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Abstract:	
	
We	 recently	 showed	 that	 the	 time-structure	based	 independent	 component	 analysis	method	
from	 Markov	 state	 model	 literature	 provided	 a	 set	 of	 variationally	 optimal	 slow	 collective	
variables	 for	Metadynamics	 (tICA-Metadynamics).	 In	 this	 paper,	we	 extend	 the	methodology	
towards	efficient	sampling	of	protein	mutants	by	borrowing	ideas	from	transfer	learning	methods	
in	machine	learning.	Our	method	explicitly	assumes	that	a	similar	set	of	slow	modes	and	states	
are	found	in	both	the	wild	type	and	its	mutants.	Under	this	assumption,	we	describe	a	few	simple	
techniques	using	sequence	mapping	for	transferring	the	slow	modes	and	structural	information	
contained	in	the	wild	type	simulation	to	a	mutant	model	for	performing	enhanced	sampling.	The	
resulting	simulations	can	then	be	reweighted	onto	the	full-phase	space	using	MBAR,	allowing	for	
thermodynamic	comparison	against	the	wild	type.	We	first	benchmark	our	methodology	by	re-
capturing	 alanine	 dipeptide	 dynamics	 across	 a	 range	 of	 different	 atomistic	 force	 fields	 after	
learning	a	set	of	slow	modes	using	Amber	ff99sb-ILDN.	We	next	extend	the	method	by	including	
structural	data	from	the	wild	type	simulation	and	apply	the	technique	to	recapturing	the	affects	
of	the	GTT	mutation	on	the	FIP35	WW	domain.		
	 	
Introduction:	
Efficient	sampling	of	protein	configuration	space	remains	an	unsolved	problem	in	computational	
biophysics.	While	algorithmic	advances	in	molecular	dynamics	(MD)	code	bases1	combined	with	
distributed	 computing	 hardware2,	 specialized	 chips3,	 and	 large-scale	 increasingly	 faster	 GPU	
clusters	have	provided	routine	access	to	microsecond	timescale	dynamics,	there	is	still	room	for	
significant	improvements.	One	such	potential	avenue	is	predicting	the	affects	of	mutations	onto	
the	protein’s	free	energy	landscape.	Under	the	current	scheme,	one	would	have	to	re-run	our	
entire	 simulation	 in	order	 to	ascertain	 the	affects	of	a	mutation	onto	a	protein’s	 free	energy	
landscape.	Due	to	the	vast	amount	of	computational	resources	required	for	even	one	simulation,	
most	current	MD	papers	run	one	simulation	in	a	single	force	field	for	a	single	protein.	However,	
considering	 the	 important	 role	 of	 mutagenesis	 experimentally	 as	 biophysical	 probes,	 the	
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biological	role	of	SNPs	in	medicine	and	disease,	as	well	as	phylogenic	and	evolutionary	questions	
connecting	mutations,	often	there	are	hundreds	to	thousands	of	mutations	(or	more)	that	would	
be	relevant	for	simulation.		Instead,	the	predictions	from	these	simulations	are	extrapolated	to	
other	conditions	but	those	changes/mutations	are	often	not	explicitly	tested	in-silico.	While	such	
hypothesis	 generation	 is	 useful	 for	 guiding	 future	 work,	 the	 gap	 between	 extrapolated	
predictions	and	experimental	realization	is	large..	
	
There	is	an	obvious	scaling	problem	between	the	computational	and	time	cost	of	unbiased	MD	
and	the	number	of	interesting	mutants	that	could	be	investigated	using	simulation.	For	example,	
there	are	several	hundred	known	protein	kinases4,5	with	each	having	tens	to	hundreds	of	known	
mutants.	 These	 kinases	 have	 critical	 protonation	 and	 phosphorylation	 sites	 that	 significantly	
affect	their	free	energy	landscapes6,7.	To	predict	these	mutations’	effects,	do	we	need	to	re-run	
an	entirely	new	simulation	on	 the	mutated	protein?	Are	modern	 force	 fields	even	capable	of	
elucidating	 such	 effects?	 Even	 if	 we	 assume	 an	 accurate	 enough	 force-field8,9,	 how	 do	 we	
efficiently	sample	these	mutants	or	perhaps	even	propose	new	novel	variants	to	be	probed	via	
experimental	assays.	Arguably,	for	MD	to	decrease	the	gap	between	theoretical	hypothesis	and	
experimental	 realization,	 an	 ability	 to	 efficiently	 sample	 the	 effects	 of	mutations	 is	 required.	
Since	unbiased	MD	is	too	slow,	we	turn	to	enhanced	sampling.			
	
While	enhanced	sampling	methods	such	as	Metadynamics	or	Umbrella	sampling	offer	promise,	
they	 require	 identification	 of	 a	 set	 of	 collective	 variables	 (CVs)10	 to	 sample	 along.	
Metadynamics10–13	 can	 be	 thought	 of	 as	 computational	 sand	 filling	 along	 CV	 of	 interest	 to	
enhance	sampling	between	kinetically	separate	regions.	Therefore,	these	CVs	should	correlate	
with	the	slowest	structural	degrees	of	freedom	within	the	system,	and	exclusion	of	slow	modes	
leads	to	hysteresis	and	convergence	issue12,14.	For	example,	even	for	the	simplest	test	cases	such	
as	 capped	 Alanine	 dipeptide,	 hysteresis	 can	 arise	 if	 we	 choose	 the	 faster	𝜓	 coordinate	 for	
enhanced	sampling.		
	
Given	all	of	these	problems	with	enhanced	sampling	algorithms,	we	instead	aim	to	solve	a	simpler	
problem.	What	if	we	are	given	unbiased	MD	simulations	for	the	wild	type	(WT)	and	we	wish	to	
learn	the	dynamics	for	a	closely	related	mutant?	The	mutant	could	correspond	to	a	change	in	
force	field,	an	amino	acid	substitution,	post-translational	modifications,	or	even	an	alternative	
drug	in	the	case	of	drug-binding	simulations.	We	expect	that	these	mutants	likely	sample	a	very	
similar	 free	 energy	 landscape,	 albeit	 with	 different	 thermodynamics	 and	 kinetics.	 Could	 we	
design	 a	 better	 sampling	 scheme	 by	 transferring	 knowledge	 from	 the	WT	 simulation	 to	 the	
mutant?		
	
Transfer	learning15,16	is	a	method	from	the	machine	learning	literature	where	knowledge	learnt	
from	modeling	one	task	is	transferred	to	the	model	for	the	purpose	of	learning	another	task.	We	
wish	to	replicate	a	similar	effect	in	molecular	modeling	where	we	transfer	the	knowledge	learnt	
from	a	protein’s	wild	type	to	a	simulation	of	its	mutant.	Ultimately,	we	aim	to	efficiently	sample	
the	mutant	to	predict	affects	of	force	field	changes,	post	translation	modifications,	and/or	amino-
acid	substitutions	etc.	
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The	idea	of	knowledge	transfer	is	not	new	in	computational	biophysics.	Researchers	constantly	
use	homology	modeling17	to	create	models	for	systems	which	have	not	been	crystallized	or	select	
CVs	 for	 enhanced	 sampling	 simulations10	 based	 upon	 an	 intuition	 learnt	 from	 failed	 runs,	
literature	search,	or	previously	published	modeling	work	on	homologous	systems.	However,	this	
is	often	done	in	an	ad-hoc	or	heuristic	fashion.	For	example,	it	might	be	difficult	to	find	the	“right”	
template	 for	homology	modeling	when	a	 large	set	of	similar	sequence	 identity	structures	are	
available.		
	
We	 hypothesize	 an	 efficient	 use	 of	 transfer	 learning	 would	maximally	 leverage	 the	 reaction	
coordinates,	thermodynamic,	and	structural	information	contained	in	the	WT	simulation.	Our	key	
results	stem	from	recognizing	that	protein	mutants	sample	a	similar	set	of	free-energy	minima	
connected	via	similar	slow	modes.	Our	model	assumes	that	these	slow	modes	involve	the	same	
set	of	residues	across	the	WT	and	mutant	sequences	and	all	that	remains	are	identifying	those	
slow	modes	(Figure	1)	in	the	WT	simulation12	and	transferring	them	on	to	a	mutant	simulation.			
	
We	 propose	 transferring	 information	 from	 the	WT’s	 tICA	 (time-structure	 based	 independent	
component	analysis)	model	 and	MSM	 (Markov	 state	model)	 to	 the	mutant	Metadynamics	or	
Umbrella	 sampling	 simulations	 (Figure	 1).	 tICA	 is	 a	 dimensionality	 reduction	 technique18–21	
capable	of	 finding	reaction	coordinates(tICs)	within	the	dataset.	are	kinetic	models	of	protein	
dynamics	that	model	the	dynamics	as	memory-less	jump	processes.	tICA	was	initially	used	as	a	
dimensionality	reduction	process21	for	defining	the	Markov	models’	state	space	though	it	was	
later	shown	that	both	tICA	and	MSM	solve	the	same	problem22	of	approximating	the	underlying	
transfer	operator,	albeit	with	a	differing	choice	of	basis.	The	tICA19–21	method	has	non-linear18	
extensions	 available	 which	 significantly	 improve	 its	 descriptive	 abilities.	 Furthermore,	 a	
variational	 principle22	 for	 tICA	 and	 MSMs	 allows	 a	 researcher	 to	 systematically	 validate23	
modeling	 parameters	 to	 potentially	 integrate	out	 subjective	modeling	 decisions.	We	 recently	
showed	 that	 these	 tICs21	 provided	 a	 set	 of	 excellent	 CVs	 for	 enhanced	 sampling	 via	
Metdaynamics12	or	other	 schemes.	 Therefore,	we	hypothesize	 the	answer	 lies	 in	 transferring	
these	tICs	over	from	one	simulation	to	another.		
	
But	how	do	we	transfer	these	slow	tICA	coordinates?	At	this	point	it	is	worth	recalling	that	tICA	
is	a	linear	combination	of	input	features12,18,19,21,24.	These	input	features	are	a	set	of	real	numbers	
encoding	the	protein’s	conformational	state	and	concretely	might	be	dihedrals	or	contacts	or	
RMSD	to	a	set	of	 landmark	points.	Furthermore,	 these	features	might	be	the	result	of	a	non-
linear	transform	such	as	a	Guassian	kernel12,24.	Therefore,	what	we	wish	to	compute	are	these	
protein	strucutral	features	for	a	new	closely	related	sequence	(Figure	1).	For	this,	we	will	need	to	
determine	 a	 set	 of	 features	 that	 can	 be	 applied	 to	 both	 the	 WT	 and	 mutant	 system	 after	
performing	a	structural	or	sequence	alignment	(Figure	1).	For	example,	this	might	involve	figuring	
out	the	equivalent	atom	indices	for	backbone	dihedrals/contact	distances/rmsds	etc	that	make	
up	the	set	of	features	used	to	construct	the	WT’s	tICA	model.	Once	such	a	mapping	has	been	
established,	it	 is	straightforward	to	transfer	the	linear	combinations	that	make	up	the	slowest	
modes	for	enhanced	sampling	simulations.	 	 In	practice,	we	find	we	only	have	to	modify	small	
parts	 of	 input	 scripts	 that	 are	 fed	 into	 Plumed25	 for	 performing	 the	 enhanced	 sampling	
simulations.		
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Our	method	explicitly	makes	the	following	set	of	assumptions:	
1).	The	wild	type	and	mutant	proteins	occupy	similar	set	of	configurations	in	phase	space,	are	
connected	via	similar	pathways,	and	have	a	similar	set	of	slow	modes.		
2).	The	wild	type	simulation	captures	a	large	portion	this	accessible	phase	space,	and	tICA	and	
MSMs	correctly	enumerate	these	slowest	modes.		
3).	We	can	calculate	equivalent	features	for	the	mutant	and	WT	proteins.			
	
There	has	been	some	previous	work	in	using	MSMs	for	efficient	sampling	of	protein	mutants.	In	
particular,	 Voelz	 et	 al.26	 used	 an	 information	 theoretic	 approach	 to	 find	maximally	 surprising	
changes	 to	 a	mutant	MSM	 for	 performing	 new	 rounds	 of	 iterative	 sampling.	 However,	 their	
approach	 requires	 at	 least	 partial	 convergence	 of	 a	 rudimentary	 mutant	 MSM	 before	 such	
comparisons	can	be	made.	The	amount	of	 sampling	 required	 to	make	 this	 rudimentary	MSM	
could	easily	exceed	the	sampling	of	the	WT,	e.g.	if	the	mutation	slows	down	the	dominant	kinetics	
by	an	order	of	magnitude.	Furthermore,	at	least	initially,	the	rudimentary	mutant	MSM	is	likely	
to	have	large	statistical	uncertainties,	potentially	leading	to	false	positives	for	the	suprisal/self-
information	 distance	metric	 proposed	 in	 the	 paper26.	 Here,	 we	 are	 approaching	 the	mutant	
problem	from	a	fundamentally	different	perspective	that	aims	to	cannibalize	all	available	data	in	
the	WT	MSM.	
	

	
Figure	1:	Pictorial	representation	for	the	presented	method.	Starting	from	the	WT	simulation,	we	first	calculate	wild	type	protein	
features.	We	then	reduce	the	dimensionality	keeping	only	the	slowest	modes	in	the	system.	We	then	transfer	the	tIC	loadings	to	
the	mutant	for	faster	sampling	of	the	mutant.		
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Transferable	tICA-Metadynamics	is	an	efficient	way	to	sample	mutations		
We	begin	by	showing	as	a	simple	proof	of	concept	that	the	dynamics	of	alanine	dipeptide	can	be	
re-captured	across	several	FFs	after	learning	the	slowest	modes	in	the	“WT”	model	(Amber99sb-
ildn8).	We	downloaded	a	previously	generated	dataset27	that	contained	4𝜇s	of	capped	Alanine	
dipeptide	run	using	the	Amber99sb-ildn	force	field	(FF)8.	We	then	trained	a	tICA	model	on	the	
backbone	 dihedrals	 at	 a	 lagtime	of	 1ns.	 As	 shown	 in	 Figure	 2a,	 the	 tICA	model	 captures	 the	
slowest	mode	as	corresponding	to	movement	in	and	out	of	the	𝛼$	basin	while	the	next	mode	is	
flux	in	and	out	of	the	𝛼& 	basin.	We	next	ran	bias-exchange10,11	tICA-Metadynamics	simulations	in	
3	different	FFs	 (Amber99sbiln,	Charmm27,	and	Amber03).	The	exact	parameters	 for	 the	well-
tempered	Metadynamics	runs	are	given	in	SI	table	1,	though	we	empirically	found	that	a	range	
of	parameters	worked.	All	MD	trajectories	were	 run	 in	 the	NPT	ensemble	with	a	MonteCarlo	
Barostat	(1	atm),	a	Langevin	integrator	(300	K),	and	a	2	fs	timestep.	We	used	the	PME	method28	
to	handle	long	range	electrostatics	using	a	1nm	cutoff.	The	simulations	were	performed	on	GPUs	
using	OpenMM29,1	and	Plumed25.	After	running	the	Metadynamics	simulation,	we	combined	the	
data	across	the	two	tICs	using	Multi-state	Bennett	Acceptance	Ratio	(MBAR)30,31	algorithm.	For	
each	simulated	frame,	we	used	the	last	reported	bias	across	the	tIC	CVs	as	an	estimate	for	input	
into	the	MBAR	algorithm.		
The	results	are	given	in	Figure	2b	and	2c.	We	explicitly	projected	the	Charmm27	and	Amber03	
datasets27	 using	 Amber99sb-ildn’s	 state	 decomposition,	 allowing	 us	 to	 compare	 the	 models	
across	 force	 fields	without	 having	 to	worry	 about	 state	 equivalence.	 It	 can	 be	 seen	 that	 our	
sampling	 scheme	efficiently	 learns	 the	differences	between	 the	dynamics	upon	mutating	 the	
force	field	from	Amber99sb-ildn	to	Charmm27	or	Amber03	(Figure	2b).	For	example,	the	𝛼$	basin	
in	Amber03	 is	significantly	higher	 in	 free-energy	(Figure	2c)	compared	to	Amber99sb-ildn	and	
Charmm27.		
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Figure	2:	Transferable	tICA-Metadynamics	is	an	efficient	method	to	understand	the	effect	of	mutations.	a).	Top	two	slowest	tIC	
modes	 for	 capped	 Alanine	 learnt	 from	 unbiased	 MD	 using	 the	 Amber99sbildn	 model.	 b).	 Scatter	 plot	 of	 MSM	 microstate	
populations	versus	the	tICA-Metadynamics	inferred	microstate	populations.	The	error	bars	represent	two	standard	deviations	and	
are	 obtained	 by	 10	 rounds	 of	 bootstrapping.	 We	 used	 Amber99sbildn’s	 state	 definition	 across	 all	 3	 FFs	 for	 a	 systematic	
comparison.	 c).	 Reweighting	 the	 starting	 Ambe99sb-ildn	MD	 dataset	 using	 tICA-Metadynamics	 population	 across	 3	 FFs.	 The	
0kcal/mol	is	defined	using	Amber99sb-ildn’s	most	heavily	populated	state.		

Transferable	tICA-Metadynamics	can	use	Wild	type	simulation’s	structural	data	by	coupling	to	
a	MSM	structural	reservoir	
Up	to	this	point,	our	modeling	efforts	have	only	focused	on	using	the	slow	tICs	within	the	WT	
simulation	for	efficiently	sampling	the	mutant.	This	might	be	sufficient	for	small	peptides	systems	
but	 is	unlikely	to	work	for	 large	systems	due	to	for	example	missing	structural	features	 in	the	
construction	of	our	tICA	coordinates.	While	we	could	systematically	improve	the	quality	of	our	
tICA	model	 via	 the	 variational	 analysis22,	 there	 is	 always	 a	 finite	 chance	of	missing	 structural	
degrees	of	freedom.	To	overcome	this,	we	recommend	coupling	the	Metadynamics	simulations	
to	a	structural	reservoir	containing	structures	sampled	from	the	WT	MSM	simulation	(Figure	3a).	
Then,	all	that	remains	is	creating	a	proposal	distribution	and	an	acceptance	criterion	for	inserting	
the	 WT	 MSM	 state	 into	 the	 mutant	 Metadynamics	 simulation	 (Figure	 3a).	 Ordinary	 Bias-
Exchange10,32	swaps	protein	coordinates	according	the	following	criterion:	
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𝑃())*+, = min	(1, exp 𝛽 𝑉( 𝑥(, 𝑡 + 𝑉< 𝑥<, 𝑡 − 𝑉( 𝑥<, 𝑡 − 𝑉< 𝑥(, 𝑡 )	

	
where	𝑉( 𝑥(, 𝑡 	is	the	Metadynamics	bias	potential	acting	on	coordinates,	𝑥(,	of	replica	a	at	time	
t.	However,	since	a	MSM	structural	reservoir	has	no	external	bias	acting	on	it,	we	change	the	
swap	probability	to	an	insertion	(from	MSM	to	Metadynamics)	probability:		
	

𝑃?@A*B,	CDC→,FGH	D?IJK(,?L@ = min	(1, 	exp 𝛽 𝑉( 𝑥(, 𝑡 − 𝑉( 𝑥CDC, 𝑡 )	
	
where	𝑥CDC	are	the	coordinates	for	the	MSM	state	under	consideration.	If	accepted,	the	MSM	
state	 is	 put	 into	 the	mutant	Metadynamics	 simulation.	 Given	 enough	 sampling,	 this	 scheme	
resembles	a	Metropolis	step.	To	improve	the	acceptance	probability,	we	used	the	WT	Markovian	
transition	model	to	propose	a	transition	state	after	figuring	out	the	mutant’s	current	MSM	state	
within	the	simulation.	Using	the	WT	transition	matrix	provides	an	excellent	proposal	distribution	
since	we	hypothesize	that	the	mutant	only	minimally	perturbs	certain	elements	of	the	matrix.	
Our	reservoir	approach	is	similar	to	the	high-temperature	reservoir	introduced	by	Okur	et	al33,	
though	 in	this	 instance,	the	ensemble	of	structures	 is	obtained	via	a	regular	MD	run,	and	the	
proposal	is	dealt	using	the	WT	transition	matrix.	While	the	WT	MSM	transition	matrix	serves	as	
an	excellent	proposal	distribution	it	is	also	possible	to	use	other	proposal	distributions	such	as	
the	 uniform	 distribution.	 Furthermore,	 several	 sampling	 techniques	 from	 the	 MonteCarlo	
literature	such	as	the	Wang-Landau	scheme	can	be	employed	as	well.	We	note	that	for	mutant	
simulations,	generating	this	MSM	state	reservoir	would	require	additional	steps	of	homology17	
modeling,	minimization	and	equilibration,	though	this	is	a	pleasantly	parallelized	problem.		
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Figure	3:	 tICA-Metadynamics	 can	be	used	 to	understand	 the	effects	of	mutations	upon	 folding	 simulations	 .	a).	Model	of	 the	
multiple	walkers’	swap	scheme	used	within	this	example.	The	double	sided	arrows	indicate	swap	attempts	while	the	single	sided	
arrows	indicate	insertion	attempts	from	the	MSM	state	reservoir.	b).	Left	Panel:	Exchange	timescales	for	the	backbone	dihedral	
and	contact	tICA	model	built	using	the	Anton	WW-FIP	mutant	simulation	data.	We	decided	to	sample	every	coordinate	up	to	the	
second	one	(dashed	line)	because	all	other	modes	had	exchange	timescales	<=	100ns.	b).	Right	Panel:	tIC	loading	for	the	dominant	
folding	tIC	shows	that	it	is	a	complex	combination	of	both	the	WW’s	backbone	dihedrals	and	contacts.	The	inset	shows	the	contact	
distances	used	to	build	the	model	with	the	most	important	(highest	tIC	loading)	distances	shown	in	green.	c).	PMFs	obtained	from	
the	Metadynamics	simulations	using	the	scheme	highlighted	in	a).	The	GTT	mutants’	unfolded	state	is	de-stabilized	relative	to	the	
folded	state.	 In	both	cases,	we	used	the	WW-FIP	mutant	to	define	the	0kcal/mol.	The	total	amount	of	sampling	across	all	the	
walkers	 was	 about	 1-2𝜇𝑠	 per	 mutant.	 d).	 Comparison	 of	 the	 Anton-MSM	 state-populations	 vs.	 the	MBAR	 reweighted	 tICA-
Metadynamics	 results.	 The	MSM	error	 bars	 represent	 two	 standard	deviations	 obtained	 via	 10	 rounds	of	 bootstrapping.	 The	
legend	 shows	 both	 the	 sampling	 per	 mutant,	 and	 the	 correlation	 coefficients	 between	 the	 MSM	 thermodynamics	 vs	 the	
Metadynamics	 populations.	 Protein	 images	 were	 generated	 using	 VMD34,	 while	 the	 graphs	 were	 generated	 using	 IPython	
Notebook35	and	MSMExplorer36.	

Lastly,	it	is	possible	to	use	a	neutral	replica	within	this	setup.	The	neutral	replica	has	no	external	
bias	acting	on	it	and	approximately	samples	from	the	canonical	distribution.	However,	if	a	neutral	
replica	is	used,	we	recommend	only	allowing	the	neutral	replica	to	swap	with	the	biased	replicas	
since	an	appropriate	asymptotically	correct	swapping	criterion	for	swapping	between	the	neutral	
replica	and	the	MSM	state	reservoir	doesn’t	exist.		
	
We	tested	our	methodology	by	predicting	the	effects	of	the	GTT	mutation	upon	the	folding	of	
the	WW	 domain3,37,38.	 We	 began	 by	 learning	 a	 tICA	 model	 (50ns	 lagtime)	 on	 the	 backbone	
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dihedrals	and	selected	contacts	for	the	WT	mutant	(WW-FIP).	We	kept	the	top	15	tICs,	and	made	
a	MSM	at	a	50ns	lag	time	on	a	200	state	model.	Our	tICA	model	indicated	that	the	slowest	mode	
(Exchange	 time	 scale	 >	 1	 𝜇𝑠)	 corresponded	 to	 the	 folding	 while	 the	 second	 slowest	 mode	
(Exchange	time	scale	>	100	ns)	corresponded	to	formation	of	an	off-pathway	register	shifted	state	
(Figure	3b-c).	 	 Since	every	 subsequent	 slow	 tIC	mode	has	exchange	 timescales	of	 less	 than	~	
100ns,	we	chose	to	focus	our	sampling	on	these	two	tICs.	We	ran	the	simulations	for	both	the	
FIP35	 WT	 protein	 and	 the	 GTT	 triple	 mutant	 for	 a	 more	 systematic	 comparison.	 Similar	 to	
previous	work37,	all	the	simulations	were	performed	in	the	NVT	ensemble	with	a	2fs	time	step	at	
395K.	We	used	the	PME	method28	to	handle	long	range	electrostatics	using	a	1nm	cutoff.	The	
simulations	 were	 performed	 on	 GPUs	 using	 OpenMM29,1	 and	 Plumed25.	 After	 running	 the	
Metadynamics	simulations,	we	used	MBAR	to	re-weight	to	the	MSM	state	space	and	obtained	
the	PMFs	along	the	dominant	tIC.	All	relevant	simulations	parameters	are	shown	in	SI	Table	2.		
	
The	results	for	both	of	our	enhanced	sampling	simulations	is	given	in	Figure	3d.	Two	different	
insights	emerge	from	our	enhanced	sampling	scheme	relative	to	the	Anton	results	(SI	Figure	1).	
Similar	to	the	Anton	simulations,	our	FIP	unfolded	state	(Figure	3d,	tiC	value	>-0.25)	has	a	distinct	
two	state	behavior.	Basin	 ‘C’	corresponds	to	the	unfolded	and	collapsed	state.	This	basin	also	
includes	an	off-pathway	register	shifted	state.	The	second	high	free-energy	basin	(Figure	3d,	B)	
is	 an	 on-pathway	 intermediate	 state	where	 two	 of	 the	 three	 beta-strands	 have	 formed.	 The	
unfolded	state	in	our	ensemble	is	more	populated	than	in	the	Anton	simulations.	These	on	and	
off-pathway	 intermediate	 states	were	 not	 detected	 in	 the	 original	 two-state	 folding	 reaction	
coordinate	for	the	WW	domain37,38	though	it	was	later	found	from	the	simulations	using	a	variety	
of	 techniques39.	We	 note	 that	 our	 tICA	 analysis	was	 able	 to	 identify	 the	 on-pathway	 folding	
intermediate	and	the	off-pathway	state	as	the	top	two	slowest	modes	(tICs)	within	our	model.		
	
As	can	be	seen	 in	Figure	3c-d,	our	 simulations	 indicate	 that	 the	GTT	mutant	de-stabilizes	 the	
unfolded	state	and	the	on-path	intermediate	state,	leading	to	increased	folded	population	and	
faster	 folding	 timescales.	 These	 results	 are	 in	 line	 with	 the	 previous	 computational	 and	
experimental	 work37	 though	 our	 simulations	 required	 about	 200-300x	 less	 aggregate	
sampling(~1-3𝜇𝑠	vs	600𝜇𝑠).	More	importantly,	the	current	sampling	was	performed	in	parallel	so	
that	 no	 single	 walker	 had	 to	 be	 run	 for	more	 than	 50-200ns	 (~3-7	 days	 on	 K40	 GPUs	 using	
OpenMM1	 and	 Plumed25).	 We	 also	 believe	 it	 might	 be	 possible	 to	 optimize	 this	 further	 by	
modifying	the	Metadynamics	parameters	and	Metropolis	swap	schemes/rate.		
		
	
Transferable	tICA-Metadynamics	can	use	Wild	type	simulation’s	thermodynamic	data	as	a	prior	
for	the	underlying	free	energy	landscape		
Lastly,	 we	 turn	 to	 efficiently	 using	 the	 thermodynamic	 information	 contained	 in	 the	 WT	
simulation.	To	that	end,	we	recommend	using	the	WT	simulation	to	 identify	minimum	values	
along	 each	 tIC	 coordinate,	 aka	 the	 thermodynamic	 minima,	 to	 plug	 into	 a	 variant	 of	
Metadynamics,	 namely	 Transition-Tempered	 Metadynamics	 (TTMetaD)40.	 In	 TTMetaD,	 the	
Gaussians	heights	are	scaled	according	to	the	number	of	trips	between	basins.	We	also	believe	
that	 it	 is	 possible	 use	 to	 the	 WT	 free	 energy	 surface	 as	 a	 Bayesian41	 prior	 for	 the	 mutant	
Metadynamics	simulation	,	though	that	is	beyond	the	scope	of	this	work.	The	latter	might	involve	
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starting	 off	with	 a	 ‘partially’	 constructed	 free	 energy-landscape	 such	 that	 the	Metadynamics	
engine	only	has	to	fill	in	the	regions	that	are	different	between	the	WT	and	the	mutant.		
	
Our	current	results	open	up	several	interesting	avenues	for	future	work.	For	example,	up	to	this	
point,	 we	 have	 only	 focused	 on	 enumerating	 the	 thermodynamic	 differences	 between	 the	
mutants.	However,	the	recent	work	in	kinetic	reweighting	either	via	Maximum	caliber42	,	TRAM43,	
or	 plain	 transition	 state	 theory	 could	 potentially	 be	 used	 to	 obtain	 the	 an	 estimate	 for	 the	
mutants’	perturbed	kinetics.	This	raises	the	intriguing	possibility	of	getting	estimates	for	both	the	
kinetic	and	thermodynamics	of	a	mutant	simulation	for	a	miniscule	fraction	of	the	WT’s	compute	
cost.		An	excellent	application	for	this	would	be	the	ability	to	predict	changes	in	a	drug’s	binding	
and	unbinding	kinetics.	Our	approach	explicitly	includes	all	of	the	protein’s	slow	conformational	
modes,	in	addition	to	the	drug	binding	mode—making	it	more	accurate.				
	
One	possible	problem	with	our	current	approach	is	the	determination	of	how	far	we	can	move	
away	from	the	WT	in	sequence	space	before	the	transfer	approach	fails.	Are	the	tICs	learnt	from	
a	 WT	 simulation	 applicable	 to	 a	 sequence	 with	 minimally	 sequence	 similarity?	 What	 is	 the	
distance	metric	and	how	do	we	define	minimal?	A	similar	problem	is	faced	in	homology	modeling,	
where	the	quality	of	the	model	depends	on	the	underlying	sequence	conservation.	It	is	possible	
that	the	heuristic	value	of	40-50%	sequence	identity	cutoff	used	in	homology	modeling	might	be	
applicable	here	too,	but	we	concede	that	that	value	is	simple	conjecture	at	this	point.		
	
A	more	 involved	 solution	 to	 this	problem	 is	 to	 consider	 clustering	 the	entire	 sequence	 super	
family.	 	For	example,	 there	are	518	known	human	kinases5.	One	could	potentially	cluster	 the	
sequences	using	evolutionary	distance	metrics	into	m	representative	sequence	clusters,	where	
m	is	the	number	of	possible	unbiased	simulations	that	can	be	performed.	Those	m-	simulations	
are	then	run	and	analyzed	via	tICA	and	Markov	models.	It	is	worth	noting	that	the	simulations	for	
the	m	 sequences	 are	 perfectly	 parallelizable,	 allowing	 for	 synergistic	 collaborations	 between	
different	research	institutes.	For	all	other	sequences,	we	can	then	use	the	tICs	from	its	closest	
cluster	center	or	perhaps	even	combine	the	tICs	from	the	k	nearest	neighbors.		
	
To	 summarize,	 we	 present	 a	 new	method	 Transferable	 tICA–Metadynamics	 for	 the	 efficient	
sampling	 of	 protein	 mutations	 by	 transferring	 the	 reaction	 coordinates,	 structural,	 and	
thermodynamic	data	from	the	WT	simulation	to	the	mutant.	Our	method	explicitly	assumes	that	
the	WT	and	the	mutant	share	a	similar	set	of	slow	modes.	Under	this	assumption,	we	then	show	
that	the	slow	modes	of	the	WT	can	be	transferred	to	the	mutant	simulation	by	computing	an	
equivalent	set	of	protein	structural	features.	This	requires	using	a	protein	structural	alignment	to	
identify	 equivalent	 residues	 which	 is	 readily	 possible	 using	 modern	 software44,45.	 We	
benchmarked	 our	 method	 on	 two	 test	 cases	 showing	 how	 switching	 force	 field	 in	 alanine	
dipeptide	 causes	 shifts	 in	 the	 propensity	 and	 location	 of	 the	 	𝛼$	 basin,	 and	 recapturing	 the	
previous	results	that	the	GTT	mutant	of	WW	domain	stabilizes	the	active	state.		
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