction from noisy representations. Inclusion of optimal lateral connections leads
to higher reconstruction/decoding fidelity for natural images. Top row: (a) Input natural image. (b-d)
Reconstructed image from inversion of activities computed (b) without lateral connections, (c) including
all lateral connections, and (d) including only connections with positive weights. Correlation coefficient
between respective reconstructed images and input natural image shown at the top of panels in (b-d). Second
row: Distribution of correlation coefficients between input and reconstructed natural images from a test set
(different from the training set used to compute the weights) of 200 images. (e) Distribution of difference in
correlation coefficients computed with all lateral connections and without lateral connections as in columns
(b) and (c) for top row (mean µ = 0.0165, standard error of mean sem = 0.0021, ttest with p-value p =
2.78 × 10−13). (f-h) Distribution of correlation coefficients for reconstructions using the same schemes as
in corresponding columns of top row respectively. Third row: Same as in the top row, but for unstructured
white noise input. Correlation coefficient between respective reconstructed images and input white-noise
image shown at the top of panels in (j-l). The inclusion of optimal lateral connections hurts the reconstruction
in this case, but an inhibition of the inhibitory connections (panel l) (similar to the activation of VIP neurons)
allows the reconstruction to become similar to the feedforward one. Bottom row: Same as in second row,
but for 200 white noise images. Panel (m) Distribution of difference in correlation coefficients computed
including only lateral connections with positive weights and with all lateral connections as in columns
(j) and (l) for third row (mean µ = 0.0108, standard error of mean sem = 0.0002, ttest with p-value
p = 1.57× 10−101).
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