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Abstract

Background The inference of gene regulatory networks is of great interest and has various ap-
plications. The recent advances in high-throughout biological data collection have facilitated the
construction and understanding of gene regulatory networks in many model organisms. However,
the inference of gene networks from large-scale human genomic data can be challenging. Gener-
ally, it is difficult to identify the correct regulators for each gene in the large search space, given
that the high dimensional gene expression data only provides a small number of observations for
each gene.

Results We present a Bayesian approach integrating external data sources with knockdown
data from human cell lines to infer gene regulatory networks. In particular, we assemble multiple
data sources including gene expression data, genome-wide binding data, gene ontology, known
pathways and use a supervised learning framework to compute prior probabilities of regulatory
relationships. We show that our integrated method improves the accuracy of inferred gene net-
works. We apply our method to two different human cell lines, which illustrates the general scope
of our method.

Conclusions We present a flexible and systematic framework for external data integration that
improves the accuracy of human gene network inference while retaining efficiency. Integrating
various data sources of biological information also provides a systematic way to build on knowl-
edge from existing literature.

Keywords: systems biology, genetic perturbation, gene networks, data integration, machine learn-
ing
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Background

The inference of gene regulatory networks has attracted great interest in recent years, especially gene

network inference from large-scale data. Advances in technology have led to the generation of high-

throughput biological data. Gene regulatory networks play an important role in understanding the

interactions between genes and have many applications. However, inferring gene networks from

high-dimensional genomic data can be challenging.

We define a gene regulatory network as a directed graph that represents the regulatory relationships

between genes, in which each node represents a gene and each directed edge represents the regulatory

relationship between a regulator (parent node) and a target gene (child node). Furthermore, these

regulatory relationships or edges from regulators to target genes can be calibrated by probabilities

representing the likelihood of such edges, especially in Bayesian approaches.

There is an extensive literature on methods for the inference of human gene regulatory networks

and their applications. Some authors inferred gene networks to uncover causal relationships between

gene expression and disease, which could help drug discovery and development [1, 2, 3] as well as

disease biomarkers [4]. Woo et al. [5] proposed a method to predict changes in gene expression level

after drug perturbation, which offers insight into target prioritization of novel compounds. Also, gene

network inference could advance the understanding of the mechanisms underlying various biological

processes and identify genes that play important roles in biological activities.

Bayesian networks are one of the most commonly used modeling approaches in gene network

construction. For example, Friedman et al. [6] built a framework on Bayesian networks to infer inter-

actions between genes based on multiple expression measurements. A Bayesian network is a directed

acyclic graph that describes the joint probabilities of the conditional independence between nodes.

Bayesian network methods have been applied to yeast gene expression data and further extended using

probabilistic graphical models [7]. Many other models have also been developed to infer gene regu-

latory networks, including ordinary differential equation methods (e.g. [8, 9]) and regression-based

approaches (e.g. [10]). Ordinary differential equations have been used in both static and time-series

gene expression data. These methods usually suffer from the curse of dimensionality, especially in

the case of human data when the number of genes is large. Subsequently, dimension reduction tech-

niques have been used, such as forward feature selection [11], singular value decompositions [12] and

Principal Component Analysis [13].

Yeung and colleagues developed Bayesian regression-based network inference methods by inte-

grating external data to yeast time series gene expression data [14, 15, 16, 17]. Specifically, they

developed a regression framework using Bayesian Model Averaging (BMA) to select predictive vari-

ables using time series gene expression in yeast. BMA methods sample each model in the ensemble to

improve the accuracy of inference. In addition, they also developed a supervised learning framework
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to integrate multiple data sources, including genome-wide binding data, additional gene expression

data, protein-protein interaction data and prior knowledge from the literature.

Given that the high-dimensional gene expression data typically consist of limited numbers of

experiments, it is difficult to identify the correct regulators for each gene in the large search space.

The expected number of regulators for each target gene is relatively small compared to the whole

gene set. To help the inference of gene regulatory networks, many types of external data have been

used. These external data include genome-wide binding data [18], genetic interactions data [19] and

protein-protein interaction data [20, 21].

Related Work

Time-series Gene Expression Data

Various types of data have been used to infer gene networks, including both time-series and static

gene expression data [22, 23]. Compared to static data, time-series data provide much additional

information from sequential time points. Using time-series gene expression data, dynamic Bayesian

networks considering gene expression levels from different time points allow self-loops [24, 25, 26,

27], which are not possible in Bayesian networks due to the directed acyclic graph assumption.

Although time-series gene expression data may provide useful information from which gene reg-

ulatory relationships can be derived, it can also introduce noise and redundant information which can

subsequently result in a reduction of accuracy. It is also difficult to determine the optimal number

of time points profiled in the experimental design and the intervals between consecutive time points,

especially after taking into account the balance of data informativeness and experiment efforts [28,

29]. Interpolation approaches using measured time points have been employed to solve the problem

when the number of time points are not sufficient to infer a gene network of high accuracy. Inter-

polation approaches not only makes the expression levels distributed more smoothly across the time

points, but also handle the estimation of time derivatives of each time point which can be utilized to

build ordinary differential equations (ODE) models [30, 29]. However, interpolation cannot help to

alleviate the curse of dimensionality of time-series data [31]. Due to the challenge of distinguishing

signal from noise in time-series gene expression data and the increased dimensionality, gene network

inference from time-series data is generally time and resource consuming.

Another limitation is that it is highly difficult to infer causality using time series gene expression

data alone without additional data sources. Causality in gene regulatory networks is of great biological

interest. In the context of gene networks, an inferred directed edge in the form of (A → B) means

the following: gene A is the parent or regulator of gene B, and that if the expression level of gene A

changes then we can expect the expression level of gene B will change as well. However, time-series

data only provide information on statistical causality. Methods have been developed to infer directed
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edges by leveraging additional data sources and expert knowledge [15] or using graphical models [32].

Nevertheless, these models are limited to the inference of statistical causality.

Perturbation Gene Expression Data

To derive directed gene regulatory networks, perturbation data such as over-expression and knock-

down data has been used in many proposed methods [33, 34, 6]. As static expression data without

any time points, perturbation data does not reflect any dynamic biological behavior over time but the

experimental design could be used to derive a causal relationship. Specifically, after gene A is per-

turbed (i.e. by either knockdown or over-expression), the expression level of gene B is observed to

change. Since the causal event (perturbation) is included in the experimental design, we can infer

a directed edge (A → B). Knockdown data has been widely used in the literature in gene network

inference. For example, Pinna et al. [35] showed the effectiveness of inferring gene networks using

genetic perturbation expression data followed by graph analyses when applied to synthetic data from

the DREAM4 in silico network challenge. Subsequently, Pinna et al. used non-linear ordinary dif-

ferential equations (ODE) to generate additional synthetic data to optimize input parameters. Other

methods applied to knockdown data include Bayesian networks [6, 36] and correlation-based Gaus-

sian noise models [37]. In addition to accounting for causality in the experimental design, processing

perturbation data is generally not too time or resource consuming.

However, the accuracy of gene network inference using knockdown data to some extent depends

on the assumption that all the knocked down genes are fully suppressed in the experiments, which

could potentially be difficult to accomplish in practice. The difficulties do not only come from the

limitations of experimental techniques, but also from the fact that many functional genes are not able

to be completely removed or knocked out, although this problem could be partially solved by partially

suppressing the target gene. Perturbation experiments also require advanced lab techniques and much

more resources compared to time-series and static gene expression data. Therefore, the existing data

sources generally contain relatively less knockdown data. For example, in the LINCS L1000 gene

expression data most of the knockdown experiments are generated using only 8 cell lines [38]. The

lack of data sources could limit the usage of perturbation type data.

Combined Data

Bonneau et al. proposed combining time-series and knockdown gene expression data in which a

regression model coupled with bi-clustering algorithms were developed and applied to infer gene

networks using data from the archaeon Halobacterium [39]. Other studies have combined static and

knockdown gene expression data using ordinary differential equation (ODE) based methods with or

without external knowledge integration [40, 41].
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Ordinary Differential Equations (ODE)

As mentioned before, many different models have been used for gene network inference including

ordinary differential equations (ODE) [8, 9]. By representing the model as linear or non-linear differ-

ential equations, the interaction of expression level measured from different genes could be described

by variables in the equations. Linear differential equations are generally more highly abstract in

terms of describing the gene interactions and could be handled by existing linear algebra methods.

Non-linear differential equations are able to describe complex behaviors with the trade-off between

computational cost and strict constraints [8, 42]. Differential equations could be employed to model

different types of data such as static gene expression data [43, 44] and time-series gene expression

data [13].

ODEs could suffer from the curse of dimensionality given a large set of candidate genes such

as human gene set. Dimension reduction techniques such as forward feature selection [11], singular

value decompositions [12] and principal component analysis [13] have been used in ODE approaches

to reduce dimensionality of genomic data.

Regression-based methods

Regression models are also widely used in gene network inference. The models could be built on lin-

ear differential equations [43] or other types of functions to select the variables using a regression ap-

proach. By formulating network inference as a variable selection problem, regression-based methods

could be solved using existing techniques but suffer from the curse of dimensionality. Commonly used

regression-based methods include regularization methods and Bayesian Model Averaging (BMA).

Regularization methods such as least absolute shrinkage and selection operator (LASSO) [45], least

angle regression (LARS) [46] and elastic net [47] have been employed to model different types of

data in gene network inference [48, 49, 50, 51]. Variations of BMA (Bayesian model averaging)

methods have been proposed to facilitate gene network inference. Examples include iBMA [52],

ScanBMA [16] and fastBMA [17] for analyzing high dimensional gene expression data.

Bayesian Networks

Another established gene network inference approach is Bayesian networks [26, 53, 7]. A Bayesian

network is a flexible framework that can be applied to both continuous and discrete types of data. It

allows the incorporation of prior knowledge [54]. Although only statistical causality can be inferred

by a Bayesian network, biological causality can be implied with constraints of prior knowledge or

expression levels [55, 24].

However, Bayesian network inference could be time consuming given a large set of variables since

it is a NP-complete problem [56, 57]. The computational complexity increases exponentially with the
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number of network nodes. A Bayesian network is a directed acyclic graph (DAG), hence it cannot

contain any feedback loops that are ubiquitous in real-life biological systems. As mentioned before,

this constraint could be removed with the application of Dynamic Bayesian networks to time-series

data.

Data Integration

Instead of using a single data source, many proposed methods have incorporated external knowledge

in the construction of Bayesian networks and other models. For example, Le et al. [58] and Geier et

al. [28] have applied Bayesian networks to synthetic data with prior knowledge. Imoto et al. [21] em-

ployed Bayesian networks on gene expression data with known regulatory interactions in yeast. Other

approaches of data integration in Bayesian networks include James et al. [59] using gene expres-

sion data in Escherichia coli with literature knowledge, Djebbari and Quackenbush [20] integrating

literature knowledge and protein-protein interaction (PPI), and Nariai et al. [60] integrating protein-

protein interactions and pathway data. Other external knowledge integration methods include linear

and non-linear differential equations [61, 62]. Data integration on human microarray data has also

been conducted [61]. Multiple source knowledge integration has also been shown to lead to positive

results in gene network inference [63, 64].

Integrating different sources of biological information can avoid the bias generated from a single

data source. However, external knowledge can also introduce additional noise. The overall impact of

data integration depends on the quality, assumptions and biases of the external knowledge.

Our Contributions

In this paper, we present an approach integrating external data sources with knockdown data from hu-

man cell lines for predictive regulatory network inference. Our methods build on the previous work by

Young and colleagues [65, 66] in which they developed a Bayesian regression framework to infer gene

networks from knockdown expression data. Our key contribution is the supervised learning frame-

work that integrates multiple data sources to derive the prior probabilities of regulatory relationships

in humans. Subsequently, we incorporate these prior probabilities in the Bayesian regression-based

approach to infer gene networks from knockdown data. Our results show improved accuracy of the

inferred gene networks. In addition, we extend Young et al. [65] by applying our methods to more

than one cell line (skin melanoma cell line A375 and lung cancer cell line A549).
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Methods

LINCS L1000 Gene Expression Data

The Library of Integrated Cellular Signatures (LINCS) http://lincsproject.org [38] is a Na-

tional Institutes of Health (NIH) funded program that aims to develop comprehensive signatures of

cellular states and related tools. Many types of large scale data were generated to profile changes

induced by genetic and drug perturbations across human cell lines. In particular, the LINCS L1000

data generated by the Broad Institute measure the gene expression levels across approximately 1,000

landmark genes. These landmark genes were chosen to capture approximately 80% of the informa-

tion for 20,000 genes in the human genome. The LINCS L1000 gene expression data are publicly

available from the Gene Expression Omnibus (GEO) database with accession number GSE70138

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70138.

The L1000 experiments were performed using Luminex Bead technology [67], generating high-

throughput gene-expression assays using 384-well plates. To measure the expression level of specific

genes, color-coded microspheres bind fluorophore and the corresponding RNA sequence. Therefore,

the expression level of each gene could be represented by the intensity of the fluorescence. For a pair

of genes, two types of beads sharing one bead color were designed to measure the expression of the

two different genes. In each perturbation experiment, about 35,000 to 50,000 beads across 500 bead

colors were added to each well to measure the expression levels of approximately 1000 landmark

genes.

The beads for each pair of genes were mixed in approximately 2:1 ratio. Therefore, two peaks

are expected in a histogram of fluorescence levels, and these observed peaks were deconvoluted to

assign expression values to the appropriate pair of genes. To reduce the noise from experimental

conditions, there are several wells used for control on each plate. In addition, technical replicate data

was generated in which the same perturbations were performed in the same wells across multiple

plates.

The L1000 gene expression data was generated and processed by the Broad Institute LINCS Cen-

ter for Transcriptomics as part of their Connectivity Map project [68]. L1000 gene expression data

is publicly available in different formats varying from levels 1 to 5 [69]. Level 1 represents the raw

unprocessed data from the Luminex Bead technology. In level 2, the gene expression values of the

landmark genes were deconvoluted from the observed fluorescence levels and normalized to a set of

internal standards. Subsequently, quantile normalization was performed on these landmark genes,

and interpolated to all 20,000 human genes in level 3. The level 4 and level 5 data consist of the gene

signatures comparing the perturbed experiments to the unperturbed experiments.

Young et al. [66] observed that the deconvolution step introduces artifacts in the data. There are
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three types of artifacts found and discussed in the expression data of two paired genes on the same

bead color. First, the two genes can be assigned the same expression value if their expression levels

are not different enough to be distinguished. Second, together with the quantile normalization step,

the deconvolution step can generate incorrect additional clusters. Finally, sometimes the paired two

genes can be assigned flipped expression values, which means gene A is assigned the expression value

of gene B and vice versa. A correction which can be applied to the data to eliminate some effects of

these artifacts will be discussed in a later section.

As a large-scale genomics data resource, LINCS L1000 data provides a rich set of human gene

expression information. Specifically, we used the knockdown experiments data in this paper. There

are approximately 4500 knockdown experiments in L1000 dataset. Most of these data were generated

using 8 cell lines: A375, A549, HA1E, HCC515, HEPG2, HT29, MCF7 and PC3. Data from these

knockdown experiments is usually collected 96 hours after the perturbation [38].

Method Outline

We integrate external data sources in gene network inference with human genetic perturbation data

from the LINCS L1000 project. We show that the accuracy of our inferred networks is improved by

external data integration and MCDC (model-based clustering with data correction). Details of the

data integration and MCDC are described in the Methods section. Figure 1 shows an overview of our

approach.

Our inferred gene networks consist of directed edges in that we aim to infer causal relationship

between gene pairs. This feature of our gene network does not come from the Bayesian regression-

based approach but the gene knockdown experimental design. With this biological context, we assume

that the observed changes in gene expression level originate from the knocked down gene.

BayesKnockdown

We use the BayesKnockdown Bioconductor package [70] to calculate posterior probabilities of reg-

ulatory relationships. In [65], this BayesKnockdown package was applied to L1000 gene expression

data from a single cell line (A375). Here we extend Young et al. [65] by integrating additional data

sources and by applying the package to an additional cell line (A549).

To prepare the input data for the BayesKnockdown package, the LINCS L1000 knockdown ex-

periments are first transformed by calculating z-scores to account for bias and noise among replicates:

x∗hi =
xhi − x̄hp

shp
,

where xhi represents the gene expression level of gene h and experiment (well) i on plate p, x̄hp and

shp are, respectively, the mean and standard deviation for gene h across all control experiments on
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Figure 1: An overview of the approach. We first build a supervised framework for a selected set of
target-gene regulatory pairs using external knowledge derived from the literature and existing datasets.
Then, we apply machine learning methods to predict the regulatory relationships across all target-
gene regulatory pairs for the landmark genes in the LINCS L1000 project. The predicted regulatory
relationships are used as the prior probabilities in our Bayesian approach to predict the posterior
probabilities.

plate p. A linear regression model is then applied to model the change in a target gene t as dependent

on the change in the knockdown gene h, with εi
iid
∼ N(0, σ2

ε) as the error term:

x∗ti = β0 + β1x∗hi + εi, i = 1, ..., nh.

In the BayesKnockdown package [65], the linear regression model is estimated with a Bayesian

approach using Zellner’s g-prior [71] for the model parameters. The parameter g specifies the ex-

pected size of the regression coefficient β1. The value of g can be estimated using the Expectation-

Maximization algorithm [72, 16]. Then the regression model with g-prior is used to calculate the

probability Pr(h → t|x) that gene h regulates gene t given the data x, versus the probability Pr0 that

there is no regulatory relationship:

Tht ≡
Pr(h→ t|x)

Pr0
=

πht

1 − πht
exp[(nh − 2) log

(
1 + g

(
1 − R2

))
/2].

In the absence of external data sources, the prior probability of regulation πht is set to 0.0005 for

all the gene pairs in Young et al. [65]. The value of 0.0005 is derived from prior knowledge for yeast

data, reflecting the expected number of regulators per gene [73]. The coefficient of determination R2

for the simple linear regression is calculated from the correlation of the expression data of gene h and

gene t. Then we have

pht =
Pr(h→ t|x)

Pr(h→ t|x) + Pr0
=

Tht

1 + Tht
,
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the posterior probability of the regulatory relationship between a given gene pair.

Data integration using supervised machine learning

We download transcription factor and target gene pairs (TF-G pairs) from the PAZAR database, a pub-

lic resource for transcription factor and regulatory sequence annotation [74, 75, 76]. Subsequently, we

map the target genes from Ensemble IDs to Entrez IDs using Biomart [77]. After the data processing,

we keep the TF-gene pairs for which both the TFs and target genes are in the L1000 landmark genes.

This results in a total of 232 TF-gene pairs that we label as positive training samples (Y=1) in our su-

pervised framework. Due to a lack of documentation on non-regulatory TF-gene pairs, we randomly

generate 240 negative training samples of TF-gene pairs (Y=0) that are not documented in PAZAR.

After collecting the positive and negative training samples of TF-gene pairs, we derive the train-

ing data using external data sources to generate attributes in the supervised framework as described

below. Table 1 summarizes the different types of attributes defined using external data sources in our

supervised learning framework.

• Gene expression data across human cell lines. For each TF-gene pair, we compute the Pear-

son’s correlation between TF and gene across 917 human cell lines from the Cancer Cell Line

Encyclopedia (CCLE) [78]. The CCLE data is publicly available from https://portals.

broadinstitute.org/ccle/home and from GEO with accession number GSE36133. As

another attribute (or variable) in the training data, we also compute the Pearson’s correlation

between TF and gene across 675 commonly used human cell lines in the RNAseq data gener-

ated by Klijn et al. [79]. The Klijn et al. data is publicly available from ArrayExpress with

accession number E-MTAB-2706 http://www.ebi.ac.uk/arrayexpress/experiments/

E-MTAB-2706/.

• Gene ontology (GO). Gene Ontology (GO) defines a controlled vocabulary and descriptions of

gene products across biological systems [80, 81]. Genes assigned to the same ontology terms

are expected to share common functionalities. Intuitively, we expect regulatory TF-gene pairs

to share common GO terms. Since GO terms are hierarchical in nature, we filter out large

and hence, less informative GO terms. The upper boundary is set to 100. We define a binary

attribute in our supervised framework: if a given TF-gene pair are both assigned to the same

GO term, we define the binary variable to be 1, otherwise 0.

• Genome-wide binding data. We also use genome-wide binding data (ChIP-chip, ChIP-seq)

from ENCODE [82]. The chromatin immunoprecipitation (ChIP) technology could be used to

detect binding between proteins and DNA in vivo. Since transcriptional regulation is typically

preceded by binding, we define a binary attribute for a (TF, gene) pair to be 1 if TF binds gene,
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and 0 otherwise. We derive these binary variables by parsing the processed ChIP data from the

ENRICHR website [83].

• Pathways data. We hypothesize that a regulatory (TF, gene) pair is more likely to be as-

signed to the same biochemical pathways. Therefore, we define a binary variable for each

of WikiPathways [84], KEGG [85], BioCarta [86] and Reactome [87, 88]. If TF and gene

appear in the same pathway, we define the binary variable to be 1, otherwise 0. We derive

these binary variables by parsing the processed library data from the ENRICHR website [83]

http://amp.pharm.mssm.edu/Enrichr/.

Table 1: This table summarizes the attributes in the supervised learning framework. Different ver-
sions of the same data sources with different dates (years) are considered independently. For each
transcription factor gene (TF-G) pair, we have an outcome (response) value derived from the PAZAR
database. For each external knowledge source, we have an attribute storing the value derived from the
data source. For CCLE expression data and RNA-seq data, we calculate the correlation between the
data of the paired two genes. For pathways, ChIP and Go data, we assign a binary value of 1 if the
two genes appear to participate in the same biological process, otherwise a negative binary value.

Some attributes in our original supervised learning framework have very similar values, which

decreases the informativeness of the attributes. We iteratively remove one attribute at a time and

apply logistic regression to filter down to 14 attributes in our final supervised learning framework.

After finalizing the training data used in the supervised learning framework, we perform 10-fold CV
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using different machine learning methods on our supervised framework. Table 2 summarizes the

results. Logistic regression yield the highest AUROC (0.76) in our cross validation studies and is used

to compute prior probabilities of regulatory relationships in next steps.

Model Average AUROC Assessment Value
Logistic Regression 0.762 probability

SVM 0.728 probability
5-nn 0.709 probability

Ada Boost 0.669 binary
Random Forest 0.501 binary

Table 2: This table shows the average AUROC of different machine learning models in 10 rounds of
10-fold cross validation. Models include logistic regression, SVM [89], 5-nn [90], Ada boost [91] and
random forest [92]. In terms of AUROC, logistic regression and SVM are the best two models for our
data.

Sampling bias correction

After obtaining priors, we correct for sampling bias in the prior as previously reported in Lo et al. [15].

Specifically, we add an offset of log(π1/π0) to the log odds in our logistic regression model. Here π1

and π0 are the sampling rates for positive and negative cases respectively in the training data. We use

the prior knowledge from Lo et al. that the average number of regulators for each gene is about 2.76.

Knowing there are approximately 20000 human genes, we then compute π1 = 232/(20000 × 2.76),

π0 = 240/(20000 × (20000 − 2.76)) and π1/π0 = 7003.864 from our 232 positive instances and 240

negative instances in the supervised framework. Figure 2 shows the histograms before and after the

correction in cell line A375. Figure 3 shows the histograms in cell line A549. Threshold probability

values are set to 0.5.

The intuition behind this correction is that our supervised training data consists of approximately

the same proportion of positive and negative training samples (TF-G pairs). However, the positive

cases are expected to be rare in real situations. Therefore we perform this correction to better match

the biological relationships between genes in practice.

MCDC

MCDC (Model-Based Clustering with Data Correction) is a method intended to remove artifacts in

gene expression data [66]. The gene expression data was originally paired by bead color when the

LINCS data was generated. In the deconvolution step during the processing, sometimes additional

noisy clusters can be generated and the expression values of the paired genes can be reversed. MCDC

corrects this using model-based clustering.

12

.CC-BY-NC 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/158394doi: bioRxiv preprint 

https://doi.org/10.1101/158394
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2: The histograms of the expected number of regulators per target gene predicted using knock-
down data in cell line A375. The prior adjustment is performed only in the supervised learning step.
Then the regulators are predicted using the prior probabilities combined with the L1000 knockdown
data. The threshold probability value is 0.5. A) shows the histogram of the expected number of regu-
lators per target gene without adjustment to the prior. B) shows the histogram of the expected number
of regulators per target gene with adjustment to the prior.

Model-based clustering [93, 94, 95, 96] assumes that the data come from a distribution consisting

of a mixture of multiple components. Each of these components can be modeled by a Gaussian distri-

bution with parameters which can be estimated using an EM (Expectation-Maximization) algorithm.

MCDC extends model-based clustering to detect flipped points in the gene expression data.

Instead of the original data, MCDC uses a transformation matrix to determine whether each data

point should be corrected. Clustering is then done with both the original and transformed data, result-

ing in a probability of transformation for each data point. This method thus could be used to identify

flipped data points. Furthermore, to eliminate the effect of noisy clusters generated from expression

level estimating process, the expression levels of the paired genes are estimated as the mean of the

largest cluster after selecting the best model in MCDC.

MCDC runs with the number of clusters ranging from 1 to some maximum number. Here, the

maximum number is set to 9. The best number of clusters and the best model are then selected using

the BIC (Bayesian information criterion ) values [96].

Our work applies MCDC to the untreated data in cell line A375 and A549. The untreated data is
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Figure 3: The histograms of the expected number of regulators per target gene predicted using knock-
down data in cell line A549. The prior adjustment is performed only in the supervised learning step.
Then the regulators are predicted using the priors combined with knockdown data. Threshold prob-
ability value is 0.5. A) shows the histogram of the expected number of regulators per target gene
without adjustment to the prior. B) shows the histogram of the expected number of regulators per
target gene with adjustment to the prior.

then used as the control to the knockdown data.

Assessment

The high-quality transcription factor binding profile (JASPAR) database [97] provides experimentally

defined transcription factor (TF) DNA-binding sites for eukaryotes. We use the TF-gene targeting

relationships in this data to assess the resulting gene networks. We use Fisher’s exact test to calculate

the p-values of contingency table.

A Pearson’s chi-square test is applied to a 2 x 2 contingency table to assess the consistency of our

constructed network with the known regulatory relationships. Table 3 shows an example contingency

table with the definitions of TP, FP, TN and FN. Precision is defined as T P/(T P + FP).

To assess our result, we use TRANSFAC and JASPAR [97] lists of edges as our reference standard.

The TRANSFAC and JASPAR (T&J) edgelist contains approximately 4200 edges for 37 transcription

factors that overlaps LINCS landmark genes. This is the same gold standard which was used in Young

et al. [65, 66]. Although the T&J edgelist is limited to transcription factors that are previously well-
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Table 3: Definition of contingency.

studied, it is difficult to find a comprehensive standard for gene network assessment in mammalian

systems at current stage.

Results and Discussion

Results:NIH LINCS Data A375

We evaluate the performance of our proposed method by comparing our inferred networks to the

T&J dataset using contingency tables. Table 4 shows the assessment. We used two cutoff posterior

probability values, 0.5 and 0.95, as thresholds for positive edges. The two tables in the first row are

computed using knockdown data only. The two tables in the second row correspond to the network

inferred using knockdown data and our external knowledge integration. The two tables in the last row

show the assessment results of the network inferred from knockdown data using untreated data with

MCDC correction as control, as well as external knowledge integration.

We observe that both MCDC and integrating prior knowledge improve both the p-value from the

Fisher’s exact test and the precision. By applying both MCDC and external knowledge integration,

the p-values were improved from around 0.01 to around 0.001. Also, the precision increased from

0.14 to 0.17 at 0.5 cutoff, and 0.2 to 0.3 at 0.95 cutoff.

Next, we compare our inferred edges to the T&J dataset by ranked lists. The assessment results

are shown in Table 5. We first identify all the edges in the intersection of our predicted edges and T&J

edges. Then we rank these found edges by posterior probabilities from our prediction in descending

order. Finally, we rank all our predicted edges by posterior probabilities in descending order. For each

edge also in T&J dataset, we note down the corresponding ranking in our edgelist for the same edge.

With the edge ranks we not only assess our inferred networks by the found edges, but also involved

the values of posterior probabilities.

As an example, for the first column “Knockdown Data”, the sixth edge in our edgelist is the first

edge found in T&J in Table 5. This number means that the top 5 edges in our edgelist are not found in

T&J. These ranked lists can help us to determine the differences between T&J and our own edgelist.
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Table 4: Assessment results comparing our inferred networks to TRANSFAC and JASPAR. The con-
tingency tables display the comparison results for cell line A375 before and after external knowledge
integration at 0.5 and 0.95 cutoffs. MCDC correction and external knowledge integration helps im-
proving both the p-value and precision.

We can see that the external knowledge integration improves the results of middle-ranked edges. As

another example, In the third column that corresponds to the network inferred using both the L1000

knockdown data and external knowledge integration, we can see that the 25th found edge is ranked

127th in our edgelist. In the first column, from knockdown data only, the 25th found edge is ranked

135th in our edgelist. The larger difference in rankings indicates a larger difference between our

prediction and T&J dataset.

Figure 4 shows precision-recall curves under different combinations of data and prior. After exter-

nal knowledge integration, the area under the curve has been improved. Furthermore, with the MCDC
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Table 5: Comparison of the rank of the first 25 edges found and match the TRANSFAC and JASPAR
edgelist in cell line A375. Edges are ranked by posterior probability. The numbers represent the
rankings of true positive edges (i.e. edges found both in our gene network and T&J edgelist) among
positive edges (i.e. edges found in our network). The table shows the external knowledge integration
helps improving results of middle-ranked edges, which makes the result more steady.

correction to the untreated data the area under the curve has been further improved.

Our gene network inferred from A375 gene expression data is shown in the form of a directed

graph in two figures. We used A375 knockdown data and MCDC-corrected untreated data, then

integrated priors from our supervised framework to infer this gene network. Figure 5 shows all the

inferred edges at a cutoff of 0.5. Figure 6 shows all the true positive edges found in TRANSFAC and

JASPAR database at a cutoff of 0.5. Some of our inferred edges are also found in literature such as

CREB1 → JUN [98, 99, 100]. Compared to another cell line we worked on, A375 cell line has less

noise and therefore constructs a more reliable gene network.
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Figure 4: Precision-recall curves for cell line A375 using different data assessed with TRANSFAC
and JASPAR. The results are improved by external knowledge integration with or without MCDC
correction.
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Figure 5: Inferred directed edges at a posterior probability cutoff of 0.5 from the gene network gen-
erated by integrating the supervised framework with the knockdown data and MCDC-corrected un-
treated data. Each node represents a gene and each edge represents a regulatory interaction between
the two genes. The width of each edge is in proportion to the inferred posterior probability that the
regulatory relationship exists for the corresponding gene pair.

Results: Lung Cancer A549

We apply our proposed methods and assessment criteria to another cell line A549. Table 6 shows

the contingency table comparing T&J and our result. The two thresholds for positive edges are again

set to 0.5 and 0.95. Similar to the results on cell line A375, we observe that the MCDC correction

and integrated prior knowledge also improve the p-value and precision in A549, although the effect

applying MCDC is not as significant as in A375. By applying both the MCDC correction and exter-
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Figure 6: True positive edges at a posterior probability cutoff of 0.5 from the gene network generated
by integrating the supervised framework with the knockdown data and MCDC-corrected untreated
data. These true positive edges represent the edges from Figure 5 that are also found in our assessment
criteria. Each node represents a gene and each edge represents a regulatory interaction between the
two genes. The width of each edge is in proportion to the inferred posterior probability that the
regulatory relationship exists for the corresponding gene pair.

nal knowledge integration, the p-values were improved from 0.001 level to 0.0001 level. Also, the

precision increased from 0.13 to 0.15 at 0.5 cutoff, and 0.14 to 0.15 at 0.95 cutoff.

The assessment results of edge ranks are shown in Table 7. As in A375, external knowledge

integration and MCDC correction improve the results of middle-ranked edges. Figure 7 shows the

precision-recall curves for the A549 cell line. After external knowledge integration, the area under
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Table 6: Assessment results comparing our inferred networks to TRANSFAC and JASPAR. The con-
tingency tables display the comparison results for cell line A549 before and after external knowledge
integration at 0.5 and 0.95 cutoffs. P-values have been improved by external knowledge integration at
both cutoffs.

the curve has been improved. The MCDC correction to the untreated data has not further improved

the result significantly, which is different from A375.

Conclusions

In this paper, we present an approach that integrates external data sources with knockdown data from

human cell lines for gene network inference. Our key contribution is to present a supervised learning

framework to systematically integrate multiple data sources, and we demonstrate the flexibility of

our Bayesian regression framework to integrate multiple data sources. Furthermore, the Bayesian

approach we used to estimate our linear regression model is highly computationally efficient. Our
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Figure 7: Precision-recall curves for cell line A549 using different data assessed with TRANSFAC
and JASPAR. The results are improved by external knowledge integration with or without MCDC
correction.
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Table 7: Comparison of the rank of the first 25 edges found and match the TRANSFAC and JASPAR
edgelist in cell line A549. Edges are ranked by posterior probability. The numbers represent the
rankings of true positive edges (i.e. edges found both in our gene network and T&J edgelist) among
positive edges (i.e. edges found in our network). The table shows the external knowledge integration
helps improving results of middle-ranked edges, which makes the result more steady.

ultimate aim is causal inference, and some basis for this is provided by the experimental design of

the knockdown data. In addition, we extend Young et al. [65] by applying our methods to more than

one cell line (skin melanoma cell line A375 and lung cancer cell line A549). Note that the supervised

learning step is universal for all cell lines. When we apply our methods to additional cell lines, we

only need to repeat the regression step.

We show that the accuracy of the inferred gene networks is improved with the help of prior knowl-

edge integration and MCDC. One point notable from our results is that the improvement in perfor-

mance varies from cell line to cell line. Studying the different response to the data integration and

MCDC of different cell lines remains a meaningful future direction.
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