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Abstract 18 

The intrinsic uncertainty of sensory information (i.e., evidence) does not necessarily deter an 19 

observer from making a reliable decision. Indeed, uncertainty can be reduced by integrating 20 

(accumulating) incoming sensory evidence. It is widely thought that this accumulation is 21 

instantiated via recurrent rate-code neural networks. Yet, these networks do not fully explain 22 

important aspects of perceptual decision-making, such as a subject’s ability to retain accumulated 23 

evidence during temporal gaps in the sensory evidence. Here, we utilized computational models 24 

to show that cortical circuits can switch flexibly between ‘retention’ and ‘integration’ modes 25 

during perceptual decision-making. Further, we found that, depending on how the sensory 26 

evidence was readout, we could simulate ‘stepping’ and ‘ramping’ activity patterns, which may be 27 

analogous to those seen in different studies of decision-making in the primate parietal cortex. This 28 

finding may reconcile these previous empirical studies because it suggests these two activity 29 

patterns emerge from the same mechanism. 30 

 31 
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Introduction 37 

One of the fundamental operations of the brain is to transform representations of external sensory 38 

stimuli (i.e., sensory evidence) into a categorical judgment, despite the inherent uncertainty of this 39 

sensory evidence. For instance, we can determine the direction of the wind, even though its 40 

instantaneous direction continuously fluctuates. It is widely thought that this moment-by-moment 41 

uncertainty is minimized by temporally integrating (accumulating) this incoming sensory 42 

evidence1–4. Potential neural correlates of this accumulation process have been identified in a 43 

variety of brain areas, including the lateral intraparietal cortex (area LIP)2,3,5, the prefrontal cortex6, 44 

and the frontal eye fields7. In particular, spiking activity in these brain areas appears to smoothly 45 

‘ramp up’ (accumulate; i.e. linearly increasing activity over time) prior to a perceptual decision. 46 

Further, the rate of this accumulation, which governs the time to reach a decision threshold (i.e., 47 

the time to the perceptual decision),  is correlated with the ambiguity of the sensory evidence: as 48 

the evidence becomes less ambiguous (e.g., the instantaneous fluctuations in wind direction 49 

decrease), the rate of the ramping increases3.  50 

Such neural integration has been modeled in two very different ways, each of which relies on 51 

different coding strategies and mechanisms of integration1. In the first type of model, rate-code 52 

neural integrators (NI) integrate sensory evidence and represent accumulated evidence as 53 

monotonically increasing (‘ramping’) spiking activity. In this rate-code model, the firing rates of 54 

individual neurons increase over time in response to continuous inputs2,3,8. In an alternative model, 55 

location-code NIs store accumulated evidence as the location of highly elevated spiking activity. 56 

In such a location-code NI, the location of these highly active neurons, which are referred to as a 57 

‘bump’, travels through a network over time9,10. That is, the location of bump activity corresponds 58 

to the total amount of accumulated evidence.  59 
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Because ramping activity has been found in several studies of perceptual decision-making1,3, it is 60 

generally believed that a rate-code NI is the natural circuit candidate for neural integration of 61 

sensory information. However, recent behavioral studies have questioned whether a rate-code NI 62 

can, in fact, accurately capture the dynamics of perceptual decision-making. For example, a 63 

temporal gap between stimulus presentations has little impact on the accuracy of an observer’s 64 

behavioral choices11,12, indicating that accumulated evidence can be maintained during this 65 

temporal gap. Yet, during this gap, the firing rates of neurons in a rate-code NI are likely to deviate 66 

from the desired values if the network is perturbed even slightly11. This deviation can occur 67 

because a rate-code NI’s feedback (recurrent) inputs and its leaky currents have to be precisely 68 

balanced in order to maintain the desired values during such temporal gaps11,13.  69 

Further, the nature of neuronal activity during decision-making calls into question the suitability 70 

of rate-code NIs. Traditionally, as noted above, decision-making activity, at both the single-71 

neuronal and population level, was thought to be best described as ramping activity2,3,5. However, 72 

recent studies indicate that, whereas population-level activity can be thought of as ramping, single-73 

neuronal activity may be better described as discrete ‘steps’ (changes) in neuronal activity14–16. If 74 

this stepping activity is an accurate descriptor of decision-making activity, it follows that rate-code 75 

NIs may not be an appropriate model: because single-neuron activity and population-level activity 76 

in rate-code NI are completely correlated in rate-code NIs, it is not clear how single-neuron 77 

stepping activity can become population-level ramping activity.  78 

In contrast to a rate-code NI, a location-code NI can maintain stable states even in the absence of 79 

external inputs9. Further, neurophysiological studies have identified sequential activation that is 80 

similar to this propagation of bump activity17–21, and a theoretical study22,23 proposed that such a 81 

network can be constructed out of commonly found depressing synapses24–29. Inspired by these 82 
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findings, we constructed a computational model of cortical circuits with depressing synapses to 83 

test the hypothesis that a location-code NI is a viable model for perceptual decision-making. 84 

We found that, like previous location-code NIs, a neurobiologically inspired network can sustain 85 

bump activity at a specific location when there is a temporal gap in sensory evidence, whereas 86 

sensory evidence causes bump activity to propagate through the network. Our model is unique in 87 

that it is based on depressing synapses and the interplay between two commonly found inhibitory 88 

neuron  types30,31. We also found that the sensory evidence, which is stored as the location of bump 89 

activity, could be readout in two different modes, depending on the connections with downstream 90 

readout neurons. When the connectivity between integrator and downstream readout neurons was 91 

dense, readout neurons predominantly showed classic ramping activity as the sensory evidence 92 

was accumulated into a decision variable1,3,5. In contrast, when the connectivity was sparse, 93 

readout neurons predominantly exhibited stepping activity16; that is, the firing rate of individual 94 

neurons changed from one state to another transiently, whereas population activity gradually 95 

ramped over time. This observation predicts that either ramping or stepping modes can emerge, 96 

depending on the connectivity. This dual-readout mode may, in part, reconcile the degree to which 97 

components of decision-making are encoded as ramping- or stepping-like spiking activity.  98 

  99 
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Results  100 

This section describes how cortical circuits can implement a lossless integrator. The first 101 

subsection describes simulation results suggesting that generic cortical circuits (Fig. 1A), which 102 

contain two common types of inhibitory neurons and depressing synapses, can readily realize a 103 

lossless (‘perfect’) location-code NI. The second subsection discusses bifurcation analyses of 104 

abstract models of rate- and location-code NIs, which were conducted to examine how reliably 105 

these two types of NIs can retain sensory evidence during temporal gaps in the sensory evidence. 106 

In the third subsection, we propose a location-code NI that can have continuous attractors (Fig. 107 

1B). Finally, we discuss how evidence accumulated in our integrators can be readout by 108 

downstream neurons. Interestingly, this readout activity maps onto two different modes of spiking 109 

activity that have been identified during neurophysiological studies of decision-making: classic 110 

‘ramping’ activity2 and newly identified ‘stepping’ activity16. 111 

Cortical circuits can readily implement lossless location integrator 112 

Cortical circuits have three common properties that are relevant for our model. First, pyramidal 113 

(Pyr) neurons in sensory cortex are topographically organized as a function of their sensory 114 

response profiles via spatial32,33 and functional34 connections. Second, cortical circuits also contain 115 

parvalbumin positive (PV) and somatostatin positive (SST) inhibitory interneurons30. PV neurons 116 

have a fast-spiking pattern of activity, whereas SST neurons have a low-threshold spiking pattern. 117 

For our purposes, it is important to note that, although most inhibitory interneurons are broadly 118 

tuned to sensory inputs, the response profiles of SST neurons can be as sharply tuned as those of 119 

Pyr neurons35. Third, via lateral inhibition, SST neurons inhibit neighboring cortical neurons36–39. 120 
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 121 

Figure 1: The structure of the two versions of our integrator. (A), Connectivity between all 19 neuronal 122 

populations in the discrete integrator. (B), Interconnectivity between the 17 Pyr-SST populations; see 123 

Methods and Tables 1 and 2 for more details and parameters. Red and blue arrows indicate excitatory and 124 

inhibitory connections within the network model, respectively. Dashed and thick black arrows represent 125 

onset and sustained stimulus inputs, respectively. (C), Structure of continuous integrator. The five neuronal 126 

populations (Pyr, PV1, PV2, SST1, and SST2) interact with each other via connections shown in the figure. 127 

The thin red arrows and blue arrows represent the excitatory and inhibitory connections between individual 128 

neurons, respectively. In contrast, the thick arrows (including red and blue) show connections between the 129 

neuronal populations. All connections between populations are randomly established. Sensory inputs are 130 

introduced to Pyr, PV1 and PV2 (dashed arrows). Periodic boundary condition is used to connect Pyr cells, 131 

as shown in the red arrow; see Methods and Table 3 for more details and parameters. 132 
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Based on previous modelling studies22,23 that proposed propagating bump activity can be elicited 133 

by depressing synapses, we built a cortical network model (Fig. 1A), in which Pyr neurons 134 

interacted with one another through intra-population depressing synapses24–29 and inter-population 135 

unidirectional static synapses. We refer to this cortical network model as the ‘discrete’ integrator; 136 

see Methods for more details. Transient sensory stimuli (100 ms), which mimicked sensory-driven 137 

onset responses in sensory cortex40–43, only drove Pyr cells in the first population. In contrast, 138 

sustained sensory stimuli (after 100 ms) drove Pyr neurons in all neuronal populations. In our first 139 

simulation, we only provided Pyr and PV neurons with sensory evidence at two discrete time 140 

intervals: time=100-300 ms and during time=800-1000 ms.  141 

As seen in Fig. 2A, the Pyr populations were sequentially activated by sensory stimulation. Further, 142 

on average, both populations of PV neurons were more active during sensory stimulation than 143 

during the temporal gap (Fig. 2B). More importantly, when there was a temporal gap in the sensory 144 

evidence (as indicated by the black double-headed arrow in Fig. 2A), the sequential activation of 145 

the network stopped but activity was maintained by a specific population of Pyr neurons (Pyr 146 

population 5 in Fig. 2A). That is, during a temporal gap in the sensory evidence, the network 147 

retained the accumulated information, a finding that is consistent with lossless integration. When 148 

we presented the second sensory stimulus, information resumed propagating through the network 149 

as seen by the sequential activation of Pyr population 6, followed by population 7, etc.  150 

When we explored the network in more detail, we found key roles for the inhibitory neurons and 151 

for the depressing synapses. For example, SST neurons were active only during the temporal gap 152 

(Fig. 2C) and that bump activity did not propagate when we replaced the depressing synapses with 153 

static synapses (Fig. 2D). We also noted that the non-specific feedback inhibition of PV1 neurons 154 

play a key role to activate an appropriate population of neurons (i.e., Pyr population 6 in Fig. 2A,  155 
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 156 

Figure 2: The responses of populations of the discrete integrator. (A), Spiking activity of Pyr neurons 157 

in all 17 neuronal populations; each population had 400 Pyr neurons. Each row in the plot shows the spike 158 

times of an individual Pyr neuron. Each of the 17 populations are shown in a different color; see legend for 159 

the color codes of a subset of these populations. The red and black arrows show sensory-stimulus periods 160 

and the temporal gap between them, respectively. During a 1000 msec-long simulation, we noted that only 161 

8 populations were activated. (B), PV1 and PV2 activity during the sensory-stimulus periods and the 162 

temporal gap between both. Both PV populations contained 1088 PV neurons. (C), SST neuron activity in 163 

all 17 populations; there are 16 SST neurons in each population. The same color scheme is used as in (A). 164 

SST neurons became active only during the temporal gap, and they belong to the same population.  (D) Pyr 165 

activity when all depressing synapses are replaced with static ones.  166 
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following the temporal gap). Without this inhibition, when we presented the second sensory 167 

stimulus, Pyr population 1 (which was activated by the first initial 100-ms of sensory stimulation) 168 

was inappropriately activated. This altered the amount of accumulated information (supplemental 169 

Fig. 1).  170 

The stability of sensory evidence during a temporal gap in location-code NIs and in 171 

rate-code NIs 172 

Next, we asked whether a location-code NI could retain sensory evidence during a temporal gap 173 

more reliably than a rate-code NI. To address this question, we created close-form firing-rate 174 

models that described the rate- and location-code NIs. We modeled a rate-code NI with a single 175 

recurrent neural population1 (Equation 1; see the inset of Fig. 3A), whereas we modeled a location-176 

code NI with two recurrent neural populations because it relies on the sequential activation of 177 

neurons (Equation 2).  178 

The firing rate of the rate-code recurrent network obeys Equation 11:  179 

𝜏𝑚
𝑑𝐹𝑒

𝑑𝑡
= −𝐹𝑒 + 𝐹𝑚𝑎𝑥

1

[1+𝑒−𝛽(𝑟𝐹𝑒+𝐸−𝜃)]
 ,                                                                                            (1) 180 

where Fe and r are the firing rate and recurrent connection strength, respectively; Fmax is the 181 

maximum firing rate; θ is the spiking threshold; E is the external input; and β represents the 182 

strength of stochastic inputs44. Fe represents the leak current. The selected default parameters are 183 

Fmax=20, β=1, θ=0.5, r=1 and E=0, unless stated otherwise. We modeled the gain (transfer function; 184 

i.e., the number of spikes that a neuron can generate in response to afferent synaptic activity) with 185 

a logistic function44. The firing rate of this neuron increases, as r increases, which represents the 186 

relative strength of recurrent inputs; in our model, r is dimensionless. 187 
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We tested the stability of this rate-code NI during a temporal gap, in which external inputs are 188 

absent (i.e., E=0), by conducting a bifurcation analysis with the XPPAUT analysis platform45. A 189 

bifurcation analysis identifies the steady-state solutions, in which a system can stay indefinitely 190 

until perturbed. Moreover, this analysis clarifies whether the steady-state solutions are stable in 191 

response to perturbations of the bifurcation parameters (which, in our analysis, is either the 192 

strength of the recurrent connections r or the external inputs E; see the inset of Fig. 3A). That is, 193 

we tested if a rate-code NI is stable in response to small changes in either recurrent inputs or 194 

external inputs.  195 

In Figs. 3A and B, the stable and unstable steady-state solutions are shown in red and black, 196 

respectively. As seen in these figures, this recurrent rate-code NI (Equation 1) has only two stable 197 

attractor states, in which neurons either fire at their maximum rate (Fmax) or become quiescent. 198 

This implies that if there is a small perturbation in the strength of the recurrent connections or if 199 

there are changes in the sensory stimuli (e.g., a temporal gap in the incoming sensory information, 200 

E=0), this network could lose temporally accumulated information11.  201 

The dynamics of a location-code NI relies are captured with the following equations (Equation 2):  202 

𝜏𝑚
𝑑𝐹1

𝑑𝑡
= −𝐹1 + 𝐹𝑚𝑎𝑥

1

[1+𝑒−𝛽(𝑟𝐹1−𝑟𝑚𝐹2+𝐸1−𝜃)]
  203 

𝜏𝑚
𝑑𝐹2

𝑑𝑡
= −𝐹2 + 𝐹𝑚𝑎𝑥

1

[1+𝑒−𝛽(𝑟𝐹2−𝑟𝑚𝐹1+𝐸2−𝜃)]
                                                                                   (2) 204 

Each of the two populations had their own recurrent connections (r) and interacted with each other 205 

via lateral connections (rm); see Figure 3C. This mutual inhibition models the lateral inhibition 206 

mediated by SST and PV neurons in our computational model (Fig. 1). In its initial state, we 207 

assumed that population 1 fired at the maximum rate, and population 2 was quiescent; that is, 208 
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population 1 had  bump activity. We tested the stability of this network by examining its response 209 

to perturbations in the recurrent connections within a population (r), the external inputs (E1, E2) to 210 

populations 1 and 2, or the lateral interactions (rm) between the two populations.  211 

 212 

Figure 3: The bifurcation analysis of rate- and location-code NIs. (A) and (B), Bifurcation analyses 213 

with the recurrent connections (r) and the external inputs (E) as bifurcation parameters for the recurrent 214 

rate-code network model, respectively; the schematics this network model is shown in the inset of (A). (C), 215 

Schematic of the reduced model of location-code NI. (D)-(F) Bifurcation analysis of the firing rate of 216 

population 1 with respect to within-population recurrent connections (r) and external input to populations 217 

1 and 2 (E1, E2), respectively. (G) and (H), Bifurcation analysis of firing rate of populations 1 and 2, 218 

respectively, in terms of the lateral interactions (rm). Red and black lines represent stable and unstable 219 

steady solutions, respectively. Pop: neuronal population.  220 

 221 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/158865doi: bioRxiv preprint 

https://doi.org/10.1101/158865


13 
 

Three main findings emerged from this analysis. First, as the recurrent-connection stregnth (r) 222 

increased, the network remained stable (Fig. 3D). Second, the network remained stable as we 223 

increased E1 (i.e., the external input to population 1; the red lines in Fig. 3E) but became unstable 224 

(i.e., population 1 lost its bump activity) when E1 was reduced (black lines in Fig. 3E). On the 225 

other hand, as shown in Fig. 3F, the network became unstable when E2 (i.e., the external input to 226 

population 2) increased, but it became stable when E2 decreased. In other words, the noise 227 

introduced into quiescent populations needed to be regulated in order for the network to reliably 228 

retentain information. Finally, the lateral interactions (rm) strongly impacted the stability of the 229 

network. When rm was positive but small (i.e., weak mutual inhibition), the network became 230 

unstable (the black lines in Fig. 3G). In contrast, when rm was positive and large (i.e., strong mutual 231 

inhibition), population 1 reliably retained bump activity (Fig. 3G), and population 2 remained 232 

quiescent (Fig. 3H). That is, as long as population 1 retained bump activity intially, the mutual 233 

inhibition helped population 1 keep its bump activity. When the two populations excited each other 234 

(i.e., negative rm), neurons in both populations fired at the maximum rate (Figs. 3G and H). In this 235 

case, bump activity was not confined to population 1, indicating that a readout of bump activity 236 

based on location was not an accurate reflection of the accumulated evidence.  237 

In brief, these analyses illustrate noticeable difference between rate- and location-code NIs. The 238 

rate-code NI encodes sensory evidence with different values of firing rate, but its steady-state 239 

response during a temporal gap is not stable (Figs. 3A and B). That is, it would lose evidence quite 240 

readily if there were even small perturbations during a temporal gap11. In contrast, a location-code 241 

NI is stable during a temporal gap (Figs. 3D and G), if the recurrent connecitons within a 242 

population and a mutual inhibition are sufficiently strong. Thus, during temporal gaps in sensory 243 

evidence, location-code NIs can potentially retain evidence more relibably than rate-code NIs. 244 
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 245 

Continuous location-code neural integrator 246 

The discrete location-code NI (Fig. 1A) has limited precision: the accumulated evidence needs to 247 

be quantized to be stored in the discrete populations. This limitation, however, is not a fundamental 248 

restriction because this discrete network can be generalized to have continuous attractor states by 249 

distributing Pyr and SST neurons into circular lattices with uniquely assigned coordinates (Fig. 250 

1C). We call this a ‘continuous lossless integrator’. For convenience, we refer to the direction from 251 

lower to higher coordinates as the clockwise direction and higher to lower as counterclockwise. 252 

Two Pyr neurons were connected in this network if the difference between their coordinates was 253 

≤200. Because the connections were symmetrical, each Pyr neuron made excitatory synapses with 254 

400 of its neighboring Pyr neurons.  255 

All Pyr and SST neurons formed non-specific connections with PV1 neurons. PV2 neurons 256 

exclusively provided feedforward inhibition to SST1 neurons. The connections between Pyr 257 

neurons and SST neurons were formed based on their coordinates in the circular lattice. (1) Pyr 258 

neurons made one-to-one synaptic (‘topographic’) connections with SST1 and SST2 neurons, when 259 

they had the same coordinates. (2) A SST1 neuron inhibited a Pyr neuron when the (absolute) 260 

difference between their coordinates was ≥200. (3) A SST2 neuron inhibited a Pyr neuron when 261 

the coordinate of a Pyr neuron was lower than that of a SST2 neuron and when the (absolute) 262 

coordinate difference was between 400 and 800. Because of this connectivity pattern, the 263 

propagation of bump activity in the counter-clockwise direction was dampened, which is possible 264 

with symmetrical chain-like recurrent connections, and only bump activity in the clockwise 265 

direction propagated through the network.  266 
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In our first analysis, we examined whether our continuous integrator could integrate sensory 267 

evidence (see Table 3 for model-parameter details). To test this integrator, we first presented a 268 

transient sensory input (time=100-200 ms) to the first 400 Pyr neurons (i.e., those with the lowest 269 

coordinates), followed by a more sustained sensory stimulus (time=100-1000) to all Pyr and PV 270 

neurons.  As seen in Fig. 4A, this transient sensory stimulus elevated the rate of spiking activity 271 

strongly enough to generate bump activity. However, once generated, the feedback inhibition 272 

mediated by the PV1 neurons was strong enough to prevent all other excitatory neurons from 273 

spiking during the presentation of this transient sensory stimulus.  274 

After the offset of this transient input, bump activity propagated to other Pyr neurons in the 275 

clockwise direction (Fig. 4A). Due to the periodic boundary condition, bump activity repeatedly 276 

circulated the integrator. In our model, because excitatory synapses had not fully recovered, when 277 

the bump activity returned to the initial location, it dissipated. As a consequence, the non-specific 278 

inhibition mediated by PV1 neurons became weaker, which, in turn, resulted in Pyr activity at 279 

multiple locations (see Pyr cell activity after 500 ms in Fig. 4A). Concurrently, PV1 and PV2 280 

neurons fired asynchronously (Fig. 4B). SST1 neurons were quiescent (Fig. 4C), but SST2 neurons, 281 

which received excitation from Pyr via topographic connections, mimicked Pyr activity (Fig. 4D). 282 

This SST2 activity prevented bump activity from propagating in the counterclockwise direction 283 

due to its asymmetrical feedback inhibition onto Pyr neurons.  284 

Next, we tested whether this network could perform lossless integration. Like the discrete neural 285 

integrator, we presented two epochs of sensory stimuli (time=100 and 300 ms and time=800-1000 286 

ms) that were separated by a period without sensory stimulation. For simplicity, we did not 287 

consider the onset input at 800 ms because this input had no impact on the network dynamics in 288 

the discrete integrator (Fig. 2A). As seen in Fig. 4E, bump activity cascaded through the network 289 
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until there was a temporal gap in the sensory evidence. During the temporal gap, bump activity 290 

remained in the same location. Then, it resumed moving from the previous location, as information 291 

was reintroduced, consistent with lossless integration.  292 

 293 

Figure 4: Integration of sensory inputs with and without temporal gaps. (A)-(D), Spiking activity in 294 
Pyr, PV (PV1 and PV2), SST1 and SST2 neurons in response to constant sensory input. During stimulus 295 
presentation (100-1000 ms, marked as the red arrow), the location of bump propagates through the circular 296 
lattice: PV neurons fire asynchronously. SST1 neurons are quiescent, whereas SST2 activity mimics Pyr 297 
activity. (E)-(F), Raster plots of Pyr, PV, SST1 and SST2 activity, respectively, when there was a temporal 298 
gap between stimulus presentations. During the gap (300-800 ms, marked by the black arrow), SST1 299 
neurons became active, and the bump activity of Pyr neurons stayed at the same location.  300 

 301 

As in the discrete integrator, during the temporal gap in sensory information, the PV1 and PV2 302 

neurons (Fig. 4F) became quiescent. As a result, the inhibition from the PV1 and PV2 neurons to 303 
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the SST1 neurons was reduced, which, thereby, increased SST1 activity (Fig. 4G). The firing 304 

pattern of SST2 neurons was comparable to that of the Pyr neurons (Fig. 4H). Because the SST1 305 

neurons were topographically connected to Pyr neurons, the SST1 inhibited non-active Pyr neurons, 306 

which prevented bump activity from propagating to a new location. Together, this transforms the 307 

network into an effective attractor network. 308 

Next, we asked whether the dynamics of our model depended on the strength of the sensory 309 

evidence. We asked this question because  neurophysiological experiments have clearly shown 310 

that the rate of accumulation of sensory evidence is positively correlated with the strength of 311 

sensory evidence, which is, subsequently, negatively correlated with reaction time3. In classic rate-312 

code NIs, the firing rate increases more rapidly when sensory evidence is stronger, which readily 313 

explains the correlation between reaction-time and sensory evidence strength1.  314 

In contrast, in location-code NIs, the bump location represents accumulated evidence. Thus, the 315 

propagation of bump activity would need to change as the strength of the sensory evidence changed. 316 

To address this possibility, we calculated the travel time between adjacent Pyr neurons as a 317 

function of the strength (in terms of firing rate) of the sensory inputs (evidence); the strength of 318 

the sensory evidence is controlled by α in Equation 3. Indeed, as shown in Fig. 5A, the travel time 319 

and α were inversely correlated. In other words, analogous to changes in the firing rates of rate-320 

code NIs, as we increased the strength of the sensory evidence, bump velocity increased; examples 321 

of the propagation of bump activity through the network as a function of different values of α are 322 

shown in Fig. 5B. 323 
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 324 

Figure 5: The continuous integrator was sensitive to the strength of the sensory inputs. (A), The travel 325 
time between consecutive Pyr neurons was inversely dependent on the strength of the sensory inputs; α 326 
represents the strength of the inputs to both Pyr and PV1 cells (Equation 3). (B), Examples of propagating 327 
bump activity as a function of different values of α. 328 

 329 

Decision-making with location-code NIs 330 

Popular decision-making models, such as sequential-sampling models,  suggest that a perceptual 331 

decision is made by comparing the incoming evidence to determine the most probable choice 332 

among all available choices4,46. For instance, in a race model, evidence for two (or more) 333 
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alternatives is accumulated until a decision threshold is reached; the alternative that reaches the 334 

boundary first would be the perceptual decision. Alternatively, evidence can be accumulated until 335 

a set time and then the alternative with the most accumulated evidence is taken as the perceptual 336 

decision. The former and latter were referred to as ‘absolute’ and ‘relative’ criterion (i.e., 337 

thresholds)46, respectively. Our location-code NIs can readily explain evidence integration, which 338 

suggests that these lossless integrators may be a candidate mechanism underlying race models.  339 

Below, we propose a neural circuit that can compare the evidence accumulated in location-code 340 

NIs and produce a decision based on absolute or relative thresholds. In this work, we limit 341 

ourselves to consider two only alternatives (akin to a two-alternative forced-choice task); due to 342 

the assumption of interdependency of integrators, it is straightforward to extend the model to 343 

operate with multiple choice tasks.  344 

Selective and exclusive connections between integrators and readout neurons can 345 

implement an absolute threshold for decision-making 346 

The location of bump activity in the integrator (relative to the initial point of bump generation) can 347 

represent an absolute threshold for a single alternative. If the decision requires a comparison of 348 

two alternatives, it is necessary to find the integrator in which the bump activity arrives first at the 349 

‘threshold’ neurons. We noted that earlier biologically-plausible models of decision-making relied 350 

on two recurrent populations with lateral inhibition46,47. Although the details vary over models, in 351 

principle, two recurrent populations represent two alternatives, and the decision is represented by 352 

the exclusive activation of one of two populations; due to lateral inhibition, this exclusive 353 

activation corresponds to an attractor state in the system. Inspired by these studies, we examined 354 

if two recurrent populations, which interacted with each other via lateral inhibition, can detect the 355 

moment and the identity of integrator when the bump activity arrives first at one integrator’s 356 
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threshold neurons. As seen in Fig, 6A, we built two integrators (1 and 2), each of which was 357 

connected to a distinct population of readout neurons (i.e., the recurrent network). We assumed 358 

that the last 100 (out of 4000) Pyr neurons in each integrator were ‘threshold’ neurons, and the two 359 

readout neuronal populations in the model mutually inhibited each other via di-synaptic inhibition 360 

(Fig. 6A). 361 

In the simulations, we titrated the strength of sensory evidence between the two integrators: 362 

integrator 1 (i.e., alternative 1) had stronger sensory inputs (α=8) than integrator 2 (i.e., alternative 363 

2; α=3); see Equation 3. As seen Fig. 6B, the bump activity reached the threshold neurons (i.e., the 364 

last 100 Pyr neurons) faster in integrator 1 due to the stronger sensory evidence. We also noted 365 

that the readout neurons, which were exclusively connected to the threshold neurons, fired 366 

persistently even after the threshold neurons stopped firing (Fig. 6C), which was maintained via 367 

recurrent connections within the readout neurons. That is, the readout neurons not only detected 368 

the moment of crossing of threshold but also can store the decision (at least temporarily). These 369 

results suggest that the exclusive connections between the integrator and readout neurons can be a 370 

realization of an absolute threshold model of decision-making.  371 
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 372 

Figure 6: Readout schemes for decisions based on absolute thresholds. (A), We assumed that there two 373 
continuous location-code integrators (top and bottom of schematic) and that 50 (out of 100) randomly 374 
chosen threshold neurons (i.e., the last 100 of the 4000 Pyr neurons in each continuous integrator) projected 375 
to excitatory neurons (E) in one of two readout neuronal populations. E neurons projected to other E and 376 
inhibitory readout neurons (I) within the population, and the connection probabilities for E-E and E-I 377 
connections were 0.3 and 0.1, respectively. The connection probabilities of cross-population connections 378 
and inhibitory connections were 0.5 and 0.1, respectively.  The strengths of the excitatory and inhibitory 379 
connections were 0.12 and 0.72 pA. (B), Raster plot of the two integrators. The first and second integrators 380 
are represented in red and blue, respectively. Because the first integrator had stronger stimulus inputs than 381 
the second one, bump activity propagated faster in the first integrator than in the second. The thick black 382 
vertical line represents the threshold neurons. (C), Raster plots of two populations of readout neurons, 383 
shown in red and blue, respectively.  384 
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Gradient connections can implement relative thresholds for decision-making 385 

A relative threshold requires readout neurons to track the accumulated evidence in both integrators, 386 

whenever necessary. The mechanism described above cannot track this information because the 387 

readout neurons are agnostic about the location of bump activity until it reaches the threshold 388 

neurons. 389 

In contrast, if the readout neurons are connected to Pyr neurons in integrators via a connection 390 

probability that linearly increases as a function of the coordinates of integrator’s Pyr neurons, it is 391 

possible to realize a relative threshold. Pyr neurons in the integrator 1 projected to excitatory 392 

neurons in readout neuronal population 1 and inhibitory neurons in readout neuronal population 2. 393 

Integrator 2 is connected to readout neurons in an analogous manner (Fig. 7A). This gradient 394 

connection is consistent with the notion that synaptic connectivity (connection probability) decays 395 

over distance48. The maximal connection probability p0 in the model can determine the overall 396 

number of connections between the integrator and readout neurons.  397 

Because integrator 1 received stronger sensory inputs (α=8) than integrator 2 (α=3), bump activity 398 

in the two integrators propagated at different speeds (Fig. 7B). As seen in Fig. 7C, readout neuronal 399 

population 1 had more activity than population 2. Further, its activity increased until bump activity 400 

returned to the initial location (due to the periodic boundary condition), suggesting that the spiking 401 

activity of readout population 1 reflected the difference between evidences. This observation is 402 

consistent with this network implementing a relative threshold for decision-making.  403 

We also found that the spiking activity of readout population 1 is correlated with the difference in 404 

the sensory strength of sensory evidence between the two integrators (Fig. 7D). The average firing 405 

rate of readout neurons increased faster when the difference in sensory evidence between the two 406 

alternatives was stronger, which further supports our idea that this gradient-connection network 407 
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can implement a relative threshold for decision-making. In addition, the spiking activity of the 408 

readout neurons in population 1 can grow more rapidly when a higher p0 is chosen (Fig. 7E), which 409 

is evidence that that denser connections between the integrators and the readout neurons lead to 410 

faster decision times.  411 

 412 

Figure 7: Readout schemes for decisions based on relative thresholds. (A), We assumed that there two 413 
continuous integrators (top and bottom of schematic) and that each Pyr neurons in each continuous 414 
integrator projected to excitatory neurons (E) in one of two readout neuronal populations. The connection 415 
probability (p) increased, as the coordinate of Pyr neurons increased. P0 is the maximal connection 416 
probability. In this simulation, both E and I neurons received 200-Hz external inputs via synapses whose 417 
strength was 1.3 pA.  (B), Raster plot of the two integrators. The first and second integrators are represented 418 
in red and blue, respectively. Because the first integrator had stronger stimulus inputs than the second one, 419 
bump activity propagated faster in the first integrator than in the second. (C), Raster plots of two populations 420 
of readout neurons, shown in red and blue, respectively. (D), Time course of spiking activity of integrator-421 
1 neurons as a function of time and the strength of sensory input to integrator 1. The strength of sensory 422 
input to integrator 2 was fixed at α=1, and p0 =0.8. (E), Time course of spiking activity of integrator-1 423 
neurons as a function of maximal probability p0.  424 
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Temporal profile of spiking activity in the readout neurons: stepping versus ramping 425 

Rate-code NIs account for both individual and population-level ‘ramping’ (accumulating) activity 426 

in cortical regions like area LIP2,3,5. However, whereas population-level activity ramps, individual 427 

neuronal activity may be better described as ‘stepping’ activity16,49.  428 

To shed some light on the nature of these two forms of neuronal activity, we tested whether the 429 

readout neurons can reproduce either ramping or stepping activity by considering a single 430 

integrator and readout neuronal population. Specifically, we tested if single readout neuronal 431 

activity can be disassociated from population readout activity as a function of the connectivity 432 

between the integrator and the readout neuronal population.  433 

As seen in Fig. 8A, we connected the integrator and readout neuronal population with gradient 434 

connections and varied p0 (the maximal probability of connections) to test the population and 435 

individual neuronal activity. When p0=0.1 or 1, population readout activity ramped up (Figs. 8B 436 

and C). In contrast, individual neuronal activity showed strikingly different behaviors as a function 437 

of p0 (Figs. 8D and E). When p0=0.1, individual neuronal activity did not exhibit ramping activity 438 

(Fig. 8D). However, when p0=1.0, individual neuronal readout activity also ramped up (Fig. 8E). 439 

To further quantify these differences in activity as a function of p0, we conducted a linear 440 

regression analysis between time and 25 ms-binned firing rates of individual neuronal activity. We 441 

found that when p0=1.0, the firing rates of most readout neurons (313 out of 400) were significantly 442 

correlated with time (p<0.05). In contrast, when p0=0.1, only a fraction of neurons (6 out of 400) 443 

showed significant correlation (Fig. 8F).  444 

We further tested a wider range of p0 and conducted a linear regression between 445 

population/individual neuronal activity and time. The population activity was significantly (p<0.05) 446 

correlated with the time, independent of p0 (Fig. 8G). As expected, the correlation between the 447 
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time and individual neuron activity depended on p0: readout neurons produce stepping-like activity 448 

at low p0, but at high p0, we found ramping activity. When p0 was higher than 0.7, individual 449 

neuronal activity was significantly (p<0.05) correlated with the time (Fig. 8H).  450 

Finally, we noticed that the individual neuronal activity was transient, unlike the experimental 451 

finding that individual cells stayed active once they stepped up to a decision16. However, the 452 

duration of individual neuron activity can be prolonged (supplemental Fig. 2) when the connection 453 

probability of recurrent connections in the readout neurons increased, which closer replicates this 454 

experimental finding16. 455 
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 456 

Figure 8: Readout neuron activity with the gradient connections. (A), The structure of single set of 457 
integrator and readout neurons. (B), Time course of population activity with p0=0.1 (C), the same as (B) 458 
but with p0=1.0. (D), Time course of individual neuro activity with p0=0.1 (E), the same as (D) but with 459 
p0=1.0. (F), Histograms of p-values with p0=0.1 and 1.0.(G), Linear regression of the average firing rate of 460 
400 E readout neurons depending on p0. (H), Linear regression of individual neuron activity depending on 461 
p0. 462 
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Discussion 463 

Perceptual decision-making relies on the accumulation of sensory evidence (i.e., decision-464 

variables) that is extracted from ambiguous sensory stimuli2,4,5,46,50–52. It is generally thought that 465 

perceptual decision-making is instantiated through rate-code neural integrators (NIs), which are 466 

based on recurrent inputs to compensate for the leak currents1,8. However, the degree to which 467 

rate-code NIs can explain perceptual decision-making is limited. For example, rate-code NIs 468 

become unstable when there is a temporal gap in the flow of incoming sensory evidence (Fig. 3), 469 

whereas behavioral studies indicate that participants act as ‘perfect/lossless’ integrators and are 470 

not affected by these temporal gaps11,12. 471 

How then can the brain make reliable decisions even with temporal gaps? We proposes that the 472 

cortex can integrate sensory evidence and maintain accumulated evidence during temporal gaps 473 

by utilizing location-code NIs, in which the location of bump activity represents the amount of 474 

presented sensory evidence9,10; see below. In our simulations, bump activity in the integrator 475 

progressed through the network when sensory inputs were provided but stayed at the same location 476 

in the absence of sensory information. The location of the bump was stable due to the inhibition 477 

of SST cells (Figs. 2 and 4). This indicates that our integrator, unlike traditional rate-code NIs, can 478 

account for the robustness of perceptual decision-making during temporal gaps in sensory 479 

evidence. 480 

We note that sequential activation, consistent with bump activity propagation in our model, has 481 

been observed in multiple brain regions53,54 including the visual cortex17–19,55,56, parietal cortex21 482 

and frontal cortex57. Notably, Harvey et al.21 found that posterior parietal cortex neurons were 483 

sequentially activated during decision-making, raising the possibility that location-code NIs can 484 
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exist in association cortical regions like area LIP. That is, it is plausible that both location-code 485 

NIs and readout neurons coexist in area LIP, in which both stepping and ramping activity has been 486 

observed. 487 

Comparison to other location code NIs  488 

In terms of function, our model reproduces the findings of previously reported location-code NIs, 489 

which modeled head-direction neurons encoding the direction of an animal’s head relative to its 490 

body and independent of its location in the environment9. However, the underlying mechanisms 491 

between our NI and previously described ones are quite distinct.  492 

In previous location-code NIs, the shift in the location of bump activity was realized by so-called 493 

“rotation” neurons, which employed either strictly excitatory neurons10 or strictly inhibitory 494 

neurons9; these rotation neurons are located in the portion of the thalamus that receives inputs from 495 

the vestibular system. In contrast, we found that a cortical circuit, which consisted of excitatory 496 

pyramidal neurons and different types of inhibitory interneurons, can readily implement a location-497 

code NI.  498 

More specifically, two common inhibitory cortical neurons30 –PV and SST interneurons– made 499 

distinct contributions to this operation. PV neurons, which provided nonspecific feedback 500 

inhibition to pyramidal neurons35,58, ensured that bump activity existed only at a single location. 501 

On the other hand, SST neurons mediated lateral inhibition and transformed the network into an 502 

effective attractor network capable of maintaining accumulated evidence even during temporal 503 

gaps in sensory information (Figs. 2C and 4G). We note that this theoretical finding is consistent 504 

with the empirical finding that SST cells are selectively activated during a delay period when a 505 

stimulus is removed and an animal needs to remember task-relevant information59. In contrast to 506 
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the role that interneurons and their inhibitory synapses played in our network model, depressing 507 

excitatory synapses made bump activity propagate through the network (Figs. 2D). Together, our 508 

simulation results suggest that neurons and synapses in the neocortex are indeed suitable for 509 

controlling and maintaining the propagation of bump activity.  510 

Sparse and dense gradient connections may be dynamically selected depending on 511 

the demands 512 

In our model, ramping or stepping activity can emerge depending on the afferent inputs from a 513 

location-code NI. Dense gradient connections (i.e., high p0) induce ramping activity. On the other 514 

hand, sparse gradient connections (i.e., low p0) induce stepping activity.  515 

Dense gradient connections have a clear functional advantage: The firing rates of readout neurons 516 

increase faster and the latency of activity initiation is shorter (Fig. 7E), which could accelerate 517 

decision-making. This raises the possibility that tasks that encourage fast decisions may require 518 

dense gradient connections, which can, in turn, induce ramping activity, a classic model of 519 

decision-making.  520 

Then, what is the functional advantage of sparse connections, which induce stepping activity in 521 

the model? Sparse connections may be optimal if decision-making is confined to a specific time 522 

window. If there is a predetermined time frame in which a decision needs to be made, it is not 523 

necessary for readout neurons to be active at all times. Instead, to reduce erroneous decisions, it 524 

may be better to suppress readout neuron activity outside the time window in which the decision 525 

needs to be made. One effective way to do this would be to lower the excitability of readout 526 

neurons and activate them only when necessary. In our model, sparse connections lowered readout 527 

neuron activity (Fig. 7E). Moreover, when external sensory inputs are introduced to readout 528 
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neurons, categorical decision variables are correctly generated (supplemental Figs. 3A and B); the 529 

readout neurons can also hold the categorical decision when recurrent connections within the 530 

readout neurons are strong enough (supplemental Fig. 3C). That is, sparse connections may be 531 

used if decisions can be initiated via top-down signals such as expectation. 532 

Together with the empirical observation60 that the density of synaptic connections depends on 533 

cognitive demands, we propose that stepping and ramping modes emerge from different cognitive 534 

demands or different behavioral tasks. 535 

Concluding remarks 536 

Many theoretical studies have been dedicated to studying the neural correlates of persistent activity 537 

due to its potential links to cognitive functions such as decision-making1,8. Recent theoretical 538 

studies have raised the possibility that the sequential activation of neurons could be the substrate 539 

of working memory20,56,57, reigniting interest in the mechanisms underlying sequential activation.  540 

While the determination of the exact mechanisms behind any cognitive functions remains difficult, 541 

we would like to underscore that our model demonstrates that cortical circuits can natively switch 542 

between two seemingly distinct states, the stable steady state (e.g., bump activity maintenance) 543 

and the sequential activation state (e.g., bump activity propagation). We are not arguing that 544 

location-code NIs preclude the existence of rate-code Nis in neural systems. As they have distinct 545 

pros and cons, we speculate that location- and rate-code NIs are rather complementary and can be 546 

selected depending on cognitive demands. 547 

 548 

 549 

  550 
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Methods 551 

In this study, we developed lossless neural integrators, which were implemented within the NEST 552 

environment63, a peer-reviewed, freely-available simulation package. All neurons in the model 553 

were leaky integrate-and-fire (LIF) neurons. The excitatory and inhibitory neurons within an 554 

integrator formed excitatory and inhibitory connections onto a set of ‘target’ neurons. All 555 

integrator neurons and target neurons had identical internal dynamics; specifically, each 556 

presynaptic spike induced an abrupt increase in a neuron’s membrane potential that decayed 557 

exponentially. These neurons were implemented using the native NEST model iaf_psc_exp63. 558 

Table 1 shows the exact parameters used for the neurons and synapses in both neural integrators.  559 

Table 1: Neural parameters for neurons and synapses. When a spike arrived, the membrane potential 560 

instantly jumped to a new value, which was determined by its capacitance (C) and time constant (τm). When 561 

the membrane potential was higher than the spike threshold, the membrane potential was reset (Vreset). 562 

Without any external input, the membrane potential relaxed back its the resting membrane potentials (EL). 563 

Synaptic events decayed exponentially with a 2-ms time constant (τsyn). All synapses had a 1.5-ms delay 564 

unless otherwise stated; the only exception is given in Table 2. For depressing synapses, we selected the 565 

parameters (U and τref) given below.  566 

Neuronal Parameters Synaptic parameters 

C 

(membrane capacitance) 

1 pF τsyn  2.0 ms 

Vth 

(spike threshold) 

20 mV delay 1.5 

τm 

(Membrane time constant) 

20 ms U 0.2 

EL 

(resting membrane potential) 

0 mV τref 200 ms for discrete integrator 

500 ms for continuous integrator 

Vreset 

(reset after spiking) 

0 mV   

 567 
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The structure of the discrete integrator 568 

The structure of the discrete integrator is summarized in Figs. 1A and B. As seen in Fig. 1A, the 569 

discrete integrator consisted of 19 different neuronal populations. 17 of these neuronal populations 570 

contained 400 pyramidal (Pyr) and 16 somatostatin (SST) model neurons. Within each of these 17 571 

populations, Pyr neurons formed excitatory synapses with both Pyr and SST neurons. These 17 572 

populations were topographically organized: Pyr neurons within a population had unidirectional 573 

excitatory connections with the adjacent population (e.g., population 2 projected to population 3 574 

but not back to population 1). We had a periodic boundary condition in which the (last) population 575 

17 connected to the (first) population 1; see Fig. 1B. In contrast, SST neurons formed inhibitory 576 

connections with Pyr neurons in all of the other populations. Recurrent connections between Pyr 577 

neurons within a particular population had depressing synapses24–29, but all of the other synaptic 578 

connections were static. We implemented these depressing synapses using the Tsodyks-Markram 579 

model included in the NEST distribution (Table 1).  580 

The two remaining populations each had 1088 parvalbumin (PV) neurons. All of the Pyr neurons 581 

had excitatory connections with the PV neurons in one population (PV1) but not with those in the 582 

second PV population (PV2). Both PV1 and PV2 neurons formed non-specific inhibitory 583 

connections with Pyr and SST neurons; see Table 2 for the connection probability. These two PV 584 

populations simulated feedback and feedforward inhibition between Pyr neurons. 585 

The structure of the continuous integrator 586 

The continuous integrator was composed of a population of Pyr neurons, two PV populations (PV1 587 

and PV2), and two populations of SST neurons (SST1 and SST2); see Fig. 1C. Table 3 lists the 588 

parameters of these neuronal populations. In this network, 4000 Pyr, SST1 and SST2 neurons were 589 

distributed in a circular lattice, each of which had unique coordinate between 1-4000. We 590 
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arbitrarily set the coordinates to increase in the clockwise direction. The neuronal numbers were 591 

arbitrary and were not constrained by the ratio of excitatory to inhibitory neurons, which is roughly 592 

4:1. It should be noted that it is straightforward to extend this network model to include more 593 

excitatory neurons. For example, instead of a single Pyr neuron at each coordinate, a small 594 

population of Pyr neurons at each coordinate can be instantiated without changing any of the 595 

details of the network structure.  596 

Pyr neurons were mutually connected, via excitatory connections, to their neighboring Pyr neurons 597 

when the difference between their coordinates was ≤200, which is equivalent to a distance-598 

dependent connection probability48. These connections were established with a periodic boundary 599 

condition: Pyr neuron 4000 and Pyr neuron 1 were mutually connected.  600 

Pyr neurons interacted with the PV1, SST1 and SST2 populations in distinct ways. First, the pattern 601 

of connectivity between the Pyr and PV1 populations was randomly generated. Second, a Pyr 602 

neuron projected only to those SST1 and SST2 neurons that had the same coordinates (i.e., a one-603 

to-one topographic mapping). The connection strength was designed to be just strong enough for 604 

a single Pyr “spike” to cause a SST1 or SST2 neuron to fire (Table 3), like a single layer-5 605 

pyramidal-neuron spike can induce SST-expressing Martinotti neurons to fire64. Finally, SST1 and 606 

SST2 neurons also had inhibitory connections with Pyr neurons but had different connectivity rules. 607 

SST1 neurons formed connections only with those Pyr neurons in which the SST2-and-Pyr 608 

difference was ≥200. In contrast, SST2 neurons formed connections only with those Pyr neurons 609 

with lower coordinate values.  610 

Other important model details are that PV2 neurons randomly inhibited SST1 neurons; the 611 

connection probability is shown in Table 3. Further, the PV1 and PV2 populations were 612 
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independent of this circular lattice (see Fig. 1C). In our continuous integrator, all excitatory 613 

synapses were depressing, whereas all inhibitory synapses were static. 614 

External inputs for both integrators 615 

The excitability of each neuron depended on the sum of its synaptic inputs from all of the other 616 

neurons in the network and from external inputs. Tables 2 and 3 show the neuron-type-specific 617 

rates of these external inputs, which were modeled with Poisson spike trains. In the model, there 618 

were ‘background’ and ‘stimulus inputs’ (i.e., sensory information). Background inputs were 619 

independent of stimulus presentations and mimicked afferent inputs from other cortex65. Stimulus 620 

inputs had both ‘transient’ and ‘sustained’ modes of activity. The transient mode represented the 621 

transient onsets of neural activity that have been observed in the sensory systems including retina, 622 

lateral geniculate nucleus and cortex40–43. We assumed that this transient activity helped to ensure 623 

that bump activity was always initiated at the same location in the network. Transient inputs 624 

(duration: 100 ms) were introduced to the first 400 and 100 Pyr neurons in the discrete and 625 

continuous integrators, respectively. In contrast, the sustained sensory inputs formed projections 626 

with all Pyr, PV1 and PV2 neurons during the entire stimulus. The frequency (Isustained) of the 627 

sensory inputs to PV1 neurons is given in Equation 3, and Pyr neurons received sensory inputs 628 

equivalent to 4×Isustained. 629 

𝐼𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑 = 400 + 𝛼 × 100(𝐻𝑧)                                                                                                 (3) 630 

 631 

 632 

 633 

 634 
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 635 

Table 2: The parameters of the discrete integrator. We connected populations by specifying connection 636 

probabilities and synaptic connection strengths. The first value in the parentheses is the connection 637 

probability. The connection strengths followed Gaussian distributions. The mean values of these 638 

distributions are the second value in the parentheses, and the standard deviations were 10% of the mean. 639 

The excitatory and inhibitory connections could not be less than or greater than 0, respectively; when they 640 

violated this condition, we set them to 0.  641 

 Total Number Background inputs 

(Hz) 

Stimulus input (Hz; 

sustained) 

Pyr 6800 2,800 2000 

PV1 1088 4,500 2000 

PV2 1088 N/A 2000 

SST 544 3,200 N/A 

Connectivity within populations (connection probability, strength in pA) 

PyrPyr (1.0, 1.8) PyrSST (0.4, 0.96) 

PV1PV1 (0.3, -0.72) PV1PV1 (0.1, -0.72) 

Connectivity across populations (connection probability, strength in pA) 

PyrPyr (0.2, 0.12) *delay 10 ms PV2SST (1.0, -6.0) 

PyrPV1 (0.2, 0.12) SSTPyr (1.0, -4.8) 

PV1Pyr (0.2, -1.08) SSTPV1 (0.3, -0.6) 

PV1SST (0.3, -0.6)   

Connection strength for background and stimulus inputs in pA 

Pyr 0.12 PV2 0.36 

PV1 0.12 SST 0.12 

Onset stimulus input 

Target Pyr neurons 

in population 1 

Firing rate 1000 Hz 

 642 

 643 

 644 

 645 

 646 
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 647 

Table 3: The parameters of the continuous integrator. Due to the lack of population structure, we 648 

connected neurons by specifying the number of presynaptic neurons to each neuron type. The frequency of 649 

stimulus inputs given below is the default value used unless stated otherwise; see also Equation 3. The first 650 

value is the number of presynaptic neurons, and the second value is the connection strength in pA. The 651 

excitatory and inhibitory connections could not be less than or greater than 0, respectively; when they 652 

violated this condition, we set them to 0. The background inputs to all neurons in the continuous integrator 653 

are mediated by synapses whose strength are 0.13 pA. 654 

 Total Number Background inputs (Hz) Stimulus input (Hz) 

Pyr 4000 3,850 4,800 

PV1 1000 3,850 1,200 

PV2 1000 3,000 1,200 

SST1 4000 2,000 N/A 

SST2 4000 2,000 N/A 

Connectivity (Number of presynaptic neurons, strength in pA) 

PyrPyr (400, 0.52) PV1SST1 (150, -0.78) 

PyrPV1 (400, 0.52) PV2SST1 (1000, -0.78) 

PyrSST1 (1, 11.7) SST1Pyr (3600, -0.78) 

PyrSST2 (1, 11.7) SST1PV1 (1200, -0.78) 

PV1Pyr (160, -1.87) SST2Pyr (400, -0.78) 

PV1PV1 (160, -0.78)   

 655 

Travelling time for the bump 656 

Using the continuous integrator, we tested the relationship between the propagation speed of the 657 

bump and the strength of the sensory input by calculating the time course of the last 400 Pyr 658 

neurons (i.e., those with 400 highest coordinates). Specifically, we generated an event-related 659 

spike histogram using non-overlapping 10-ms bins of spiking data. ‘Travelling time of the bump’ 660 

was defined as the time, relative to stimulus onset, when the number of spikes in a single bin 661 

exceeds the sum of the mean plus two standard deviations of the number of spikes during the 662 

simulation period. 663 

Code availability.  664 
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The simulation code is available upon request (contact JHL at jungl@alleninstitute.org) without 665 

any restrictions and will be publicly available.  666 
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