
Paradox resolved: stop signal race model with
negative dependence
Hans Coloniusa,c,1 and Adele Diederichb,1,2

aOldenburg University; bJacobs University Bremen

This manuscript was compiled on February 18, 2018

The ability to inhibit our responses voluntarily is an important case of cognitive control. The stop-signal paradigm is a popular tool to study
response inhibition. Participants perform a response time task (go task ) and, occasionally, the go stimulus is followed by a stop signal after
a variable delay, indicating subjects to withhold their response (stop task ). The main interest of modeling is in estimating the unobservable
stop-signal processing time, that is, the covert latency of the stopping process as a characterization of the response inhibition mechanism.
In the independent race model the stop-signal task is represented as a race between stochastically independent go and stop processes.
Without making any specific distributional assumptions about the processing times, the model allows to estimate the mean time to cancel
a response. However, neurophysiological studies on countermanding saccadic eye movements have shown that neural correlates of go
and stop processes consist of networks of mutually interacting gaze-shifting and gaze-holding neurons. This poses a major challenge in
formulating linking propositions between the behavioral and neural findings. Here we propose a dependent race model that postulates perfect
negative stochastic dependence between go and stop activations. The model is consistent with the concept of interacting processes while
retaining the simplicity and elegance of the distribution-free independent race model. For mean data, the dependent model’s predictions
remain identical to those of the independent model. The resolution of this apparent paradox advances the understanding of mechanisms of
response inhibition and paves the way for modeling more complex situations.

response inhibition | stop signal paradigm | independent race model | perfect negative dependence

A recurrent theme in cognitive modeling is the difficulty to uniquely identify the processes underlying the generation of
response times and probabilities in behavioral paradigms like simple yes-no tasks or same-different judgments of stimulus

pairs. A prime example is the serial vs. parallel processing issue (1–3) showing that even rigorous mathematical analyses
of the underlying assumptions may not always resolve the difficulty completely. Recently, efforts in model-based cognitive
neuroscience to constrain behavioral models by findings obtained from neuroscientific methods have intensified, from spike train
analyses to EEG and fMRI recordings (4). One area where important advances have emerged from this joint endeavor is the
modeling of cognitive control and, in particular, response inhibition (5, 6). Response inhibition refers to the ability to suppress
responses that are no longer required or have become inappropriate; it is important for survival, such as stopping yourself from
crossing the street when a car comes around the corner without noticing you. Deficits of response inhibition have been linked
to several disorders like attention-deficit/hyperactivity, obsessive-compulsive behavior and substance abuse. Probing response
inhibition has been used widely to study executive control and flexibility in behavior; for reviews, see (6–9) and a recent theme
issue of Philosophical Transactions of the Royal Society B (2017) on ‘Movement suppression: brain mechanisms for stopping
and stillness’ (10)

In the laboratory, a very useful tool for the study of inhibition is the stop-signal paradigm where participants perform a
response time task (go task), such as moving their gaze to the location of a pre-defined target. Occasionally, the go stimulus is
followed by a stop signal after a variable time delay, indicating subjects to withhold the response (stop task). Performance
in the stop-signal paradigm has been modeled as a race between a “go process”, triggered by the presentation of the go
stimulus, and a “stop process” triggered by the presentation of the stop signal (6, 8). When the stop process finishes before
the go process, the response is inhibited; otherwise, it is executed. The main interest of the modeler is in estimating the
unobservable stop-signal reaction time (SSRT), that is, the latency of the stopping process as a characterization of the response
inhibition mechanism. In the independent race model (IND model, for short) the stop-signal task is represented as a race
between stochastically independent go and stop processes (11). Under certain simplifying assumptions, mean SSRT can be
estimated efficiently without making any specific assumptions about the distribution of the processing times (6). In several
hundreds of studies, the IND model has been applied in virtually every stop-signal experiment providing important measures of
cognitive control like SSRT. Although the model makes no commitment to the underlying computational or neural processes
that generate the go and stop processing times, the IND model is considered as defining constraints that any model of response
inhibition must follow (12).

However, neurophysiological studies in the frontal eye fields (FEF) and superior colliculus (SC) of macaque monkeys
performing a countermanding task with saccadic eye movements have shown that the neural correlates of go and stop processes
produce eye movement behavior through a network of interacting gaze-shifting and gaze-holding neurons (13–16). This
discrepancy between the behavioral and neural data is widely perceived as a paradox (9, 12, 17, 18): how can interacting
circuits of mutually inhibitory neurons instantiate stop and go processes with stochastically independent finishing times?

Here we propose a variant of the race model which, instead of independence, assumes perfect negative stochastic dependence
between go and stop processes (PND model, for short). It resolves the apparent paradox and nonetheless retains the distribution-
free property of the independent race model. Moreover, the PND model’s predictions, considered at the level of mean SSRT,
are shown to be necessarily identical to those of the independent model. Notably, we argue that it is very difficult to empirically
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distinguish between the two race model versions without introducing further, parametric assumptions. Thus, there is no reason
to uphold the stochastic independence assumption of the race model whenever a distribution-free version is to be considered.

Neurally inspired modeling

Investigating the neural underpinnings of response inhibition in saccades, Hanes and Schall (13) first showed that macaque
monkey behavior in saccade countermanding corresponded in detail to that of human performance in manual stop-signal tasks.
Then, recording from the frontal eye fields they isolated neurons involved in gaze-shifting and gaze-holding that represent
a larger circuit of such neurons that extends from cortex through basal ganglia and superior colliculus to brainstem (14).
Importantly, that result was based on their postulate that for neurons to participate in controlling movement initiation two
criteria must be met: first, neurons must discharge differently when movements are initiated or withheld; if neurons still
discharge when movements are canceled, their activity was not affected by the stop process. Second, the differential modulation
on canceled trials must occur before SSRT; otherwise, the neural modulation happens after the movement has already been
canceled (18, p.1012). From these findings, Boucher and colleagues (17) developed an interactive race model linking the
interacting circuits of mutually inhibitory gaze-holding and gaze-shifting neurons with stochastic accumulation in the go and
stop processes of the race model (see also 19). A response is observed only if the go process reaches a certain threshold of
activation. Stopping occurs if the stop process interferes with the go process by inhibiting activation in the go accumulator to
prevent it from reaching the threshold. Alternative models assume that response inhibition results from blocking the input to
the go unit (“blocked-input models”) (20) or postulate a spiking neural network of hundreds of units representing populations
of movement neurons, fixation neurons and inhibitory interneurons, and a control unit that turns the fixation neurons on and
off (21).

These neural models are computationally explicit: they are based on systems of stochastic differential equations; estimating
parameters to best fit the behavioral data, they are able to predict the distribution of cancel times, i.e., the times at which
neural activity modulates on trials on which subjects stop successfully, relative to SSRT (12). The models fit the behavioral
data just as well as the independent race model. Note that this is just another instantiation of the paradox. An attempt to
resolve the contradiction between stochastic independence for behavioral data and interdependence at the neural level has been
to postulate that the stop process is independent of the go process for much of its duration, followed by a late and potent
interaction between stopping and going that reverses the trajectory of go activation (12, 17). Strictly speaking, this would
require introducing two subsequent processing stages in the IND model, independence followed by strong interaction. No
formal modeling of this extension has been undertaken, however, to the best of our knowledge.

Background: General race model

Next, we present a formal framework for the general race model making no assumption at all about the dependency between
stop and go processes. One should distinguish between two different experimental conditions termed context GO where only a
go signal is presented, and context ST OP where a stop signal is presented in addition. A race between processes triggered by
the go and stop signal is represented by two random variables: Tgo and Tstop (referred to as SSRT above) denote the random
processing times for the go and stop signal, respectively, in context ST OP with a bivariate distribution function denoted H,

H(s, t) = Pr[Tgo ≤ s, Tstop ≤ t], [1]

defined for all real numbers s and t, with s, t ≥ 0. The marginal distributions of H(s, t) are

Fgo(s) = Pr[Tgo ≤ s, Tstop <∞] and
Fstop(t) = Pr[Tgo <∞, Tstop ≤ t].

In context ST OP the go signal triggers a realization of random variable Tgo and the stop signal triggers a realization of random
variable Tstop. In context GO, however, only processing of the go signal occurs. In general, the latter one may be different from
the marginal distribution Fgo(s) in context ST OP. However, the general race model rules this out by adding the important
assumption of “context invariance”, also know as “context independence” (e.g. 9):
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Context invariance (CI). In context GO, the distribution of go signal processing time is assumed to be

Fgo(s) = Pr[Tgo ≤ s, Tstop <∞], [2]

i.e., it is identical to the marginal distribution Fgo(s) in context ST OP.
From these assumptions, the probability of observing a response to the go signal, given a stop signal is presented with delay

td [ms] (td ≥ 0) after the go signal, is defined by

pr(td) = Pr[Tgo < Tstop + td]. [3]

According to the model, the probability of observing a response to the go signal no later than time t, given the stop signal was
presented with delay td, is given by (conditional) distribution function

Fsr(t | td) = Pr[Tgo ≤ t |Tgo < Tstop + td], [4]

known as signal-response RT distribution.
The main interest in race modeling is to obtain information about the distribution of the unobservable stop signal processing

time Tstop, or about some of its parameters, given sample estimates of Fgo(t), Fsr(t | td), and pr(td). As observed in (11),
letting stop signal delay td vary, the inhibition function pr(td) can be formally considered as the distribution function of a
random variable, Td ≡ Tgo − Tstop, say. Then,

E[Td] = E[Tgo]− E[Tstop], [5]

with E[ ] denoting expected value (mean) of a random variable. Solving for the estimate of E[Tstop] immediately yields an
estimate of the mean of the unobservable distribution of Tstop. It is well known that the reliability of this estimation method,
known as the mean method, depends on how precise the inhibition function pr(td) and the mean of Tgo are estimated (6, 9).
Obtaining estimates of higher moments, or the entire distribution of Tstop, requires further non-parametric assumptions about
the bivariate distribution H(s, t).

Independent vs. negatively dependent race model

The most common version of the race model, as introduced by Logan & Cowan (11), postulates stochastic independence
between Tgo and Tstop:

Stochastic independence:
H(s, t) = Pr[Tgo ≤ s]× Pr[Tstop ≤ t] = Fgo(s)× Fstop(t),

for all s, t (s, t ≥ 0).
In addition to estimating the mean via Equation [5], an estimate of the variance of stop signal processing time is obtainable

in the IND model from
Var[Tstop] = Var[Td]−Var[Tgo], [6]

due to assuming stochastic independence. Finally, it can be shown that the unobservable stop signal distribution function
Fstop(t) is expressible as a function of the observables pr(td), fgo(t) and Fsr(t | td) (see Methods section).

In order to resolve the paradox described above, a race model with negative dependency between go and stop signal
processing times is proposed next. We define a bivariate distribution function for Tgo and Tstop exhibiting perfect negative
dependence (see, e.g., 22) as follows :

Perfect negative stochastic dependence:
H−(s, t) = max{Fgo(s) + Fstop(t)− 1, 0}. [7]

for all s, t (s, t ≥ 0). The marginal distributions of H−(s, t) are the same as before, that is, Fgo(s) and Fstop(t). Note that this
perfect negative stochastic dependence (PND) model is parameter-free just like the IND race model, that is, we do not assume
some specific parametric distribution. It can be shown (see Methods) that then

Fstop(Tstop) = 1− Fgo(Tgo) [8]

holds “almost surely”, that is, with probability 1. Thus, for any Fgo percentile we immediately obtain the corresponding Fstop

percentile as complementary probability and vice versa, expressing perfect negative dependence between Tgo and Tstop. The
relation in Equation [8] is also interpretable as “Tstop is (almost surely) a decreasing function of Tgo”.

The PND model arguably constitutes the most direct implementation of the notion of “mutual inhibition” observed in
neural data: any increase of inhibitory activity (speed-up of Tstop) elicits a corresponding decrease in “go” activity (slow-down
of Tgo) and vice versa.

Predictions from the PND race model. We list some predictions from the PND race model (for further details, see Methods
section):

Probability of stopping. Under perfect negative dependence between Tgo and Tstop, the probability of stopping pr(td) is an
increasing function of td, as it should.
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Signal-response RT distribution. Signal-response RT distribution

Fsr(t | td) = Pr[Tgo ≤ t |Tgo < Tstop + td], [4]

approaches the go signal distribution Fgo(t) with increasing stop signal delay td. Moreover, for varying values of td, Fsr(t | td)
exhibits the “fan effect” typically found in empirical data and also predicted by the IND race model (6, 11).

To illustrate, Figure 1 presents the go signal distribution and signal-response RT distributions with different delay values td
for both the IND (dashed curves) and the PND race model (solid lines) assuming exponential distributions for Tgo and Tstop.
While the exponential distribution lacks empirical support, it was chosen here just to illustrate quantitative differences between
the model versions.

An important feature of the PND model is suggested by Figure 1: each signal-response distribution Fsr(t | td) crosses 1 at
a certain finite point t. It is shown below that this point is predictable from the observables pr(td) and Fgo(t). While this
“crossing” property is not shared by the IND model (because the “coupling” of Tgo and Tstop as expressed in Equation (8) is
absent), the strength of this test will of course depend on the precision of estimates of Fsr(t | td).

Estimating moments of the Tstop distribution. Given that the marginal distributions Fgo and Fstop are the same under both
models, any estimates for E[Tstop] based on the mean method (Eq. [5]) are necessarily identical for the IND and PND model.

However, for the variance we obtain

Var[Tstop] = Var[Td]−Var[Tgo] + 2Cov[Tgo, Tstop]. [9]

As the covariance in the above equation is unknown, an estimate for the stop signal variance is no longer available under the
PND model. Nevertheless, given that Cov[Tgo, Tstop] is the most extreme negative covariance under any bivariate distribution
for Tgo and Tstop (23), the PND model stop signal variance can never be larger than the one under independence.

Discussion

Testing IND vs. PND race models. Because stop signal processing times are not observable, empirical testing of non-parametric
stop signal race models is severely limited in general. In particular, both the IND and PND version of the race model can only
be tested in conjunction with context invariance (CI). Presuming CI is valid, the following predictions can be tested: (1) mean
signal-response RT should be faster than mean go signal RT; (2) mean signal-response RT should increase with stop signal
delay td; and (3) both these tests are implied by the “fan” structure of the distribution functions permitting an additional
qualitative test of IND and PND race models. Because data not consistent with this “fan” structure would be evidence against
both the IND and PND model, obviously, none of these tests would allow us to distinguish between IND and PND.

By construction, the PND model has the same distribution for stop signal processing as the IND model; therefore, estimates
for mean SSRT, i.e., the expected value of stop signal processing, will be identical for either model as long as estimates are
based on the mean method. In a sense, this is good news because it implies that adopting perfect negative dependency between
go and stop signal processing does not invalidate previous SSRT estimates of all empirical studies employing the mean method.
Note that this holds as well for estimating SSRT via the integration method, another way to estimate SSRT. However, because
the integration method presumes stop signal processing time to be constant, the distinction between IND and PND model
becomes meaningless.

This leaves us with the shape of the family of signal-response distributions, that is, Fsr(t | td) for varying values of td, as the
only potential means of distinguishing between the two models. Whether or not this “crossing” test that -as outlined above-
consists of checking the way in which the signal-response distributions approach their upper bound of 1, proves to be as visible
in real data compared to the exponential toy example (Figure 1) will depend on the specific, but unobservable, stop signal
distribution.

Conclusion. Several authors have stressed that the level of description provided by the race model is quite different from that
of neural models (17, 20): the independent race model is mute about the possible underlying mechanisms of response inhibition,
and its primary purpose is to provide a measure of stop signal processing time, which the model allows without having to
assume a specific distribution or estimate parameters. Nevertheless, it has been claimed that the independent race model
“captures the essence of computation and ...that it formulates the constraints that any model of response inhibition must follow”
(cf. 20, p.3). The race model with perfect negative dependence suggested here operates at the same level of generality and
yields the same measure of (mean) stop signal processing time but, importantly, resolves the paradox the independent model is
facing due to the neurophysiological findings. We conclude that the race model with perfect negative stochastic dependence is
a natural way to unify the observation of interacting circuits of mutually inhibitory gaze-holding and gaze-shifting neurons
with data on the behavioral level.

Beyond the simple stop signal task, several other forms of acts of control have been studied that pose an even greater
challenge for efforts to identify the underlying cognitive processes, such as switching tasks or shifting of attention (5). One
promising area is selective stopping where response inhibition is required for some stimuli (e.g. red light) but not others (green
light) (e.g., 24). Representing cognitive processes for such more complex tasks may call for types of graded, instead of perfect,
dependency. Appropriate race models can easily be introduced by appealing to more general forms of stochastic dependency
via copulas (22).
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Methods

This section presents some computational details for both the IND and PND model, in general and for the special case of
exponential distributions (for producing Figure 1).

We assume that distribution functions Fgo and Fstop possess densities, fgo and fstop, and are increasing, where “increasing”
always refers to “strictly increasing” here. Note that although it is usually taken for granted in the race model that densities
exist, strictly speaking, this is not required neither by the independent nor the dependent race model.

Independent race model. Under stochastic independence of Tgo and Tstop,

pr(td) = Pr[Tgo < Tstop + td]

=
∫ ∞

0
fgo(t)[1− Fstop(t− td)] dt. [10]

Moreover,
Var[Td] = Var[Tstop] + Var[Tgo], [11]

implying Equation [6].
Writing fsr(t | td) for the density function of signal-response time distribution Fsr(t|td), it has been shown in (25) that

fsr(t | td) = fgo(t) [1− Fstop(t− td)]/pr(td). [12]

From that, an explicit expression of the distribution of the unobservable stop signal processing time Tstop is given by:

Fstop(t− td) = 1− fsr(t | td)pr(td)
fgo(t) . [13]

Unfortunately, as investigated in (26, 27), gaining reliable estimates for the stop signal distribution using Equation [13] requires
unrealistically large numbers of observations.

Perfect negative dependent race model. Defining the bivariate distribution by

H−(s, t) = max{Fgo(s) + Fstop(t)− 1, 0} [7]

for all s, t (s, t ≥ 0), the marginal distributions of H−(s, t) are again Fgo(s) and Fstop(t). A classic result from the theory of
copulas (see SI) asserts that

(i) H− is the lower bound of all bivariate distributions H of (Tgo, Tstop), i.e., H−(s, t) ≤ H(s, t) for all (s, t);

(ii) Pr[Fgo(Tgo) + Fstop(Tstop) = 1] = 1.
From (i) the covariance between the random variables can be shown to be the smallest possible across all bivariate distributions
H(s, t) (23). Statement (ii) is equivalent to

Fstop(Tstop) = 1− Fgo(Tgo). [8]
holding almost surely.

Probability of stopping. Under perfect negative dependence between Tgo and Tstop,

pr(td) = Pr[Tgo − Tstop < td]
= Pr[Tgo − F−1

stop[1− Fgo(Tgo)] < td]
= Pr[g(Tgo) < td]
= Pr[Tgo < g−1(td)], [14]

where function g, defined as g(t) = t− F−1
stop[1− Fgo(t)], is increasing and so its inverse g−1 is increasing as well. Thus, pr(td)

is increasing in td.

Signal-response RT distribution. For stop signal delay td,

Fsr(t | td) = Pr[Tgo ≤ t |Tgo < Tstop + td]
= Pr[Tgo ≤ t ∩ Tgo < Tstop + td]/pr(td)
= Pr[Tgo ≤ t ∩ Tgo < g−1(td)]/Pr[Tgo < g−1(td)]
= Fgo(min{t, g−1(td)})/Fgo(g−1(td)).

To see that Fsr(t | td) obeys the “fan effect” consider two different delays, td and t∗d, say, with td < t∗d; for a fixed value of t, we
first assume t < g−1(td) < g−1(t∗d). Then

Fsr(t | t∗d) = Fgo(t)/Fgo(g−1(t∗d))
< Fgo(t)/Fgo(g−1(td))
= Fsr(t | td).

The cases g−1(td) < t < g−1(t∗d) and g−1(td) < g−1(t∗d) < t can be shown similarly.
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Expected stop signal processing time. A formal expression for mean (expected) stop signal processing time is obtained as follows.
We have

E[Tstop] =
∫ ∞

0
[1− Fstop(s)] ds

=
∫ 0

∞
Fgo(t)ds

dt dt (a.s.), [15]

using Equation [8] and the fact that 1− Fstop(s) and Fgo(t) have opposite limit values. With

s = F−1
stop[1− Fgo(t)]

we have
ds
dt = −fgo(t)/fstop

[
F−1

stop[1− Fgo(t)]
]
.

Inserting into [15] yields

E[Tstop] =
∫ ∞

0

Fgo(t) fgo(t)
fstop

[
F−1

stop[1− Fgo(t)]
] dt. [16]

IND model: exponential case. Define independent, exponential distributions for Tgo and Tstop with parameters λgo > 0 and
λstop > 0 for context ST OP by

H(s, t) = Pr[Tgo ≤ s]× Pr[Tstop ≤ t]
= (1− exp[−λgo s])× (1− exp[−λstop t]),

for all s, t ≥ 0. Then

pr(td) =
∫ td

0
fgo(t) dt+

∫ ∞
td

fgo(t) [1− Fstop(t− td)]

= 1− λstop

λstop + λgo
exp[−λgotd]. [17]

For t > td, the density of the signal-response distribution is given by,

fsr(t | td) = fgo(t) [1− Fstop(t− td)]/pr(td)

= λgo exp[−λgot] exp[−λstop(t− td)](
1− λstop

λstop + λgo
exp[−λgotd]

)
= 1
K

(λgo + λstop) exp[−(λgo + λstop)(t− td)], [18]

with K = exp[λgo td](1 + λstop/λgo)− λstop/λgo. For td = 0, we have K = 1 and the signal-respond density is identical to an
exponential density for an independent race between Tstop and Tgo, with parameter λgo + λstop and pr(td) = λgo/(λgo + λstop).
For t ≤ td, the density simplifies to

fsr(t | td) = fgo(t)]/pr(td)

= 1
λstop + λgo

exp[−λgo(t− td)]. [19]

Computation of the expected value of signal-response RTs yields:

E[Tgo |Tgo < Tstop + td] =
∞∫

0

t fsr(t | td)dt

= λgo [1 + (λgo + λstop)td]
(λgo + λstop){exp[λgo td](λgo + λstop)− λstop}

. [20]

In particular, for td = 0, we obtain E[Tgo |Tgo < Tstop + td] = 1/(λgo + λstop), consistent with the density we mentioned above
for this value of the stop signal delay.
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PND model: exponential example. Inserting exponential margins into the bivariate distribution,

H−(s, t) = max{Fgo(s) + Fstop(t)− 1, 0}
= max{1− exp[−λgo s]− exp[−λstop t], 0}, [21]

for all s, t ≥ 0. From [14],

pr(td) = Pr[Tgo − Tstop < td]
= Pr[Tgo − F−1

stop[1− Fgo(Tgo)] < td]
= Pr[Tgo − F−1

stop[exp(−λgo Tgo)] < td]
= Pr[Tgo + 1/λstop log[1− exp(−λgo Tgo)] < td)]
= Pr[g(Tgo) < td)]
= Pr[Tgo < g−1(td)]. [22]

Note that function
g(Tgo) ≡ Tgo + 1/λstop log[1− exp(−λgo Tgo)]

cannot be solved explicitly for Tgo. Therefore, in order to compute pr(td) and plot signal-response time distributions

Fsr(t | td) = Fgo(min{t, g−1(td)})/Fgo(g−1(td)),

we sampled (n = 100, 000) from the bivariate distribution function H−(s, t) using function simCop (based on the conditional
simulation method, see (22)) from the copBasic package of the open source software R (http://www.r-project.org).

Table 1 lists the crossing points for the signal-response time distributions obtained from the simulation. They correspond to
the vertical lines in Figure 1.

Table 1. Predictions for crossing points Fsr(t | td) = 1.0 in PND model

td [ms] 10 50 100 150

g−1(td) 53.6 79.9 117.7 161.4

Compare with Figure 1

Supporting Information (SI)

Fréchet-Hoeffding bounds and perfect dependency. The dependence between two random variables of a random vector (X,Y )
is completely described by its probability distribution. Let G(x, y) be the bivariate distribution function of some random vector
(X,Y ):

G(x, y) = P (X ≤ x, Y ≤ y)
with marginal distributions FX and FY . Then, it always holds that

G−(x, y) = max{FX(x) + FY (y)− 1, 0} ≤ G(x, y)
≤ min{FX(x), FY (y)} = G+(x, y),

for all x, y for which G is defined (the support of G). Both G−(x, y) and G+(x, y) are known as Fréchet-Hoeffding bounds
and are themselves distribution functions for (X,Y ): G− corresponds to “perfect” negative dependence between X and Y ,
while G+ corresponds to “perfect” positive dependence (see (22) for proofs of this and other claims in this section). “Perfect”
dependency can be formulated in various ways. For simplicity, we assume X and Y have continuous distribution functions, the
only case we will need below. Here are three equivalent characterizations of perfect negative dependence (analogous results exist
for perfect positive dependence, but they are not of concern here):

(i) Either Pr(X > x, Y > y) = 0 for all x, y or
Pr(X ≤ x, Y ≤ y) = 0 for all x, y;

(ii) Pr[FX(X) + FY (Y ) = 1] = 1;

(iii) X is almost surely a decreasing function of Y .

Consider the equation inside the “Pr” expression in (ii): Solving for X by taking the inverse function of FX(X) we get

X = F−1
X [1− FY (Y )],

from which (iii) follows. Random variables with perfect negative dependence are also known as antithetic variates in simulation
studies.
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Figure caption for Figure 1. The “fan” effect: all signal-response RT distributions Fsr(t | td) are strictly ordered by delay (td) from
left to right, for td = 10, 50, 100, 150 [ms], converging toward no-stop signal distribution Fgo(t) (rightmost curve) for td →∞,
for exponential distributions with rate parameters λgo = .01 and λstop = .02; PND model curves were obtained by simulation
(see Methods); dashed: IND model; solid: PND model.
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