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Abstract 38 
 39 
Multivariate decoding methods were developed originally as tools to enable accurate predictions 40 
in real-world applications. The realization that these methods can also be employed to study brain 41 
function has led to their widespread adoption in the neurosciences. However, prior to the rise of 42 
multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy 43 
grounded on univariate methods of data analysis. In this way, multivariate decoding for brain 44 
interpretation grew out of two established frameworks: multivariate decoding for predictions in 45 
real-world applications, and classical univariate analysis based on the study and interpretation of 46 
brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate 47 
decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical 48 
philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt 49 
to systematically disambiguate multivariate decoding for the study of brain function from the 50 
frameworks it grew out of. After elaborating these confusions and their consequences, we describe 51 
six, often unappreciated, differences between classical univariate analysis and multivariate 52 
decoding. We then focus on how the common interpretation of what is signal and noise changes 53 
in multivariate decoding. Finally, we use four examples to illustrate where these confusions may 54 
impact the interpretation of neuroimaging data. We conclude with a discussion of potential 55 
strategies to help resolve these confusions in interpreting multivariate decoding results, including 56 
the potential departure from multivariate decoding methods for the study of brain function. 57 
 58 
Highlights 59 
 60 

• We highlight two sources of confusion that affect the interpretation of multivariate 61 
decoding results 62 

• One confusion arises from the dual use of multivariate decoding for predictions in real-63 
world applications and for interpretation in terms of brain function 64 

• The other confusion arises from the different statistical and conceptual frameworks 65 
underlying classical univariate analysis to multivariate decoding 66 

• We highlight six differences between classical univariate analysis and multivariate 67 
decoding and differences in the interpretation of signal and noise 68 

• These confusions are illustrated in four examples revealing assumptions and limitations of 69 
multivariate decoding for interpretation 70 

 71 
Keywords 72 

 73 
Multivariate decoding; multivariate analysis; multivariate pattern analysis; encoding; decoding; 74 
fMRI; prediction 75 
 76 
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1. Introduction 78 
 79 
Multivariate decoding1 has become a central method for the analysis of neuroscientific data. It is 80 
being employed commonly in fMRI (Haynes, 2015; Haynes and Rees, 2006; Norman et al., 2006; 81 
Tong and Pratte, 2012), but also neurophysiology in non-human primates (Quian Quiroga and 82 
Panzeri, 2009) and humans (Contini et al., 2017). The approach grew rapidly in popularity in the 83 
neuroimaging community when it became clear that it was not only useful for classification related 84 
to real-world applications such as brain-computer interfaces, but also for studying brain function. 85 
Now, in many domains classical univariate methods have been replaced by multivariate decoding, 86 
in part owing to the higher sensitivity afforded by these techniques (Haynes and Rees, 2006; 87 
Norman et al., 2006). In this way, multivariate decoding for brain interpretation grew out two 88 
established approaches: multivariate decoding for predictions in real-world applications, and 89 
classical univariate analysis for the study of brain function. 90 

In this article, we argue that rather than being part of a consistent and independent statistical 91 
framework, multivariate decoding for brain interpretation often reflects a mixture of the 92 
philosophies it originated from (Figure 1A), one activation-based and the other information-based. 93 
As a consequence, this mixture of philosophies creates a lot of potential for confusion in the 94 
interpretation of results derived from multivariate decoding methods. The aim of this article is to 95 
provide a systematic understanding of multivariate decoding for the study of brain function and 96 
the assumptions and limitations of this approach in the interpretation of multivariate decoding 97 
results. 98 

First, we describe the two sources of confusion: i) the mixture of multivariate decoding for 99 
prediction and multivariate decoding for interpretation, and ii) the mixture of the statistical and 100 
conceptual philosophies underlying classical univariate analysis and multivariate decoding. Next, 101 
we illustrate six methodological and interpretational changes that – explicitly or implicitly – are 102 
adopted when shifting from classical univariate methods to multivariate decoding. This discussion 103 
is important, because it shows how multifaceted the differences between these approaches are and 104 
why they have been so difficult to characterize. Moving to a purely multivariate description of 105 
data, we then describe how the meaning of signal and noise is different in the statistical frameworks 106 
underlying classical univariate analysis and multivariate decoding. Finally, using four illustrative 107 
examples we demonstrate how the sources of confusion can affect the interpretation of multivariate 108 
decoding results. 109 

Throughout the article, we use functional MRI as an example, where multivariate data are 110 
multiple voxels measured at different time points, and where predicted variables are experimental 111 
conditions2. However, this discussion applies equally to other modalities (e.g. structural MRI, 112 
MEG/EEG, connectivity measures) whenever multivariate decoding is used as a method of data 113 
analysis. In addition, we focus our discussion of multivariate decoding on multivariate 114 
                                                
1 For the reader unfamiliar with multivariate decoding, we provide a brief working definition. Multivariate decoding 
refers to techniques that jointly analyze multiple measurement channels (e.g. fMRI voxels) to make predictions 
about variables of interest. For categorical predicted variables, this approach reflects multivariate classification, 
while for continuous variables it reflects multivariate regression. Multivariate decoding is typically performed using 
machine learning algorithms, for example support vector machines. One instance of measurements across channels 
is described as a “pattern” (e.g. a multi-voxel pattern). 
2 In the following, we use the terms “experimental condition”, “experimental variable” or “independent variable” not 
in the narrow sense as variables under the experimenter’s control (e.g. stimulus A vs. stimulus B), but in a broader 
sense including so called “quasi-experimental” settings, where the variable is under the environment’s control and 
selected post-hoc by the experimenter (e.g. participant’s choice A vs. choice B).   
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classification, although our arguments may apply equally to multivariate regression in a decoding 115 
setting. 116 
 117 
2. Two sources of confusion 118 
 119 
Multivariate decoding for prediction vs. interpretation 120 
 121 
The first major source of confusion stems from the distinction between multivariate decoding for 122 
prediction and multivariate decoding for interpreting brain function (Figure 1A), which can be 123 
illustrated by the results of the 2006 Pittsburgh Brain Activity Interpretation Competition. The 124 
purpose of the competition was to use brain activity data measured with fMRI to predict the 125 
subjective perception of movie segments according to several criteria including the objects, spatial 126 
locations, sounds, and emotions associated with these segments. The winner was determined by 127 
who best predicted ratings based on independent fMRI data. According to the competition website 128 
and call for submissions, the goals of the competition were “to advance the methodology and assess 129 
the state of the science”, and “to advance the understanding of how the brain encodes, represents, 130 
and operates on dynamic experience”3. The competition received a lot of interest in the community, 131 
with multiple participants using multivariate decoding methods including sophisticated machine 132 
learning algorithms to carry out predictions (Nature Neuroscience Editorial, 2006). Surprisingly, 133 
the winners of the contest were a team of data scientists who acknowledged they did not know 134 
much about the brain prior to the competition (Sona et al., 2007). When visualizing the voxels 135 
their classifier used for predictions, many of them were contained within the ventricles and other 136 
regions typically related to physiological noise. Potentially, the most predictive voxels did not 137 
reflect brain activity in response to the ratings, but rather head motion and changes in physiological 138 
noise. Thus, one important lesson learned through the competition in 2006 is that the use of 139 
multivariate decoding can lead to excellent predictions, but sometimes to not very useful 140 
interpretations in terms of brain function. Perhaps for this reason, in 2007 the competition included 141 
a separate neuroscience prize for making substantial contributions to the understanding of brain 142 
function. 143 
 Today, the dichotomy of maximal prediction on the one hand and interpretation of brain 144 
function on the other continues to be of importance4. Multivariate decoding for prediction aims at 145 
identifying biomarkers that can be used to carry out predictions about underlying states of the 146 
brain. Here, maximal decoding performance is the goal, and success is determined by a model that 147 
can decode mental or physiological states from previously unseen data with high accuracy. The 148 
most frequently used tools in multivariate decoding are machine learning classifiers or variants 149 
thereof, which are often treated as a black box approach to assign labels to available data. Among 150 
                                                
3 Competition website: http://www.lrdc.pitt.edu/ebc/2006/comp_overview.htm, call for submissions: 
https://afni.nimh.nih.gov/afni/community/board/read.php?1,51415 
 
4 The term prediction can have different meanings depending on the context. In inferential statistics, it refers to the 
existence of a model that can be used to tell how a variable will change in the future. For that reason, any model that 
describes a statistical dependence between two sets of variables can also be used as a predictive model. In the context 
of this article, prediction refers to models that are designed with a direct application in mind (such as stock market 
prediction), and where the reasons for this statistical dependence are only of secondary interest. While not irrelevant, 
space constraints preclude a discussion of the distinction between predictive models that allow predictions of 
dependent variables given the data without an explicit data generation model, and generative models that additionally 
allow making predictions about the data given the model (Bzdok, 2016; Naselaris et al., 2011). 
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others, studies employing multivariate decoding for prediction have investigated the prediction of 151 
disease status and progression (Ewers et al., 2011; Orrù et al., 2012), the usefulness of 152 
neuroimaging for brain computer interfaces in quadriplegic patients (Blankertz et al., 2007), and 153 
the feasibility of neuroimaging-based lie detection (Davatzikos et al., 2005; Farah et al., 2014; 154 
Peth et al., 2015). In addition, multivariate decoding for prediction has been used for read-out of 155 
information from visual cortex during perception (Kay et al., 2008; Miyawaki et al., 2008; 156 
Naselaris et al., 2009; Nishimoto et al., 2011; Thirion et al., 2006) and during sleep (Horikawa et 157 
al., 2013), and from auditory cortex during speech (Formisano et al., 2008). The source of the 158 
information is not necessarily of interest to these approaches, as long as the prediction is successful 159 
and can generalize to other relevant datasets5. 160 

In contrast, multivariate decoding for interpretation aims at a better understanding of the 161 
human brain and does not require high predictive accuracy. The reasoning behind this approach is 162 
that as soon as a decoding model performs reliably better than chance, this demonstrates that there 163 
is structure in the data with respect to the conditions of interest, for example whether the participant 164 
was presented with a picture of a car or a chair. From this the researcher typically concludes that 165 
a given brain region carries discriminative information6 about these categories, which may 166 
enlighten us about the neural computations carried out in this brain region. Among others, 167 
multivariate decoding for interpretation revealed the existence of subcortical effects of binocular 168 
rivalry (Haynes et al., 2005), feature binding in primary visual cortex (Seymour et al., 2009), 169 
working memory representations in primary visual cortex (Harrison and Tong, 2009), unconscious 170 
intentions in frontopolar cortex (Soon et al., 2008), visual search templates in object-selective 171 
cortex (Peelen et al., 2009), and reward value representations in parietal cortex (Kahnt et al., 2014). 172 
For this approach, variables such as head motion would act as confounds even when they 173 
consistently co-occur with the experimental variables. 174 

While this distinction between prediction and interpretation was made explicit early on 175 
(Norman et al., 2006), multivariate decoding is commonly being treated as one methodological 176 
entity that can be applied equally for both approaches (for review, see Tong and Pratte, 2012). 177 
What has often been overlooked, however, is that the tools of multivariate decoding – machine 178 
learning algorithms – were not developed for the interpretation of brain function, but simply for 179 
making predictions about variables based on available data. In the context of the interpretation of 180 
brain imaging results this has two consequences: i) any interpretation that goes beyond the 181 
existence of a statistical dependence, i.e. beyond the presence of information about experimental 182 
variables in brain imaging data, may come with additional assumptions that might be violated and 183 
may invalidate this interpretation; ii) the limitations imposed by multivariate decoding for 184 
prediction may unnecessarily constrain the use of multivariate decoding methods in the context of 185 

                                                
5 Knowledge about the source of the information can help during the development of a new predictive model, when it 
is not yet clear if this source will help generalizing to all relevant cases. Using our example of the Pittsburgh brain 
interpretation competition, a non-neural source of information can and should be used for predictions if it is present 
in all relevant datasets.  
6 Our use of the term information follows the common use in human neurosciences employing multivariate decoding, 
i.e. the presence of a statistical dependence in the data that can be read out with the help of machine learning methods 
and that is believed to be of neuronal origin. This use of the term does not imply that the brain region can communicate 
this information to another brain region or that it is used in behavior (Williams et al., 2007; De Wit, 2016). 
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interpretation7. While both consequences deserve study, most of this article will focus on the first 186 
of these two: the interpretation of brain imaging data that goes beyond the presence of information. 187 
 188 
The statistical frameworks underlying classical univariate analysis and multivariate decoding 189 
 190 
The second major source of confusion concerns differences in the conceptual and statistical 191 
philosophies underlying classical univariate analysis and multivariate decoding (Figure 1B). 192 
Classical univariate analysis and multivariate decoding are much more than just methods of data 193 
analysis. They are embedded in separate philosophies about the nature of neuronal representations, 194 
one activation-based, and the other information-based. These philosophies are manifested in 195 
different statistical frameworks. In this sense, classical univariate analysis is an approach to study 196 
brain activation within a standard statistical framework, while multivariate decoding is an approach 197 
to study information-content within an information-based framework. The exact implementation 198 
of each approach, for example the use of a general linear model (GLM) in univariate analysis or a 199 
linear classifier in multivariate decoding, carries assumptions specific to these frameworks.  200 

The activation-based philosophy has been the dominant thinking in the interpretation of 201 
neuroscientific results. It is based largely on the analysis of different levels of brain activity. In 202 
this view, a higher firing rate of a neuron is interpreted as a stronger engagement of that neuron in 203 
the process of study8. The same reasoning is applied in other domains, such as a larger BOLD 204 
response in an MRI voxel, increased voltage deflections in an EEG channel, or power increases in 205 
frequency bands of MEG. Analysis of brain structure or connectivity follows a similar scheme, 206 
where their relevance to the process of study is determined by changes in relation to an 207 
experimental variable. Importantly, this activation-based philosophy is not limited to univariate 208 
analysis, but can be extended to multivariate analysis, when a pattern of conjoint activation is the 209 
focus of study. This philosophy, however, does not underlie the statistical framework of 210 
multivariate decoding. Instead, multivariate decoding is embedded in an information-based 211 
philosophy, which focuses on the information contained in a brain region and how this information 212 
may be communicated to other parts of the brain. Here, any measurable difference between the 213 
conditions of interest, or more precisely mutual information between experimental variables and 214 
brain data, can be interpreted as reflecting the process of study (Kriegeskorte and Bandettini, 215 
2007). How these differences in philosophy affect our interpretation of brain responses, however, 216 
has been largely ignored9. 217 
 Importantly, each of these philosophies has been associated with a statistical framework 218 
that formalizes the assumptions of the philosophy, allowing estimation of the relevant quantities 219 
(activation vs. information), and providing statistical tests to evaluate the generalizability of these 220 
estimates. The activation-based philosophy commonly uses a standard statistical framework, 221 
which reflects both the statistical model underlying most activation-based analyses and the chosen 222 
paradigm for statistical inference. The dominant statistical paradigm in the standard statistical 223 
                                                
7 One example of this is non-independence of training and test data, which would violate the assumptions of the 
prediction approach, but which may still allow meaningful inferences for interpretation when non-independence is 
modeled appropriately (Rosenblatt and Benjamini, 2014). 
8 This interpretation is often causal, which in the absence of alternative explanations is a valid interpretation 
(Weichwald et al., 2015). 
9 Others have discussed the parallel history of standard statistics and machine learning and how they differ (Bzdok, 
2016). Here, the focus lies on the difference between activation-based and information-based philosophies and how 
they affect our interpretation of neuroimaging results. In our description, machine learning is just one 
methodological approach in the information-based philosophy. 
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framework is classical frequentist statistics, although Bayesian statistics can also be used for 224 
statistical inference. A very common feature in the standard statistical framework is the use of a 225 
linear model that tests for a linear relationship between model variables and measured data, and 226 
statistical inferences are typically carried out on the estimates derived from this model (e.g. a t-test 227 
on an estimate of the mean). 228 

In contrast, the information-based philosophy relies on an information-based framework 229 
derived from information theory, in which statistical estimation is carried out using mutual 230 
information or related measures. While the standard statistical framework is typically limited to 231 
testing a specific – mostly linear or monotonic – relationship between data and experimental 232 
variables, the information-based framework relies on any differences in data distributions between 233 
pairs of variables, including nonlinear as well as non-monotonic effects. In that sense, the 234 
information-based framework is more general than the standard statistical framework10. Instead of 235 
directly estimating mutual information, which has been very difficult with limited data (but see 236 
Ince et al., 2017), other statistical analyses that derive information estimates can be used. From a 237 
statistical point of view, multivariate decoding is one such analysis, and classification accuracy is 238 
one form of information estimate. Importantly, since multivariate decoding does not provide a 239 
framework for inferential statistics, the statistical analysis of decoding results usually borrows 240 
methods from other statistical inference paradigms. 241 

Here we argue that the current thinking in multivariate decoding in the interpretation 242 
framework is not information-based, but still largely embedded in i) an activation-based 243 
philosophy that was adopted from classical univariate analysis and ii) the standard statistical 244 
framework including the statistical model underlying most univariate analysis. As will become 245 
clear, this mixture can lead to non-intuitive interpretations of what is considered signal and noise 246 
in a multivariate pattern. In addition, it leaves us with a mixture of the analysis repertoire from 247 
activation-based analysis and multivariate decoding, and provides the potential for confusion. 248 
  249 

                                                
10 It is important to mention that the two frameworks are not mutually exclusive, i.e. in principle they can measure 
the same statistical dependence and can both be restricted to the same types of relationships. For example, it is 
possible to convert some estimates from the standard statistical framework to an estimate of mutual information, and 
the Kullback-Leibler divergence that originated in information theory is common in frequentist and Bayesian 
statistics to estimate the difference between distributions. Despite this overlap, however, both frameworks 
nevertheless originate from different interpretational philosophies. 
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 250 
 251 
Figure 1. The two sources of confusion in multivariate decoding. A. Multivariate decoding was developed for 252 
predictions in real-world applications, but is widely used for interpretations about brain function. Since both 253 
approaches are often treated as a unitary method despite making different assumptions, this provides a source for 254 
confusion. B. The choice between classical univariate analysis is not only a choice of method but a choice of 255 
underlying philosophy, activation-based or information-based. Confusion can arise when the conceptual and 256 
statistical framework underlying classical univariate analysis is applied to multivariate decoding.  257 

 258 
3. Differences between classical univariate analysis and multivariate decoding 259 
 260 
Commonly, the use of multivariate decoding over univariate analysis is justified by two factors: i) 261 
the increased sensitivity in detecting meaningful differences in the brain by combining information 262 
across multiple voxels (Haynes and Rees, 2006; Norman et al., 2006, but see Allefeld et al., 2016) 263 
and ii) the increased specificity in being able to access widely distributed population codes by the 264 
joint analysis of multiple voxels that would not be available by assessing each voxel separately 265 
(Haynes, 2015; Kriegeskorte, 2011)11. While both factors describe the motivation for using 266 
multivariate analysis, it is important to realize that there are multiple changes that are a 267 
consequence of this departure from classical univariate analysis. In the following, we highlight six 268 
specific changes and illustrate the reasons for these changes (Figure 2). While there is some overlap 269 
between these changes and while some of the changes are prerequisites of others, none of them 270 
necessarily co-occur, i.e. they can be treated as largely independent. Consequently, this allows us 271 

                                                
11 Here the terms “sensitivity” and “specificity” are not used in the classification sense of true positive and true negative 
response proportions, but to describe the discriminability and identifiability of variables, respectively. 
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to pinpoint the changes that are truly necessary for the increase in sensitivity and specificity, and 272 
those that are a mere reflection of the specific method of choice.  273 
 274 

 275 
Figure 2. Six differences between classical univariate analysis and multivariate decoding. 276 

 277 
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1. Univariate vs. multivariate 278 
 279 
The most obvious difference between the two approaches is already part of their respective names 280 
and denotes the difference between univariate and multivariate analysis (Figure 2A). While 281 
univariate analysis refers to a separate analysis of each individual voxel, multivariate analysis 282 
refers to the joint analysis of multiple voxels12. In classical univariate analysis, voxels are typically 283 
only combined by pooling measurements within predefined regions of interest or by applying 284 
spatial smoothing. However, this approach largely ignores the relevance of each voxel in 285 
distinguishing between experimental conditions and does not utilize the covariance between 286 
voxels. In contrast to univariate analysis, multivariate analysis allows optimally combining voxels 287 
by taking into account each voxel’s contribution to discriminability. In addition, the covariance 288 
between voxels carries additional information that can be exploited in multivariate analysis. 289 
 290 
2. Uniform vs. non-uniform response sign 291 
 292 
In classical univariate analysis, regions-of-interest are typically described by a set of neighboring 293 
voxels that exhibit relatively uniform responses. The voxels may fluctuate in the response level, 294 
but are assumed to be of the same sign, and within regions these differences are typically not 295 
interpreted. For example, while it is known that different voxels in the fusiform face area (FFA) 296 
respond to faces to different degrees, it is nevertheless assumed that FFA has a uniform, positive 297 
response sign to faces. 298 

In multivariate decoding, voxels in a region can show non-uniform response signs: Both 299 
activation and deactivation in neighboring voxels is interpreted as being informative about the 300 
variable of interest, and both signs contribute to the overall estimate of information content (Figure 301 
2C, right). In other words, in multivariate decoding it is not important that all voxels of a brain 302 
region show responses of the same sign; positive and negative responses are equally meaningful. 303 
To clarify, by non-uniform we are not referring just to any variations in responses between 304 
neighboring voxels, which would be a property of what we described as “multivariate” above; 305 
rather, we specifically refer to the fact that one voxel can show a positive response while the 306 
neighboring voxel can show a negative response. Indeed, it is possible to restrict a multivariate 307 
analysis to uniform responses, although in many cases this requires the development of new 308 
methods of data analysis or an adaptation of existing methods (e.g. Hebart et al., 2014b). 309 
 310 
3. Directional vs. non-directional analysis 311 
 312 
In classical univariate analysis, a brain region is said to be engaged in a cognitive process when it 313 
responds more to the experimental condition than a control condition, or when it shows an overall 314 
positive or negative relationship with different levels of the experimental variable. The same 315 
contrast is calculated for each voxel individually, and overall it is determined whether a brain 316 
region is activated or deactivated (Figure 2C, left). Estimates of activation or deactivation can then 317 
be taken from the subject to the group level, and additional statistical analysis can be used to infer 318 
whether the population exhibits activation or deactivation in that brain region. This describes a 319 
                                                
12 Note that outside of neuroimaging, multivariate analysis is sometimes defined as the joint analysis of multiple 
outcome variables. However, in neuroimaging multivariate decoding typically has only one outcome variable, the 
experimental variable, and multivariate decoding refers to the prediction of that experimental variable by jointly 
analyzing multiple measured variables, typically measurement channels such as fMRI voxels.	
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directional analysis, because the sign of the difference is taken to be important (more activated or 320 
more deactivated than control). While non-directional analyses (e.g. F-tests) are possible in 321 
classical univariate analysis, they are much less common and are usually not employed to draw 322 
inferences at the subject level. 323 
 In multivariate decoding, an analysis is almost always carried out in a non-directional 324 
manner. This is not surprising, because in a multivariate space direction does not have much of a 325 
meaning. For example, one voxel may be more activated in one condition than another, while 326 
another voxel may be less activated. This makes it impossible to describe a response direction as 327 
overall positive or overall negative and thus makes it hard to assign meaning to this “mixture in 328 
directions”. For most analyses, the direction does not matter anyway, because the focus lies on the 329 
discriminability between patterns of activity and not the difference between individual voxels13. 330 

It is, however, possible to carry out a directional analysis in multivariate decoding, and 331 
there are at least two cases where directional analysis may make sense in the context of multivariate 332 
analysis. First, when there are uniform response differences as described above, a directional 333 
multivariate analysis describes a direction in voxel space that is related to the general activation or 334 
deactivation of a region. This multivariate analysis would be more sensitive than a classical 335 
univariate analysis, because it would allow optimally combining voxels across the region. Second, 336 
even for non-uniform response differences if the assumption is that the difference in response 337 
patterns between conditions is reproducible across subjects, then the direction indeed matters and 338 
is required to draw inferences at the population level about “representative” response differences. 339 
Indeed, it has been suggested that those differences can be analyzed at the group level in a 340 
directional manner (Gilron et al., 2017). In contrast, if the focus lies merely on the discriminability 341 
of patterns, then a non-directional analysis is ideal. To sum up, both directional and non-directional 342 
analyses can be meaningful in multivariate decoding, and non-directional analysis is not a 343 
necessary aspect of multivariate decoding. 344 
 345 
4. Encoding vs. decoding 346 
 347 
Encoding describes the prediction of data (dependent variables) from experimental conditions 348 
(independent variables), whereas decoding describes the prediction of experimental conditions 349 
from data (Figure 2B). For example, a GLM in a classical univariate analysis is an encoding model, 350 
because it provides a (high-level) description of how a process of study is encoded in a brain 351 
response14. It has been argued repeatedly that encoding and decoding are complementary when the 352 
goal is to quantify a statistical dependence between dependent and independent variables (Friston 353 
et al., 2008; Kriegeskorte, 2011; Naselaris et al., 2011). Decoding is commonly used in 354 
multivariate data analysis not because it offers a computational benefit over encoding, but because 355 
of its apparent simplicity, appeal, and novelty. Decoding analyses are relatively easy to carry out, 356 
                                                
13 Note that, while the difference in directional vs. non-directional analysis is closely related to uniform vs. non-
uniform responses, both a uniform and non-uniform response can be analyzed in a directional and non-directional 
manner. For example, a directional analysis could reflect the pattern difference, while a non-directional analysis 
could reflect the absolute distance between patterns, a distinction that can be drawn for both uniform and non-
uniform responses. 
14 In the neuroimaging community, the term encoding model is often used in a narrower sense. In this narrower sense, 
first a computational model is used to mimic an alleged brain process. Then, it is tested whether the outputs of this 
model – typically representational features – are found to be encoded in brain activity. In this article, the term encoding 
is used in its more general sense, where any model is an encoding model that studies how a variable of interest is 
encoded in fMRI data. 
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for example with out-of-the-box classification algorithms (e.g. as implemented in LIBSVM, 357 
Chang and Lin, 2011), or by using the popular correlation-based classifier that requires only the 358 
computation of a small number of correlations across voxels (Haxby et al., 2001). Part of the appeal 359 
of decoding came from the idea that decoding may have access to fine-scale information beyond 360 
the resolution of fMRI (Kamitani and Tong, 2005, but see Freeman et al., 2011; Op de Beeck, 361 
2010) and the possibility to describe these methods as tools for “mind-reading” (Haynes and Rees, 362 
2006; Norman et al., 2006). In addition, some treat an activity pattern as an explicit representation 363 
of the variable of interest, and thus linear decoding may be used to describe what information about 364 
this represented variable can be “read out” by other parts of the brain (Diedrichsen and 365 
Kriegeskorte, 2017; Kriegeskorte, 2011). However, decoding also has downsides. In contrast to 366 
encoding, it does not allow a complete functional description of brain regions (Naselaris et al., 367 
2011). In addition, with decoding it is not possible to calculate “noise ceilings” to determine 368 
whether limitations in characterizing a statistical dependence are related to the model or the data 369 
quality (Naselaris et al., 2011). 370 
It is worth noting that multivariate encoding approaches with similar potential to multivariate 371 
decoding have been suggested previously, such as MANCOVA (Friston et al., 1995), canonical 372 
correlation analysis (Friman et al., 2001) or partial least squares (McIntosh and Lobaugh, 2004). 373 
However, they have not received as much attention as multivariate decoding or have been used to 374 
address different questions. There are multiple reasons for this discrepancy, including 375 
interpretational complexity, problems arising from fitting a model with more parameters than 376 
measurements (“curse of dimensionality”), the inability to generate unbiased estimates that could 377 
easily be translated from the subject level to the group level (Allefeld and Haynes, 2014; Walther 378 
et al., 2016), or distributional assumptions (Kriegeskorte, 2011; Kriegeskorte and Diedrichsen, 379 
2016). In contrast, multivariate decoding promises a gain in sensitivity while avoiding these 380 
particular issues. 381 
 382 
5. Within-sample statistical estimation vs. out-of-sample prediction 383 
 384 
Classical univariate analysis relies on the use of within-sample statistical estimation (Figure 2E, 385 
left). In this approach, all available data are first used to attain statistical estimates of how the 386 
experimental variables map to the data (e.g. beta weights in a GLM estimated on fMRI data). Then, 387 
those “activation estimates” are subjected to statistical tests (e.g. t-tests) to determine whether the 388 
results would generalize to the population. In multivariate decoding, the goal is not to attain 389 
activation estimates, but estimates of the information about experimental variables contained in 390 
the data. An estimate of information content can be quantified as the predictive value of a model 391 
using out-of-sample prediction (Figure 2E, right). In out-of-sample prediction, a researcher first 392 
estimates a model on a subset of the available data and then uses this model to predict the 393 
experimental variable associated with the left-out data15. In multivariate decoding, this prediction 394 
is typically quantified in terms of classification accuracy, correlation coefficient, or explained 395 
variance. When this process of model estimation and out-of-sample prediction is carried out 396 
iteratively on different subsets of the data, this approach is described as cross-validation. 397 
Importantly, out-of-sample prediction still requires a statistical test to determine whether a given 398 
estimate of information content (e.g. classification accuracy) is reliable, even when the prediction 399 
                                                
15 It is not uncommon to interpret the parameters of a multivariate decoding model (e.g. the weight vector of a 
classifier) or to run statistical tests on them (e.g. Mourão-Miranda et al., 2005). However, these are neither activation 
estimates nor information estimates, as discussed below (see Haufe et al., 2014). 
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is very good (Combrisson and Jerbi, 2015; Isaksson et al., 2008). Statistical testing procedures on 400 
cross-validated information estimates require additional scrutiny (Görgen et al., this issue; 401 
Jamalabadi et al., 2016; Noirhomme et al., 2014; Schreiber and Krekelberg, 2013). Thus, the 402 
crucial difference lies not in the statistical procedure (e.g. Bzdok and Yeo, 2017), but in the 403 
approach for achieving (unbiased) estimates of the variables of interest, for example activation 404 
means in classical univariate analysis or classification accuracies as estimates of information 405 
content in multivariate decoding. In that respect, the term “out-of-sample estimation” may in some 406 
cases be more telling than “out-of-sample prediction”. 407 

Out-of-sample prediction is the typical approach in multivariate decoding, because in most 408 
cases multivariate models have many more degrees of freedom than univariate models and can 409 
much more easily overfit to the idiosyncrasies of the data, leaving us with biased estimates of 410 
information content (Bzdok, 2016). Multivariate methods such as MANOVA or pattern 411 
component modeling (Diedrichsen et al., 2011; this issue), which do not require out-of-sample 412 
prediction, can reduce this complexity with additional assumptions about the distribution of the 413 
data. However, while growing in popularity, such methods are not commonly employed. As 414 
discussed above, there may be doubt that the assumptions of those multivariate tests hold for fMRI 415 
data in practice, while out-of-sample prediction does not require those assumptions (Kriegeskorte, 416 
2015). However, as an alternative to more traditional statistical tests, procedures such as 417 
permutation tests can be used to carry out within-sample estimation even for multivariate 418 
decoding, without requiring cross-validation (Kriegeskorte et al., 2006). 419 

 420 
6. Activation vs. information 421 
 422 
As pointed out above, classical univariate analysis and multivariate decoding are embedded in 423 
activation-based and information-based philosophies, respectively (Figure 2D; Kriegeskorte and 424 
Bandettini, 2007). Take an imaginary region that responds to faces and not to objects. According 425 
to the activation-based view, this region would be described as face-selective. However, now 426 
assume the region additionally responds to gratings, scrambled objects, and even when nothing is 427 
presented. In other words, the region is always active and only becomes silent when an object is 428 
shown. While according to the activation-based view it would represent anything but objects, in 429 
the information-based view this region is maximally informative about the presence of objects 430 
(Figure 2D). This is because the inactivity and activity in both cases carry information about the 431 
presence or absence of an object (Panzeri et al., 2015). This example naturally extends to the 432 
multivariate analysis of voxels: A pattern of activity can represent many more different states than 433 
each voxel individually. The idea of a widely-distributed population code has motivated the study 434 
of multivariate patterns in terms of information content (Cox and Savoy, 2003; Haxby et al., 2001; 435 
Kay et al., 2008; Naselaris et al., 2009). Further, additional information may come from studying 436 
not only the mean response pattern, but also the variability (Averbeck et al., 2006; Panzeri et al., 437 
2015). The information contained in the variability of response patterns will be discussed in more 438 
detail in the Section 3 (“What is signal and what is noise in multivariate decoding?”). 439 
 440 
 441 
What differences are necessary for increased sensitivity and specificity? 442 
 443 
The fact there are at least six distinct differences between classical univariate analysis and 444 
multivariate decoding might explain why it has been so difficult to compare the two methodologies 445 
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directly (Coutanche, 2013; Davis et al., 2014; Jimura and Poldrack, 2012; Smith et al., 2011). 446 
Returning to the original motivation that stimulated the shift towards multivariate decoding, it 447 
becomes clear that only two of these six differences are strictly necessary for a benefit over 448 
classical univariate analysis: increased sensitivity is achieved through the joint analysis of multiple 449 
voxels (univariate vs. multivariate, Figure 2A), and increased specificity through multivariate 450 
analysis in an information-based framework (activation vs. information, Figure 2D). The other 451 
four differences – uniform vs. non-uniform response signs, directional vs. non-directional analysis, 452 
encoding vs. decoding, and within sample estimation vs. out-of-sample prediction – are merely 453 
byproducts that may only be necessary for the specific methods that are commonly employed. For 454 
example, as mentioned earlier, multivariate analysis can be carried out separately for both uniform 455 
and non-uniform responses. Out-of-sample prediction on the other hand could – at least for some 456 
approaches – be replaced by appropriate permutation-based approaches16, which may even 457 
improve their sensitivity (Friston et al., 2008; Rosenblatt et al., 2016). But even within the two 458 
critical differences – multivariate analysis and the use of an information-based framework – it is 459 
worth discussing whether the focus should lie only on the estimation of response patterns and their 460 
distance and discriminability in a multivariate space, or whether variability of response patterns 461 
should also be treated as a meaningful source of information. This distinction will be covered in 462 
further detail in the following section. 463 
 464 
4. What is signal and what is noise in multivariate decoding?  465 
 466 
To appreciate how the differences between the activation-based and information-based 467 
philosophies described above affect our interpretation of brain signals, it is helpful to evaluate the 468 
differences in understanding of signal and noise in the standard statistical framework and the 469 
information-based framework, respectively. 470 
 471 
Signal and noise in the activation-based philosophy 472 
 473 
In neuroscience, the measurement of a brain response is usually treated as a noisy observation of 474 
ground truth. Since we do not know what ground truth is, we can use a statistical model that allows 475 
us to formalize our assumptions about the brain response, in the hope this model provides a useful 476 
approximation of this ground truth. A popular choice for such a statistical model is a linear model 477 
that decomposes a measurement into different components. If weighted appropriately, those 478 
components would then provide a full description of the measured brain response. In classical 479 
parametric statistics, our goal is to estimate those weights or parameters based on our observations 480 
(e.g. beta weights in a GLM). This view reflects the activation-based philosophy, formalized 481 
through the standard statistical framework. 482 
 Figure 3A illustrates what is commonly perceived as signal and noise17, with the example 483 
of two experimental conditions depicted in orange and blue. Here, a signal reflects the difference 484 

                                                
16 This only works if the multivariate approach does not always perfectly explain data (the upper limit is known as the 
capacity of an approach). For example, for linear classifiers in high-dimensional settings it is not unusual to reach 
perfect classification on the training data, which would likely not reveal any differences between iterations of a 
permutation test. Alternative unbounded measures of information content, such as the use of discriminative values or 
classical multivariate test statistics (Kriegeskorte et al., 2006), can circumvent this issue. 
17 Our use of the terms “signal” and “noise” could alternatively be described as “components of the measurement that 
are of interest” and “components of the measurement that are not of interest”, respectively. While the terms are used 
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in the multivariate means related to conditions of interest, represented as vectors in voxel space. 485 
Alternatively, the difference in multivariate means can be described as two multivariate patterns 486 
that are representative of those conditions of interest and that are different from each other. Noise 487 
is reflected in error, which describes the variability not accounted for by experimental conditions, 488 
and which can be either condition-independent or condition-dependent (Figure 3A, right). One 489 
noteworthy case of condition-dependent error are confounds, which are other variables that covary 490 
with the conditions of interest and which can influence their estimation. In a multivariate GLM, 491 
typical examples of an error component would be a condition-independent Gaussian with a given 492 
variance and covariance structure. Other, more complex generalized or hierarchical models could 493 
account for non-Gaussian error or condition-dependent error (e.g. heteroskedastic error). 494 

Another important feature of this common activation-based view is that for two conditions, 495 
the size of the difference between the mean parameters reflects the signal strength, and the ratio of 496 
this difference to the noise component reflects the signal-to-noise ratio. In other words, one voxel 497 
is perceived as more activated when it has a larger parameter value than another voxel, and this 498 
difference in parameter values directly reflect the signal. 499 
 500 
The multivariate decoding view of signal and noise 501 
 502 
In contrast to the activation-based view of multivariate patterns depicted above, in multivariate 503 
decoding the focus lies on what information about the experimental conditions can be extracted 504 
from the measured response. To avoid confusion about the terminology of signal and noise, here 505 
we use the term information to describe what is signal and noise in this methodological approach. 506 
For multivariate decoding studies that aim at the interpretation of activity patterns discussed above 507 
(multivariate decoding for interpretation), linear classifiers are the most common choice. They are 508 
commonly chosen, because they generally perform well (Cox and Savoy, 2003; Misaki et al., 509 
2010), they don’t overfit as easily as nonlinear classifiers, their parameters are more easily 510 
interpretable, and they provide a plausible lower bound of the information that another brain region 511 
can potentially read out (Kriegeskorte and Bandettini, 2007; Naselaris et al., 2011). In linear 512 
classification, each voxel receives one weight parameter, and the product of the weight vector and 513 
the measured response pattern across voxels is used to assign class membership to that pattern. In 514 
that respect, a large absolute weight reflects a stronger contribution of that voxel to the final 515 
classification. 516 

Since the goal of multivariate decoding is discrimination of the experimental conditions, 517 
any component of the measurement that contributes to their discrimination is information, while 518 
any component that does not affect or reduces discriminability is not. This definition has an 519 
important consequence: not only differences in the means, but also differences in the data 520 
distribution can be information for a classifier. Further, as has been pointed out recently (Haufe et 521 
al., 2014), even data covariance that alone does not allow discrimination between conditions can 522 
contribute to the classification by suppressing correlated noise in the response and improving 523 
classification. Even though this variability contributes to the discrimination, it is not a source of 524 
information because it alone does not allow discrimination. This will become clearer in the 525 
examples below.  526 

                                                
inconsistently in neuroimaging (e.g. “brain signal”, “temporal signal-to-noise ratio”, etc.), we use these terms as a 
shortcut for describing relevant and irrelevant aspects of the measurements, which is close to their common use in 
cognitive neuroscience. 
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In this information-based view, the signal-to-noise ratio translates to the predictive 527 
accuracy of a classifier. Importantly, a weight parameter does not reflect the discriminability of 528 
each voxel in isolation. Instead, the absolute value of a voxel’s weight parameter directly reflects 529 
the usefulness of that voxel considered as the contribution to the discrimination process in the 530 
context of the other voxels included in the classification analysis. 531 

 532 
 533 

 534 
 535 
Figure 3. The prevailing view of signal and noise in neuroimaging, and its correspondence to information content 536 
in multivariate decoding. A. Motivated by the activation-based philosophy, signal reflects the multivariate means of 537 
the data, while noise can be either condition-independent error (variance, covariance, or non-normal error), or 538 
condition-dependent error (heteroskedastic variance or covariance, or confounds correlating with the conditions). 539 
B. Three examples comparing the correspondence of signal and signal-to noise with the weights and accuracy of a 540 
linear classifier. In Example 1, the classifier weights reflect the signal, and the accuracy mirrors the signal-to-noise 541 
ratio. In Example 2, noise covariance picked up by the classifier causes a departure from this correspondence. In 542 
Example 3, despite the absence of signal, differences in noise distribution allow above chance classification, leading 543 
to a non-correspondence of the signal to the classifier weights and accuracy. 544 

 545 
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 546 
 547 
The collision of signal, noise, and information 548 
 549 
To illustrate how this view of signal and noise impacts our interpretation of data and results, we 550 
will consider three examples (Figure 3B). In these examples, the data generation process follows 551 
the standard statistical framework, described as a linear combination of signal and noise 552 
components. Once the data is generated from these components, a linear classifier is applied to 553 
classify this data: It assigns weights to each of the voxels and measures information content based 554 
on these data. In each example, we assess two properties: First, do the weights of the classifier also 555 
reflect signal strength? Second, does the classification accuracy also reflect the signal-to-noise 556 
ratio? 557 
 558 
Example 1: Signal plus zero covariance Gaussian noise 559 
 560 
In this first example, the measurement is described as a combination of a signal component and 561 
Gaussian noise with no covariance. A classifier could now read out this information by 562 
appropriately combining the two sources of signal. Since there is no covariance and the errors are 563 
Gaussian, it has been shown that the best classifier in this context is a Gaussian Naïve Bayes 564 
classifier (Zhang, 2005). The classifier places weights based on how much signal there is in each 565 
voxel, i.e. the weights reflect the signal strength in each voxel. In this case, the classification 566 
accuracy will closely reflect the signal-to-noise ratio. 567 
 568 
Example 2: Signal plus Gaussian noise with covariance 569 
 570 
In this second example, the measurement consists of a combination of a signal component, where 571 
only voxel 2 distinguishes the two classes, and Gaussian noise that exhibits negative covariance 572 
between voxels, i.e. when one voxel’s response increases, the other voxel’s response will decrease. 573 
In this case, the Bayes-optimal classifier is the Fisher linear discriminant (Bishop, 2006). 574 
Importantly, the weights still represent how useful each voxel is for the discrimination of the 575 
classes; however, the weights no longer reflect the signal strength but a combination of signal and 576 
noise. The classification accuracy on the other hand still reflects the signal-to-noise ratio of the 577 
multivariate data. 578 
 579 
Example 3: No signal plus heteroskedastic Gaussian noise 580 
 581 
In this third example, the measurement exhibits an absence of any signal and consists only of noise. 582 
In other words, the expected value of both conditions is the same. The noise exhibits no covariance. 583 
While the noise in voxel 1 has the same variance in both conditions, in voxel 2 it varies more 584 
strongly for the orange condition than the blue condition. A simple classifier such as a linear 585 
support vector machine can now separate the data points in a way that leads to above-chance 586 
classification: one condition is always classified correctly, while the other is only sometimes 587 
misclassified. Thus, there is information present that allows the discrimination of the classes, 588 
despite the absence of what we normally describe as signal. This is a property that holds for any 589 
linear classifier, because as soon as there is variability in the estimation of the hyperplane and a 590 
deviation of this hyperplane from the center of the distributions, there will be above-chance 591 
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classification18. This property is not specific to using accuracy as an information estimate, but also 592 
occurs for other popular information estimates such as d-prime or area under the curve. Further, 593 
an optimal nonlinear classifier could easily provide a much higher classification accuracy. In this 594 
example, the weights do not reflect the signal strength of each voxel, but reflect the variability of 595 
noise. In addition, the accuracy does not reflect the signal-to-noise ratio: The variability in the 596 
measurements, which is treated as noise in the standard statistical framework, translates to 597 
information in the information-based framework (Görgen et al., this issue). 598 
 599 
 600 
These three examples reveal an important but often underappreciated fact: Multivariate decoding 601 
depends not only on what we commonly treat as signal – differences in the multivariate means – 602 
but also on what we treat as noise – the variability of the measurements. This has three 603 
consequences. First, the weights of a linear classifier cannot be interpreted to reflect the signal, but 604 
only to reflect the importance of each voxel for the classification process (Haufe et al., 2014). 605 
Second, the information content measured with a classifier (e.g. prediction accuracy) not only 606 
reflects differences in multivariate means, but can also purely reflect differences in variability 607 
(Davis et al., 2014; Görgen et al., this issue). Third, for a classifier to generalize to unseen data, it 608 
not only requires stability in the signal, but also stability in those components of noise that 609 
contribute to the classification. 610 
 One may wonder what factors affect the noise covariance of the data and under what 611 
circumstances there would be different noise covariance between conditions that could translate 612 
to above-chance classification accuracies in the absence of “signal” (see Example 3). After all, if 613 
these differences were indeed of neural origin and reflected the variable of interest, this 614 
information could reflect a processing strategy employed by the brain. Thus, such results would 615 
demonstrate that methods in the information-based framework such as multivariate decoding are 616 
sensitive to information that would be missed by methods in the activation-based framework. 617 
Indeed, the study of noise covariance is growing in popularity in animal electrophysiology 618 
(Averbeck et al., 2006; Churchland et al., 2010; Ponce-Alvarez et al., 2013) and neuroimaging 619 
(Garrett et al., 2011; Kohn et al., 2009). 620 

Central to this discussion, however, is whether the differences in noise covariance can 621 
meaningfully be attributed to i) neural variability and ii) the variables of interest. In fMRI, non-622 
neural factors commonly affect noise correlations between voxels. These include physiological 623 
noise such as head motion and noise fluctuations related to the cardiac / respiratory cycle, and 624 
separating those from neural sources of variability is difficult as demonstrated in the analysis of 625 
functional connectivity (Power et al., 2016). Even if differences could meaningfully be attributed 626 
to neural variability, it needs to be determined that this variability is related to the condition of 627 
interest and not other uncontrolled confounds. Thus, many differences in noise covariance may 628 
not be specific to the variables of interest, but could be caused by other factors. As we will point 629 
out below, even the experimental design in the absence of data can induce differences in the 630 
variability of conditions. Thus in a classical decoding setting, it may turn out to be difficult to 631 
disentangle neural variability of interest from other sources of variability. 632 
 633 
                                                
18 Note that, while this property holds for linear discriminant analysis (LDA) it does not apply to the closely related 
cross-validated Mahalanobis distance estimator, (Walther et al., 2016) which is an encoding method. While the 
accuracy of the LDA will increase with increasing differences in the variance, the cross-validated Mahalanobis 
distance estimator will on average remain the same but will become more variable.	
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 634 
5. Interpretation of multivariate decoding 635 
 636 
So far, we have laid out the differences between multivariate decoding for prediction and 637 
multivariate decoding for interpretation, described the differences between classical univariate 638 
analysis and multivariate decoding, and illustrated in the different interpretation of signal and noise 639 
in a standard statistical framework and the information-based framework. Here, we use four 640 
illustrative examples to highlight how these differences in frameworks may translate into 641 
confusions related to the interpretation of results using multivariate decoding. In particular, we 642 
focus on examples that demonstrate how the theoretical considerations described above may 643 
impact the application and interpretation of multivariate decoding for the study of brain function. 644 
Crucially, these examples do not invalidate the methods used. Rather, they are meant to highlight 645 
potential confusion regarding the motivation of these approaches, their interpretation, and what 646 
may happen when their assumptions are violated. 647 
 648 
1. Interpretation of low decoding accuracies 649 
 650 
In multivariate decoding for prediction, the goal is to build a classifier that can be used in real-651 
world applications. In this approach, decoding accuracies that are close to chance indicate that the 652 
classifier is far from this goal, which questions the usefulness of this approach in practical 653 
applications, either because of data limitations or because of the chosen classifier19. Even though 654 
in multivariate decoding for interpretation the focus is not on real-world applications, it is not 655 
uncommon for researchers (and reviewers) to question low decoding accuracies. This may arise 656 
because decoding accuracy is equated with effect size, and low decoding accuracies are treated as 657 
an indication of a small effect. Consequently, a small effect could be interpreted to indicate that a 658 
variable does not play much of a role in that brain region. 659 

While it is true that for a given analysis classification accuracy reflects the size of an effect, 660 
accuracy does not reflect a standardized measure of effect size such as Cohen’s d. As illustrated in 661 
Figure 4, the accuracy depends heavily on averaging carried out prior to decoding (Allefeld and 662 
Haynes, 2014; Mumford et al., 2012) or the cross-validation scheme used, to name only a few. 663 
Consequently, a high accuracy can reflect a small effect (Combrisson and Jerbi, 2015), and 664 
differences in accuracy need not reflect differences in effect size or statistical power (Ku et al., 665 
2008). Indeed, even accuracies close to chance can carry useful information if they generalize 666 
across the population (Christophel et al., 2015)20. Similarly, accuracies are bound at 100 %, adding 667 
to the difficulty of directly linking accuracy to effect size. Finally, even if decoding accuracy 668 
reflected effect size, it is difficult to interpret accuracy as the importance of that variable in a brain 669 
region, because response patterns may be less distributed in one region as compared to another, 670 
affecting the read-out without reflecting the importance of that region. Thus, if any, accuracy only 671 

                                                
19 There are exceptions, such as stock-market prediction where even a very low prediction accuracy can have enormous 
predictive value.  
20 It may be argued that the actual reason for rejecting low accuracies is not effect size itself, but the idea that reported 
findings reflect a general positive classifier bias, either because of the classifier itself or because of the noise structure 
of the data. Indeed, this has led some researchers to the idea of estimating “empirical chance levels” using permutation 
approaches. Importantly, this caveat applies equally regardless of the accuracy level. When the analysis is free of non-
independence, then a bias reflects an uncontrolled confounding variable (Görgen et al., this issue), and permutation 
approaches cannot easily deal with these cases. 
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reflects a relative measure of effect size, either within a given study across comparable conditions, 672 
or between studies when manipulating individual processing choices (but see Bhandari et al., 673 
2017). Unfortunately, there are no straightforward ways to attain standardized effect size estimates 674 
for multivariate decoding. For example, classical standardized effect size measures such as 675 
Cohen’s d are invariant to averaging by taking into account the number of measurements and their 676 
dependence structure (e.g. temporal autocorrelation). An equivalent way of correcting for the 677 
number of measurements while accounting for correlated measurements is difficult if not 678 
impossible in multivariate decoding. For that reason, until such methods have been developed, it 679 
is probably advisable not to use information estimates derived from multivariate decoding as a 680 
measure of effect size for the comparison between studies, unless those studies use the same 681 
approach for generating results. 682 
 683 

 684 
 685 
Figure 4. The accuracy of a classifier is not a standardized estimate of effect size, because it depends on choices such 686 
as averaging or the cross-validation scheme. For example, classification accuracies will be lower for single image 687 
decoding, but will increase when data within each class are averaged together. However, this need not translate to 688 
increased statistical power, because the accuracy estimate is based on fewer responses, increasing their variability. 689 
The confusion likely arises from the view that high decoding accuracies are necessary for a decoding model to be 690 
useful, which is often true in multivariate decoding for prediction but not multivariate decoding for interpretation.  691 

 692 
2. Interpretation of univariate responses in multivariate decoding results 693 
 694 
In many studies using multivariate decoding, researchers try to evaluate to what degree their results 695 
are reflecting univariate response differences between conditions. The motivation for interpreting 696 
univariate responses in the context of multivariate decoding varies. It might reflect the attempt to 697 
control for confounds that are assumed to lead only to univariate response differences (Coutanche, 698 
2013), or to reveal multidimensional representations beyond “simple” one-dimensional activations 699 
(Davis et al., 2014). Alternatively, the motivation may reflect the idea that a “real” multivariate 700 
pattern is confined to subtle, fine-scale response differences and not mirrored in responses at a 701 
larger spatial scale accessible to classical univariate analysis (Freeman et al., 2011; Op de Beeck, 702 
2010; Swisher et al., 2010). Finally, the motivation may simply be an effort to demonstrate the 703 
superiority of multivariate decoding. As we will see, and important to our discussion, the 704 
interpretation in fact does not reflect a comparison of univariate and multivariate responses, but 705 
what we described as uniform and non-uniform response differences. 706 

One simple approach for getting at the difference in univariate and multivariate responses 707 
is comparing results of two analyses directly, for example by demonstrating a significant result 708 
with multivariate decoding but a null result with classical univariate analysis (for early studies, see 709 
e.g. Eger et al., 2008; Haynes et al., 2007; Kriegeskorte et al., 2007). A more common approach 710 
is to attempt removing univariate response differences between conditions from multivariate 711 
patterns (Jimura and Poldrack, 2012; LaRocque et al., 2013). However, it is unclear what is meant 712 
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exactly be “removal of univariate response differences”, and what would constitute the 713 
“multivariate response” that remains after this removal. 714 

In Figure 5, we depict three scenarios of what could be meant by removing a univariate 715 
response21. In the first scenario, the idea of removing univariate responses is interpreted as 716 
removing any univariate response differences between conditions from every voxel (Figure 5B). 717 
Since a multivariate response difference is based on univariate response differences, this removal 718 
would leave only noise variability as a basis for classification. Using a geometric interpretation 719 
with a space spanned by all voxels, this would correspond to the removal of the centroid of each 720 
condition in voxel space. While this is obviously not a realistic approach, it highlights the 721 
ambiguity of the term “univariate response” in the context of multivariate patterns.  722 

A second possibility is the removal of a uniform response across a pattern that is of the 723 
same sign and amplitude across all voxels, estimated as the mean response across voxels for each 724 
condition separately (Misaki et al., 2010, Figure 5C). This approach most closely matches the 725 
description of “overall activation differences” and is commonly employed in this context 726 
(Coutanche, 2013; Jimura and Poldrack, 2012). In the geometric interpretation, the univariate 727 
response corresponds to the projection of the data onto the (hyper)diagonal of voxel space, and 728 
the removal would shift the distribution of each condition along this diagonal towards 0. The 729 
approach assumes that the “univariate response” is identical in each voxel. However, this 730 
assumption is violated when there are differences in sensitivity between voxels (e.g. voxel 1 731 
generally responds less than voxel 2), which, among others, may be caused by non-uniform 732 
distributions in neural selectivity, differences in neuronal density, differences in vasculature, or 733 
partial volume effects. When there are differences in sensitivity between voxels – which is 734 
almost always the case – this approach leads to incomplete removal of univariate response 735 
difference. In the geometric interpretation, the univariate response would no longer fall on the 736 
diagonal of voxel space, but for some voxels have a shallower angle when their sensitivity is 737 
lower than average, or a steeper angle when their sensitivity is higher than average.  738 

Finally, the removal could refer to the subtraction of the common pattern shared between 739 
all conditions, which reflects a response that is of the same sign across voxels but allows for 740 
differences in sensitivity between voxels (Brouwer and Heeger, 2013, Figure 5D). This common 741 
pattern is estimated by first calculating the mean pattern across conditions and then fitting this 742 
pattern to each condition separately. In the geometric interpretation, this mean pattern would 743 
provide an estimate of the direction of the univariate response that no longer falls on the diagonal 744 
of voxel space, but is otherwise similar to the removal procedure described above. While this 745 
approach allows for a different amplitude in each voxel (Brouwer and Heeger, 2013), it assumes 746 
that the response pattern is only explained by this “univariate response”, an assumption that is 747 
violated as soon as there are additional responses that are not reflections of this univariate 748 
response. In the simplest case, this may be one or more voxels responding strongly irrespective 749 
of the condition. In the more complex case, this may be additional directions in the pattern that 750 
carry meaningful variance. Thus, this approach works only if the univariate response is sufficient 751 
to explain the measured response pattern. 752 

                                                
21 Our discussion does not include the removal of the mean pattern, i.e. the mean response across conditions in each 
voxel. The consequences of this approach – also known as the cocktail blank – have been discussed elsewhere 
(Diedrichsen et al., 2011; Garrido et al., 2013; Walther et al., 2016). We did not include this approach, because the 
goal of this approach usually is not to remove condition-specific “univariate responses”, but to remove a pattern that 
is shared between all conditions. While this is similar to the approach described in Figure 5D (without additional 
scaling), it is not the motivation of this approach to completely remove univariate responses. 
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  Irrespective of the approach, the term “removal of a univariate response” falsely equates 753 
a multivariate response difference with a response difference that is of both positive and negative 754 
sign (a non-uniform response). However, as we have illustrated above, a multivariate response 755 
difference can have both uniform and non-uniform response components. This confusion likely 756 
arises because classical univariate analysis and multivariate decoding are contrasted directly, 757 
without distinguishing the multiple changes that occur when switching between the methods. 758 
While it is relatively simple to remove all univariate responses completely, the actual goal of 759 
removing the signed, uniform component of a response depends on assumptions. Thus, it is 760 
important i) to define what is meant by the removal of univariate responses, ii) to clarify the 761 
motivation for the removal and iii) to know the assumptions underlying this process. In many 762 
cases, signed response differences are a useful source of information to distinguish the categories 763 
of interest and can validly be included in the multivariate decoding analysis. 764 

 765 
 766 

 767 
 768 

Figure 5. Different interpretations of “removal of univariate response” from multivariate pattern. A. Original 769 
patterns. The response pattern is different across the two conditions. B. Removal of all univariate response differences. 770 
This approach removes any univariate differences between conditions from every voxel individually, leaving only the 771 
variability across trials. C. Removal of mean response. For each condition, the “overall activation difference” across 772 
voxels in a pattern is estimated and then removed from the response pattern. D. Removal of common pattern. The 773 
mean response pattern across both conditions is calculated and in another step scaled to optimally fit each individual 774 
response pattern. What remains as the corrected pattern is the (collinear) residuals of this fit. 775 

 776 
3. Interpretation of cross-classification accuracies 777 
 778 
A popular approach in multivariate decoding is the use of cross-classification, which refers to the 779 
ability of a classifier to generalize between different contexts. As has been pointed out above, 780 
classification accuracy can be treated as a lower bound of the information content in a brain region. 781 
If a classifier trained on one context can generalize to data from another context, this demonstrates 782 
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some degree of stability of the representation between both conditions and can be used to assess 783 
associations between cognitive processes (Kaplan et al., 2015). For example, a classifier trained 784 
on objects at one retinal position and tested at another can be used to test whether visual object 785 
representations are position-tolerant (Cichy et al., 2011; Kravitz et al., 2010). Likewise, a classifier 786 
trained on distinguishing items held in visual working memory can be used to test whether those 787 
items are represented similarly when they are the product of a mental rotation (Albers et al., 2013; 788 
Christophel et al., 2015). On neurophysiological data, it has become common to train a classifier 789 
at one point in time and test it at another to see whether it can generalize across time (King and 790 
Dehaene, 2014). 791 

More recently, it has become common to interpret not only whether a classifier can 792 
generalize, but also the degree to which cross-classification is possible. For example, a 793 
representation may only be reported to be location-tolerant and not location-invariant, because the 794 
study demonstrated a decrease in cross-classification performance (Kravitz et al., 2010). Likewise, 795 
cross-classification in generalization across time is becoming more common to infer stable or 796 
dynamic representations (Stokes et al., 2013). 797 

One assumption implicit to interpreting decreases in accuracies during cross-classification, 798 
however, is that a classifier is only sensitive to the signal and not to the noise in the data. However, 799 
as we have pointed out above, a classifier can utilize both signal and noise to carry out 800 
classification, and the classification accuracy depends on both. Consider the simple illustration in 801 
Figure 6A. Here the ability of a classifier to generalize depends on the noise level along the 802 
dimension relevant to the classifier. Consequently, the classification performance can be impaired 803 
when the classifier generalizes to a noisy dataset. To test whether cross-classification is affected 804 
by noise levels, it is possible to assess whether a classifier can extract information from the noisy 805 
dataset in the first place. 806 

 807 

 808 
Figure 6. Effect of noise on cross-classification accuracies. A. Differences in the variability of data can affect cross-809 
classification accuracies, despite there being the same effect in the difference of the multivariate means. However, a 810 
classifier trained on the noisy dataset would not perform well, either. B. Differences in the covariance of data can 811 
affect cross-classification accuracies, even when the general noise level does not vary. Here a classifier trained on 812 
the second dataset would perform equally, showing no asymmetries in classification or cross-classification.  813 

 814 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/158493doi: bioRxiv preprint 

https://doi.org/10.1101/158493
http://creativecommons.org/licenses/by-nc/4.0/


	 23 

A more complex example is shown in Figure 6B. Here, the classifier can distinguish both 815 
classes perfectly. However, cross-classification can be impaired even when the average response 816 
remains the same, but when the noise covariance is different between contexts. In a high-817 
dimensional setting, this scenario depends on whether the direction of this covariance is relevant 818 
to the classifier, for example due to the presence of irrelevant brain responses that a classifier can 819 
filter out. Interestingly, in contrast to the previous example, here classification on the second 820 
dataset alone would reveal unimpaired decoding performance. The degree to which cross-821 
classification is impacted by changes in the noise covariance depends on the intrinsic 822 
dimensionality of the data (Yourganov et al., 2011), which is typically much lower than the number 823 
of voxels. If the intrinsic dimensionality is high, it is unlikely for a classifier to utilize noise 824 
covariance and for changes in noise covariance to affect classification. This situation compares to 825 
the interpretation of weights described by Haufe and colleagues (2014), where noise covariance 826 
affects the weights of a classifier only if this covariance is used by the classifier to suppress noise. 827 
If the classifier is not affected by covariance in the data, the weights will more closely reflect the 828 
signal. Likewise for cross-classification, for data covariance not used by the classifier changes in 829 
the covariance will not affect the cross-classification performance. 830 

Importantly, these examples do not invalidate the use of cross-classification. First, if cross-831 
classification is possible, this demonstrates that signal and/or noise were sufficiently stable. 832 
Second, for cases where relative levels of cross-classification are interpreted, it is well possible 833 
that the assumption of stable noise is justified. Rather than discouraging the use of this method, 834 
our aim is to point out the assumptions underlying cross-classification, which may or may not 835 
matter in practice. Like the assumptions of a statistical test, it is useful to know how violations of 836 
a method’s assumptions can affect the interpretation of results. 837 
 838 
4. Differential estimability of beta weights can lead to spurious decoding results  839 
 840 
Multivariate decoding is commonly carried out on beta estimates from a GLM, which represent 841 
the conditions of interest. Beta estimates are often based on individual trials or the entire time-842 
series, and different approaches have been suggested for their estimation in the context of 843 
multivariate decoding (Mumford et al., 2012). The estimability of a beta weight describes the 844 
expected variability of its estimation across many experiments. Among others, this estimability 845 
depends on the efficiency of the regressor, which can be calculated analytically (Dale, 1999). More 846 
variability in a regressor improves the estimability, and linear dependencies with other regressors 847 
reduce it. This has consequences for experimental designs in which the estimability is different 848 
between experimental conditions. For example, different number of trials entering each regressor 849 
can lead to differences in variability of the estimated beta weights, even in the absence of an effect 850 
(Görgen et al., this issue). Similarly, if the regressor of one condition exhibits a stronger linear 851 
dependence with the regressor of another condition, this affects the variability. In practice, this 852 
may happen for example when one condition is followed more often by a behavioral response than 853 
another, when one condition is more often preceded by a cue, or when stimulus jitter is not 854 
controlled appropriately. In Figure 3B, we described how a classifier can exploit differences in 855 
variability between conditions, despite the absence of differences in multivariate means. In the 856 
concrete example in Figure 7, this means that differences in estimability will lead to differences in 857 
classification, even when the data of both conditions come from the same distribution. That is, a 858 
classifier can perform above chance, because the estimability of the parameters in both conditions 859 
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is different, not because there is a difference in the data. Importantly, this is an issue with the 860 
experimental design, not with the method used to attain pattern estimates22.  861 
 862 

 863 
Figure 7. How differences in estimability between conditions can contribute to decodability despite an absence of 864 
differences in the data. The beta weights for Condition A can be estimated quite well, because this regressor is largely 865 
orthogonal to the other regressors, while the regressor for Condition B is non-orthogonal to the regressor of Condition 866 
C. As a consequence, on average, both beta estimates will be close to the true value. However, since the regressor for 867 
Condition B is non-orthogonal with Condition C, the estimation will be more variable. Classical methods would not 868 
reveal any differences between conditions. In contrast, as has been illustrated in Figure 3C, a multivariate classifier 869 
can pick up this difference in variability, which can lead to above-chance decoding accuracies even in the absence of 870 
any difference in the data. The reason for this discrepancy lies in the different meaning of signal and noise in the 871 
standard statistical framework and the information-based framework. 872 

 873 
6. Strategies to resolve the confusions in multivariate decoding 874 
 875 
In this article, we have described the current use of multivariate decoding for studying brain 876 
function and have highlighted confusions that arise from two issues. First, multivariate decoding 877 
was developed originally for making predictions and not for interpretations related to brain 878 
function. These different approaches, prediction and interpretation, have their own assumptions 879 
that may conflict with each other. Second, while multivariate decoding is embedded in an 880 
information-based philosophy, our thinking is still largely embedded in an activation-based 881 
philosophy, and we have demonstrated in this article that these philosophies are not always 882 
compatible. Further, the tools for statistical inference have been borrowed from the activation-883 
based philosophy, adding to this confusion. 884 

Moving forward, we suggest multiple strategies to resolve these confusions. Regarding the 885 
confusion of multivariate decoding for prediction vs. interpretation, we have two suggestions. 886 
First, we recommend researchers be more explicit about the goal of carrying out their multivariate 887 

                                                
22 Note that this effect is different than a recently described bias in representational similarity analysis that occurs 
when using collinear regressors (Cai et al., 2016), because it more generally refers to the estimability of regressors, 
rather than only to their collinearity. While in principle it may be possible to at least correct for bias induced by 
collinear regressors by using the parameter estimate covariance matrix, this still needs to be demonstrated in practice 
and is expected to work less well under low signal-to-noise regimes. In contrast, the multivariate encoding methods 
described below do not lead to biased estimates. 
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decoding analysis. Is the goal building a predictive model that can serve as a biomarker for real-888 
world applications, i.e. is the goal read-out of variables from the brain and maximal decodability? 889 
Or is the goal to learn more about the function of the brain? For a study of brain function, 890 
decodability in and of itself is not the goal; instead, the goal is what this decodability implies. 891 
Second, once this goal has been defined, we suggest researchers adapt their analysis specifically 892 
to this goal and not simply adopt existing dogmas in their analyses that may not apply to their goal. 893 
For example, as noted above, multivariate decoding for prediction necessitates high predictive 894 
value and out-of-sample prediction, but allows exploiting any consistent properties of the data. In 895 
contrast, multivariate decoding for interpretation does not require maximal prediction, but carries 896 
additional assumptions about what variables constitute signal and noise. 897 

Regarding the confusion of multivariate decoding in the activation-based and information-898 
based framework, we suggest two different strategies. First, when using multivariate decoding one 899 
approach is to carefully consider the assumptions that come with this approach and acknowledge 900 
the caveats this places on interpretation. As discussed above, these assumptions need not be 901 
limitations but can also expand our view of the representational architecture of the brain. Take the 902 
interpretation of the variability of measurements. On the one hand, successful decoding based on 903 
differences in variability may be perceived as an artifact, because information should only arise 904 
from signal, not from noise distributions. On the other hand, if this variability can be read out from 905 
a brain region, in principle it might also be used by another brain region as meaningful information. 906 
What matters in this context is whether differences in variability of measurements can be attributed 907 
meaningfully to neural variability, or whether they reflect other sources of noise that are unrelated 908 
to local changes in brain activity. In some cases, it may be difficult to know the assumptions and 909 
properties of a novel analysis strategy, despite us describing many properties of multivariate 910 
decoding in this article. In that case, we recommend the “Same Analysis Approach” that provides 911 
a principled approach to detect and avoid unanticipated properties of novel analysis methods 912 
(Görgen et al., this issue). 913 
 To limit the potential for confusion, a second strategy may be to employ alternative 914 
methods that increase sensitivity and specificity without requiring all the assumptions of an 915 
information-based philosophy, and that reduce the number of differences between classical 916 
univariate analysis and multivariate decoding. For example, cross-validated MANOVA (CV-917 
MANOVA) is a powerful and versatile multivariate encoding method (Allefeld and Haynes, 2014) 918 
that provides cross-validated distance estimates that are estimates of the discriminability of 919 
variables of interest. CV-MANOVA is intimately related to the popular cross-validated 920 
Mahalanobis (crossnobis) distance estimate that is based on the linear discriminant (Walther et al., 921 
2016). However, CV-MANOVA can directly be applied to time-series data, allows for estimating 922 
standardized effect sizes and provides all features of the linear model, including the use of multiple 923 
independent variables, the use of continuous variables, and the study of their interaction. Both CV-924 
MANOVA and the crossnobis distance carry assumptions about signal and noise that are defined 925 
by the linear model, and using these methods the equivalent analysis for cross-classification does 926 
not suffer the interpretational difficulties discussed above. In the future, it may be possible to 927 
develop multivariate encoding approaches that allow researchers to choose between the study of 928 
uniform and non-uniform responses without cross-validation, which could prove fruitful when the 929 
focus lies on “overall response differences”. Researchers who are interested in the representational 930 
content of multidimensional representations or who want to test multiple competing 931 
representational models may use encoding models based on representational features derived from 932 
computational models, representational similarity analysis (Kriegeskorte et al., 2008), or pattern 933 
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component modeling (Diedrichsen et al., 2011; Diedrichsen et al., 2017), the merits of which have 934 
been discussed in detail elsewhere (Diedrichsen and Kriegeskorte, 2017). 935 
 Having laid out the interpretational complexities of multivariate decoding, a critical reader 936 
may more generally question the usefulness of multivariate decoding for the study of brain 937 
function. Indeed, we believe alternative approaches for testing discriminability of brain measures, 938 
such as CV-MANOVA (Allefeld and Haynes, 2014) or the crossnobis distance estimate (Walther 939 
et al., 2016), may in many cases provide equal or higher sensitivity, while being more explicit 940 
about the assumptions, closer to our intuitions of signal and noise, and thus suffer from fewer 941 
interpretational difficulties. Both approaches are freely available in published software packages, 942 
(e.g. Allefeld and Haynes, 2014; Hebart et al., 2014a; Nili et al., 2014), making it easy to adopt 943 
them in research practice. Therefore, we think that in many cases researchers may want to consider 944 
departing from the use of multivariate decoding and use multivariate encoding methods instead. 945 
This switch would have the additional advantage of perhaps reducing the false sense of certainty 946 
that multivariate decoding offers direct measures of representational content, rather than being 947 
subject to similar interpretational ambiguities as standard statistical methods (Ritchie et al., 2017). 948 

It is, however, worth noting that multivariate decoding for studying brain function has 949 
unique merits. It is sensitive to differences in the distributions of the data that multivariate encoding 950 
methods are not always sensitive to, unless modeled explicitly. In addition, some have suggested 951 
that, under certain circumstances and in conjunction with encoding methods, it is possible to use 952 
decoding to draw causal inferences about brain representations (Weichwald et al., 2015). 953 
Therefore, the choice of using multivariate decoding or switching to alternative methods should 954 
depend on the goal of the analysis (multivariate decoding for prediction vs. multivariate decoding 955 
for interpretation), on whether a researcher prefers a method with more explicit assumptions, and 956 
on the performance of the method in practice. 957 
 In summary, we believe that the use of multivariate decoding for interpretation can provide 958 
unique and valuable insights into brain function. We hope that our discussion of multivariate 959 
decoding helps clarify its role as an analysis method in the neurosciences, and that it aids 960 
recognition of the proper limitations and assumptions of this method in the study of brain function. 961 
 962 
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