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Abstract

Meiotic  recombination is  an  important  driver  of  evolution.  Variability  in  the  intensity  of

recombination across chromosomes can affect sequence composition, nucleotide variation

and rates of adaptation. In many organisms recombination events are concentrated within

short  segments termed recombination hotspots.  The variation in recombination rate and

recombination  hotspot  positions  can  be  studied  using  population  genomics  data  and

statistical methods. In this study, we applied population genomics analyses to address the

evolution of  recombination in two closely related fungal  plant pathogens: the prominent

wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Zymoseptoria

ardabiliae. We specifically addressed whether recombination landscapes, including hotspot

positions,  are  conserved  in  the  two  recently  diverged  species  and  if  recombination

contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation

analysis to assess the performance of methods of recombination rate estimation based on

patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity.

Our analyses reveal overall high recombination rates, a lack of suppressed recombination in

centromeres and significantly lower recombination rates on chromosomes that are known to

be accessory. The comparison of the recombination landscapes of the two species reveals a

strong  correlation of  recombination rate  at  the  megabase  scale,  but  little  correlation at

smaller scales. The recombination landscapes in both pathogen species are dominated by

frequent recombination hotspots across the genome including coding regions, suggesting a

strong impact of recombination on gene evolution. A significant but small fraction of these

hotspots co-localize between the two species, suggesting that hotspots dynamics contribute

to the overall pattern of fast evolving recombination in these species. 
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Introduction

Meiotic recombination is a fundamental process, which in many eukaryotes shapes genetic

variation in populations and drives evolutionary changes. Despite the ubiquitous occurrence

of recombination, however, the mechanisms that determine the genome-wide and temporal

distribution of crossover events are still poorly understood in most species. Studies based on

experimental and empirical data have demonstrated that recombination in sexual organisms

plays a crucial role in defining genome-wide neutral and non-neutral nucleotide variation

patterns  (Begun  and  Aquadro  1992;  Spencer  et  al.  2006),  rates  of  protein  evolution

(Betancourt et al. 2009), transposable elements distribution (Rizzon et al. 2002),  GC content

(Meunier and Duret 2004), and codon bias (Marais et al. 2003). 

Accurate  genome-wide recombination maps are  essential  for  studying  the genomics  and

genetics  of  recombination.  Recombination rates  have been recorded in  many species  by

direct observations of meiotic events using genetic crosses or pedigrees (Jeffreys et al. 1998;

Broman  et  al.  1998;  McMullen  et  al.  2009).  However,  pedigree  studies  rely  on  a  large

numbers  of  individuals  and  produce  only  low-resolution  rate  estimates  because  of  the

relatively  low  number  of  meiotic  events  that  can  practically  be  observed  (Stumpf  and

McVean  2003).  Furthermore,  many  microbial  eukaryotic  species,  including  important

pathogens, are difficult or even impossible to cross under laboratory conditions (Taylor et al.

2015).  While  experimental  measures  of  recombination  rate  can  be  challenging  in  many

species,  advances  in  statistical  analyses  provide  powerful  tools  to  generate  fine-scale

recombination maps using population genomic data (e.g., (Myers et al.  2005; Chan et al.

2012; Wang and Rannala 2014)).  These methods are based on genome-wide patterns of

linkage disequilibrium among single nucleotide polymorphisms (SNPs) and have the potential

to capture the history of recombination events in a population sample. Thus, recombination

studies based on population genomic data have provided detailed insights into the genomics

of recombination in a range of species (Winckler et al. 2005; Singhal et al. 2015; Hunter et al.

2016; Horton et al. 2012). A general finding from these studies is that recombination events

are non-uniformly distributed across chromosomes. Furthermore, in many organisms, but

not all, the majority of recombination events tend to concentrate in short segments termed

recombination hotspots (Petes 2001; Chan et al. 2012). In the human genome, more than

25.000  recombination  hotspots  have  been  identified,  with  a  number  of  these  hotspots

showing a more than hundred-fold increase in recombination rates and exhibiting a strong

impact on the overall recombination landscape and genome evolution in general (Myers et

al. 2005; Jeffreys and Neumann 2009; Winckler et al. 2005). 
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Comparative analyses  of  recombination maps between closely related species have shed

light on the dynamics of recombination landscapes in different taxa. A comparative analysis

of  recombination  landscapes  in  chimpanzee  and  human  found  a  strong  correlation  of

recombination rates at broad scales (whole chromosome and megabase scale), whereas fine-

scale  recombination  rates  were  considerably  less  conserved  because  of  non-overlapping

recombination hotspots (Auton et al. 2012). The localization of recombination hotspots in

primates and mice is in large part determined by PRDM9, a histone methyltransferase with

an array of DNA-binding Zn-finger (Myers et al. 2010).  In other taxa recombination hotspots

are  formed  by  other  mechanisms.  In  some  species,  including  species  without  PRDM9,

including yeast,  plants,  birds and some mammals recombination hotspots associate with

particular functional features such as transcription start and stop sites as well as CpG islands

(Lam and Keeney 2015; Singhal et al. 2015; Smeds et al. 2016; Horton et al. 2012; Choi et al.

2013).  A  model  developed  to  explain  the  association  of  recombination  hotspots  and

functional  elements  proposes  that  a  depletion  of  nucleosome  occupancy  at  these  sites

increases the accessibility of the recombination machinery (Kaplan et al. 2009; de Castro et

al.  2011).   Indeed, in the fission yeast  Schizosaccharomyces pombe and the Brassicaceae

plant  Arabidopsis thaliana meiotic recombination hotspots were shown to co-localize with

nucleosome depleted  regions  supporting  a  link  between  chromatin  structure  and‐

recombination in these species (de Castro et al. 2011; Wijnker et al. 2013).

Although many pathogens and parasites are sexual,  the impact of  recombination on the

evolution of their genome has been rarely addressed (Awadalla 2003). As recombination can

be an important driver of overall genome evolution in pathogen species, we here set out to

investigate  patterns  of  recombination  in  plant  pathogenic  fungi.  We  focused  on  the

important wheat pathogen Zymoseptoria tritici, which causes septoria leaf blotch on wheat.

Z. tritici originated in the Middle East during the Neolithic revolution and has co-evolved and

dispersed with its host since early wheat domestication (Stukenbrock et al. 2007). A close

relative of Z. tritici, Zymoseptoria ardabiliae, has been isolated from wild grass species in the

Middle East (Stukenbrock et al. 2012). The two pathogen species diverged recently but have

non-overlapping host ranges and show some differences in morphology and host infection

patterns  (Stukenbrock  et  al.  2011,  2012).  Both  species  undergo  frequent  sexual

recombination, which result in the formation of ascospores that serve as a mean of long

distance wind dispersal and primary infection of new hosts (Stukenbrock et al. 2011). The co-

linear genomes of Z. tritici and Z. ardabiliae share 90% nucleotide similarity on average, thus
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providing an excellent resource for comparative analyses of genome evolution (Stukenbrock

et  al.  2011).  The  40Mb haploid  genome  of  the  reference  Z.  tritici isolate  comprises  21

chromosomes  of  which  eight  are  accessory  chromosomes  (Goodwin  et  al.  2011b).  The

accessory chromosomes represent a highly variable genome compartment characterized by

presence/absence  variation  of  entire  chromosomes,  high  repeat  content  and  low  gene

densities (Goodwin et al. 2011a; Grandaubert et al. 2015). The accessory chromosomes are

partly conserved among several species in the genus  Zymoseptoria,  suggesting that these

small  chromosomes  have  been  maintained  over  long  evolutionary  times  predating  the

divergence of species (Stukenbrock et al. 2011). In a previous study, we applied a whole-

genome coalescence approach to generate a genetic map of the ancestral species of Z. tritici

and another closely related species,  Z.  pseudotritici (Stukenbrock et  al.  2011).  We found

evidence of a high recombination rate in the ancestral species (genome average 46cM/Mb)

and showed a significantly higher proportion of sites showing incomplete lineage sorting in

regions with high recombination rate. The existence of high recombination rates in the genus

Zymoseptoria was recently supported by experimental data. Croll and colleagues generated a

linkage map of  Z. tritici from two independent crosses of Swiss field isolates (Croll  et al.

2015). This map based on actual crossing-over events along the 40Mb genome, confirms the

high recombination rates (genome average 66 cM/Mb, measured in windows of 20 kb) in the

present-day pathogen species. Interestingly, the study also reported large variation between

the two independent crosses of Z. tritici, suggesting that recombination is highly dynamic in

this pathogen (Croll et al. 2015).

In this  study we addressed the evolution of recombination rate in fungal pathogens.  We

applied a population genomics approach to generate a fine-scale recombination map of the

two recently diverged species Z. tritici and Z. ardabiliae. This allowed us to infer and compare

fine-scale genome-wide patterns of recombination rates in the two species and investigate

the  dynamics  of  recombination  landscapes.  We  confirm  the  exceptionally  high

recombination rates as also observed in a previous coalescence-based genome analysis and

shown by experimental crosses (Stukenbrock et al. 2011; Croll et al. 2015). Furthermore, we

identify 2,578 and 862 recombination hotspots in  Z.  tritici and  Z.  ardabiliae  respectively.

Intriguingly, detailed analyses of the recombination hotspots show not only a comparatively

higher  hotspot  frequency  in  the  wheat  pathogen  but  also  the  occurrence  of  stronger

hotspots in  Z.  tritici.  Our findings confirm that recombination rate landscapes are highly

dynamic across time in the two fungal pathogens. Furthermore, the prominence of dynamic
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recombination hotspots in genes suggests a high impact on gene evolution, a finding that is

unprecedented in other species. 

Results and Discussion

Genome alignments and SNP calling 

A total of 30 whole genome sequences were used to infer the recombination landscapes of

the two haploid species  Z.  tritici and  Z.  ardabiliae.  First,  we generated  de novo genome

assemblies of 10 Z. tritici and 13 Z. ardabiliae isolates previously not studied (Supplemental

Table S1). The haploid genomes, including additional three  Z. tritici and four  Z. ardabiliae

genomes  already  published  (Stukenbrock  et  al.  2011),  were  aligned  for  each  species,

resulting in multiple genome alignments of 40.8Mb for Z. tritici and 32.4Mb for Z. ardabiliae. 

Recombination  analyses  rely  on  single  nucleotide  polymorphism  (SNP)  data.  However,

erroneously  called  SNPs  or  alignment  errors  can  greatly  bias  linkage  disequilibrium  (LD)

inference  in  genomes.  To  generate  high-quality  SNP  datasets  we  therefore  extensively

filtered the genome alignments (see Materials and Methods) to retain only the alignment

blocks in which all isolates were represented. This filtering yielded genome alignments of

27.7 and 28.2 Mb for Z. tritici and Z. ardabiliae, respectively (Table 1). We further filter the

alignments to mask ambiguously aligned positions, leading to a final alignment size of 27.3

Mb for Z. tritici and 27.7 Mb for Z. ardabiliae. Less than 2% of the final alignment contained

repeat elements, including tranposable elements. In the case of Z. tritici, repeat regions have

been filtered out during the alignment quality checking, while in the case of Z. ardabiliae for

which no telomere-to-telomere sequencing is available, repeats were virtually absent from

the original alignment (Table 1). After filtering, we identified 1.48 million SNPs in Z. tritici and

1.07 million SNPs in  Z. ardabiliae, which correspond to nucleotide diversities measured as

Watterson’s θ of 0.0139 in  Z. tritici and 0.0087 in  Z. ardabiliae (Table 1). Thus, despite the

larger sample size,  Z. ardabiliae shows a much lower SNP density and sequence diversity

than the wheat pathogen Z. tritici. 

Inference of fine-scale recombination maps

We estimated and compared the local recombination rates in Z. tritici and Z. ardabiliae using

two methods implemented in the program packages  Ldhat (Auton and McVean 2007) and

Ldhelmet (Chan et  al.  2012).  Both methods estimate the local  population recombination
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rates based on the LD between SNPs in a given genome dataset using a composite likelihood

method. The methods infer the population-scaled recombination rate ρ across the genome,

based on an a priori specified population mutation rate θ. The parameter ρ relates to the

actual recombination frequency by the equation ρ = 2Ne* r for haploid individuals, where Ne

is the effective population size and r is the per site rate of recombination across the region.

As  θ  substantially  varies  along  genomes,  we generated recombination maps using  three

scaled  effective population size  values  as  inputs  (θ  =  0.05,  0.005 and  0.0005).  For  both

methods, we find that the three different input θ values only have a marginal influence on

the recombination rate estimates obtained from Ldhat and Ldhelmet (Fig. 1A). We therefore

proceeded with the recombination map estimated using a θ of 0.005, similar to the median

of θ values estimated in 10-kb windows in  Z. tritici (θ = 0.0139) and in  Z. ardabiliae (θ =

0.0087) (Table 1). 

To assess the performance of the two methods and the input parameters for  the fungal

dataset,  we first  compared  the  inferred recombination maps  of  Z.  tritici with  data  from

previously published genetic maps (Croll  et  al.  2015).  We compared both the Ldhat and

Ldhelmet recombination maps with the genetic maps created from two sexual crosses of

Swiss Z. tritici isolates, 3D7x3D1 and SW5xSW39 (Croll et al. 2015). The two recombination

maps estimated by Ldhat and Ldhelmet from SNP data both correlate with the genetic maps

confirming  that  the composite  likelihood  methods  allow us  to  assess  the  recombination

landscapes in the fungal pathogens (Fig. 1B). We find a significant correlation between the

Ldhat map and the two genetic maps (3D7x3D1, Kendall's rank correlation test, τ = 0.27, p-

value < 2.2e-16 and SW5xSW39, Kendall's rank correlation test, τ = 0.23, p-value < 2.2.e-16).

Using an average recombination rate of the 3D7x3D1 and SW5xSW39 crosses the correlation

coefficient further increases (Kendall's rank correlation test, τ = 0.29, p-value < 2.2.e-16) (Fig.

1B). While correlated, the new recombination maps of  Z. tritici encompasses more than 1

million  SNPs  and  thereby  provides  a  considerably  finer  resolution  of  the  recombination

landscape  in  Z.  tritici than  previously  obtained  from  experimental  crosses  (based  on  ca

23,000 SNPs) (Croll et al. 2015). The same correlation analyses using the Ldhelmet map show

consistent results with slightly lower correlations (Kendall's rank correlation test, τ = 0.24 for

the cross 3D7x3D1, and 0.20 for the cross SW5xSW39 and 0.25 using the average of the two

crosses; all p-values < 2.2e-16). These correlations, although highly significant, have relatively

small size effects. However, it is noteworthy that also the correlation between the two Swiss

crosses 3D7x3D1 and SW5xSW39 only is 0.43 (Kendall’s rank correlation test, p-value < 2.2e-
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16)  supporting a  high variability  in  recombination even between individual  crosses  of  Z.

tritici.

Ldhat and Ldhelmet have been developed for recombination analyses in animals (Auton and

McVean 2007; Auton et al.  2012; Chan et al.  2012) and their performance on data from

haploid eukaryotes with high recombination rates have not been tested. Therefore, we next

assessed the robustness of the composite likelihood approach with respect to sample size

and SNP density. We conducted simulations to assess the power of LD-based recombination

estimators under such conditions. We report that the interval program infers recombination

rate  with  the  highest  reliability  for  intermediate  diversity  levels  (θ   =  0.0005  or  0.005).

Furthermore, while larger sample size decrease the variance in estimate, we show that Ldhat

reliably  infers  recombination when as  few as  10 haploid  genomes are  used (Fig.  2).  We

observe that ρ generally tends to be underestimated and its estimation variance larger for

small sample sizes. Yet better estimates can be obtained by discarding all estimates with a

95% confidence interval at least equal to two times the mean. Interestingly, this filtering has

the strongest effect for highly diverse regions (θ  = 0.05), where the raw estimates of Ldhat

appear  to  be  highly  underestimated  even  for  large  sample  sizes  (n  =  100).  Discarding

estimates with large confidence intervals efficiently suppress this bias (Fig. 2). We also note

that  the  inference  bias  is  stronger  for  low  recombination  rates,  and  that  this  effect  is

independent  of  the sample  size  (Fig.  2).  Based on these simulation results,  we similarly

filtered  our  recombination estimates  based  on  the  95% confidence  interval  reported  by

Ldhat. This filtering discards 49% and 20% of all SNP pairs for  Z. tritici and  Z. ardabiliae,

respectively. The large difference between the two data sets is imputable to the much higher

nucleotide diversity of Z. tritici. When compared with the genetic map (Croll et al. 2015), the

filtered map of Z. tritici shows a correlation of 0.34 (Kendall’s rank correlation test, p-value <

2.2e-16). Interestingly, correlations between the genetic map and the linkage disequilibrium

(LD) map inferred here increases with increased window size: using 500 kb windows, the

correlation becomes 0.43 (Kendall’s tau, p-value = 0.000206) comparable to the correlation

between the two genetic maps of 3D7x3D1 and SW5xSW39.  

Recombination inference based on patterns of linkage disequilibrium is affected by various

patterns of selection. The genomes of Z. tritici and Z. ardabiliae are gene dense and protein-

coding genes occupy nearly 50% of the sequences. We therefore considered the impact of

selection on our recombination inference in the two species assuming lower selection in

non-coding regions. To this end, we compared the previously published genetic map with

estimates of ρ exclusively in the intergenic regions (excluding coding sequences and 500-bp
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up  and  downstream  of  the  annotated  genes).  These  analyses  based  on  non-coding

sequences resulted in correlations of 0.22 for the Ldhat map and the average of the two

genetic crosses (Kendall’s rank correlation test, p-value < 2.2e-16) and 0.24 for the Ldhelmet

map (Kendall’s rank correlation test, p-value < 2.2e-16).  Thus, the best correlations of LD

based on the recombination maps and genetic crosses are obtained by complete genome

data that include coding regions. The finding suggests that the composite likelihood method

provides robust estimates of recombination, even in regions likely to deviate from purely

neutral  evolution.  Based on these simulation results,  we chose to use the Ldhat-inferred

recombination rates on the full genome, with an input θ = 0.005 and filtered according to

confidence intervals, for both  Z. tritici and Z. ardabiliae.

A five fold higher population scaled recombination rate in Z. tritici 

The  inference  of  ρ  across  the  genomes  of  Z.  tritici and  Z.  ardabiliae reveals  highly

heterogeneous recombination landscapes in both species (Fig. 3 and Supplementary Data 1).

We find a five-fold higher recombination rate in  Z. tritici than in  Z. ardabiliae:  the mean

values of ρ are 0.0217 and 0.0045 for  Z. tritici and Z. ardabiliae, respectively. This five-fold

difference might reflect differences in actual recombination rates as well as differences in

effective population sizes. The nucleotide diversity estimated by Watterson’s θ, is 1.6 times

higher in Z. tritici than in Z. ardabiliae, indicating that different population sizes alone cannot

explain the observed difference in recombination rates assuming that the two species have

comparable mutation rates. We further note that r represents the recombination rate per

generation per nucleotide. Therefore, a putative difference in number of generations per

year  between  the  two pathogens  also  cannot  account  for  the  observed  difference.  The

higher value of ρ estimated in Z. tritici thus likely reflects a higher actual recombination rate

in the wheat pathogen compared to Z. ardabiliae. 

Recombination on small arms of acro-centric chromosomes

Physical factors, such as chromosome length, chromosome arm length or distance to the

centromere have been reported to impact broad-scale recombination patterns in eukaryotes

(Jensen-Seaman et  al.  2004).  To investigate the rate and distribution of  crossover  events

along  the  genomes  of  the  two  Zymoseptoria  species,  we  correlated  the  inferred

recombination  maps  with  features  of  the  well-characterized  karyotype  of  Z.  tritici.  The
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reference  genome  sequence  of  Z.  tritici consists  of  21  fully  sequenced  chromosomes,

including eight so-called accessory chromosomes (Goodwin et al. 2011a). Furthermore, the

exact  positions  of  the  centromeres  for  all  chromosomes  have  been  characterized

experimentally  using  a  chromatin  immunoprecipitation  assay  targeting  the  centromere

specific  protein  CenH3  (Schotanus  et  al.  2015).  An  interesting  finding  is  that  the

chromosomes in Z. tritici are either acro-centric or near-acrocentric, and every chromosome

consequently consists of one long and one short chromosome arm (Schotanus et al. 2015).

Because a complete chromosome assembly is not available for Z. ardabiliae, we mapped the

recombination estimates of Z. ardabiliae on the genome of Z. tritici to assess the impact of

the  karyotype  structure  on  recombination  rate  variation.  Similar  to  findings  from  other

species (Jensen-Seaman et al. 2004; Munch et al. 2014), we observe a negative correlation

between recombination rate and the size of the thirteen core chromosomes (Kendall’s  τ =

-0.59 with p-value = 4.29e-3 for Z. tritici and τ = -0.72 with p-value = 2.84e-4 for Z. ardabiliae;

Fig. 4A). This pattern is generally explained by the necessity of one crossing over to occur per

chromosome or chromosome arm per generation, resulting in a higher recombination rate

on smaller chromosomes (e.g., (2004; Smeds et al. 2016; Kong et al. 2002)). The significant

correlation of the recombination map of Z. ardabiliae with the genome structure of Z. tritici

is  an  indication  of  a  conserved  karyotype  of  the  ancestral  species  of  Z.  tritici and  Z.

ardabiliae.

Given the acro-centric nature of the Z. tritici chromosomes we considered to which extent

recombination also occurs on the short chromosome arms. If meiosis involves one crossover

event  per  chromosome,  then  the  recombination  rate  should  be  correlated  with  the

chromosome size and not the chromosome arm length. However, if  meiosis involves one

crossover event per chromosome arm, then a higher frequency of  recombination should

occur  on  shorter  chromosome  arms.  Correlations  between  recombination  rates  and

chromosome arm lengths  also show negative values,  yet  only  significant  in  Z.  ardabiliae

(Kendall’s τ = -0.14 with p-value = 0.3356 for Z. tritici and τ = -0.42 with p-value = 2.16e-3 for

Z.  ardabiliae, Fig.  4B).  The  negative  correlation  observed  at  the  chromosome  arm level

suggests that meiosis in the Zymoseptoria pathogens requires at least one crossing over per

chromosome arm and that the small chromosome arms consequently also recombine. The

weaker correlations and lack of significance in  Z. tritici could be due to a fast evolution of

centromere positions, erasing the signal of arm-specific recombination rates.
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No association between recombination rate and GC content in Z. tritici and Z. ardabiliae 

In many species recombination strongly impacts evolution of GC content by a mechanism

called GC biased gene conversion (gBGC) (Duret and Galtier 2009; Mugal et al. 2015). The

effect of gBGC has been demonstrated in mammals (Duret and Galtier 2009; Piganeau et al.

2002), birds (Weber et al. 2014), plants (Serres-Giardi et al. 2012) and even bacteria (Lassalle

et al. 2015). However, gBGC has never been assessed in fungal species beyond the yeast

model,  which represents  one of  the  rare  organisms  for  which gBGC was  experimentally

demonstrated (Mancera et al. 2008). To study the possible occurrence and impact of gBGC in

the  Z. tritici and  Z. ardabiliae genomes, we studied the patterns of GC content along the

genomes  of  the  two  species.  We  fitted  a  non-homogeneous,  non-stationary  model  of

substitution in 10 kb windows in intergenic regions allowing us to estimate the equilibrium

GC content (frequency of GC towards which the sequences evolve) in the extant species. We

inferred the dynamics of GC content by comparing the actual GC content of the sequence

(observed GC content) with the equilibrium GC content (Duret and Arndt 2008). We find that

both  the  observed  and  equilibrium  GC  are  highly  correlated  between  Z.  tritici and  Z.

ardabiliae (Supplemental Fig. 1, Kendall’s rank correlation test, τ  = 0.69 and 0.45, p-values <

2.2e-16 for the observed and equilibrium GC content, respectively, essential chromosomes

only). However, although both species show similar observed GC content (mean of 53.3% for

Z. tritici and 53.6% for Z. ardabiliae) they also show contrasting patterns, with the GC content

found to be slightly increasing in Z. ardabiliae (mean equilibrium GC content on autosomes

of 53.2, significantly higher that the observed GC content, Wilcoxon paired rank test, p-value

= 0.04712) while decreasing in  Z. tritici (mean equilibrium GC content of 51.6%, which is

significantly  lower  than  the  observed  GC  content,  Wilcoxon  paired  rank  test,  p-value  =

2.728e-15). 

To assess the impact of recombination on GC evolution we correlated the equilibrium GC

content in Z. tritici and Z. ardabiliae to the recombination maps in the two species. We find

overall  negative  yet  weakly  or  non-significant  correlations  between  GC  content  and

recombination rate (Supplemental Fig. S1), both for observed (Kendal’s tau = -0.05, p-value =

0.0404 for Z. tritici and tau = -0.05, p-value = 0.02253 for Z. ardabiliae) and equilibrium GC

content (Kendal’s tau = -0.02, p-value = 0.5082 for Z. tritici and tau = 0.01, p-value = 0.7128

for Z. ardabiliae).

Together these results do not support GC-biased gene conversion as a major mechanism

shaping GC content in the two fungal pathogen genomes. To test whether this conclusion
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could  be  an  artifact  of  recombination  rates  estimated  from  population  data,  we  also

correlated the equilibrium GC content with the two previously published genetic maps (Croll

et  al.  2015).  Consistent  with  our  finding  from  the  Ldhat-based  recombination  map,  we

confirm an absence of correlation between the equilibrium GC content and the crossing-over

rate and GC content in  Z. tritici,  (Kendall’s rank test,  τ   = 0.006 and p-value = 0.7035 for

observed GC and  τ   = -0.024, p-value = 0.1149 for equilibrium GC content) supporting an

absence or little effect of GC-biased gene conversion in Z. tritici and Z. ardabiliae.

No suppression of recombination in centromeres

Recombination is normally found to be absent in centromeric regions where spindles attach

during  chromosome  segregation  (see  review  by  (Petes  2001)).  A  known  exception  is

Drosophila  mauritiana,  which,  in  contrast  to  Drosophila  melanogaster and  Drosophila

simulans,  shows no suppression of recombination in centromeres (True et  al.  1996).  The

centromeres of core and accessory chromosomes in Z. tritici range from 5.5 kb to 14 kb in

size and do not locate in AT rich regions (Schotanus et al. 2015) as is otherwise observed for

centromeres of other species such as Neurospora crassa (Smith et al. 2011). Correlating the

recombination map of Z. tritici with centeromere positions, we observe, as in D. mauritiana,

no  significant  suppression  in  recombination  rate  across  the  centromeric  chromosome

regions (Wilcoxon signed rank test on 11 chromosomes for which recombination rate in the

centromeric region could be inferred, p-value = 0.5771) (Table 2, Fig. 3). The centromeres of

Z. tritici exhibit several features common to neocentromeres such as a short length (approx.

10.000  bp  in  length),  lack  of  enriched  repetitive  DNA  and  weakly  transcribed  genes

(Schotanus et al. 2015). We hypothesize that recombination in centromeric sequences has

additional implications for  evolution of  the centromeres in  these fungi.  A  more detailed

characterization  of  chromosome  structures  and  centromere  locations  in  Z.  ardabiliae is

necessary to better understand karyotype evolution in these grass pathogens. 

Absence of recombination on accessory chromosomes 

The  small  accessory  chromosomes  have  previously  been  well  characterized  in  Z.  tritici

(Goodwin et al. 2011a). They differ considerably from the core chromosomes as they display

a higher repeat content, lower gene density, overall lower transcription rate and are enriched
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with  different  chromatin  modifications  (Stukenbrock  et  al.  2010;  Kellner  et  al.  2014;

Grandaubert  et  al.  2015;  Schotanus et  al.  2015).  Electrophoretic separation of  accessory

chromosomes from several isolates of Z. ardabiliae have shown this species also comprises

accessory chromosomes (Stukenbrock et al. 2011). In this study we used sequence homology

to define the accessory components of the Z. ardabiliae genome. We find that the aligned

fragments of the accessory chromosomes show very low recombination rates in both species

(median ρ = 0.0059 in Z. tritici and median ρ = 0.0001 in Z. ardabiliae over 13 10-kb windows

where  both  genomes  could  be  aligned,  which  is  25%  and  2%  of  the  autosomal  rates,

respectively) (Fig. 4C). The lower recombination rates reflect the lower effective population

size of accessory chromosomes that are present at lower frequencies in populations of  Z.

tritici and Z. ardabiliae compared to the core chromosomes. Furthermore we speculate that

frequent  structural  rearrangements  on accessory  chromosomes can prevent  homologous

chromosomes pairings and also contribute to the low recombination rates. Our findings add

further evidence to support different evolutionary modes of the two sets of chromosomes

(core  and accessory  chromosomes)  contained in  the same genome.  As  observed on the

accessory  chromosomes,  suppression  of  recombination  is  also  found  on  mating-type

chromosomes in other fungi including species of Neurospora and Microbotryum (Hood et al.

2013; Petit et al. 2012; Whittle and Johannesson 2011). These regions are characterized by

an increased accumulation of transposable elements and structural variants as well as non-

adaptive mutations in coding sequences (Badouin et al. 2015; Whittle et al. 2011; Whittle

and Johannesson 2011).  

We  also  observe  a  remarkable  drop  in  the  recombination  rate  on  the  right  arm  of

chromosome 7  (Supplemental  Data  1).  The  right  arm of  chromosome 7  displays  several

similarities to the DNA of the accessory chromosomes including a lower gene density, higher

repeat  content  and  less  gene  transcription  (Grandaubert  et  al.  2015).  Furthermore,  the

entire chromosome arm is  enriched with the heterochromatic mark H3K27me3, which is

similarly  enriched on the accessory chromosomes (Schotanus et al.  2015).  We previously

proposed that this particular chromosome region represents a recent translocation of an

accessory chromosome to a core chromosome (Schotanus et al. 2015).  This hypothesis is

consistent  with  the  observation  that  the  recombination  rate  of  the  chromosome  arm

resembles  the  overall  reduced  recombination  rate  of  the  accessory  chromosomes

(Supplemental Data 1).
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High recombination rates in coding sequences of Z. tritici

In primates and birds, recombination increases at CpG islands and around transcription start

and end sites  (Auton et  al.  2012;  Singhal  et  al.  2015;  Smeds et  al.  2016).   In  honeybee

recombination  rates  in  introns  and  intergenic  regions  are  significantly  higher  than

recombination rates in 3’ and 5’ UTRs and coding sequences (Wallberg et al. 2015). It has

been  proposed  that  altered  chromatin  structures  such  as  destabilized  nucleosome

occupancy  at  CpG  islands  and  promoters  contribute  to  this  fine-scale  variation  in

recombination rate (Jones 2012). To determine whether specific sequence features in the

fungal pathogen genomes similarly affect the overall recombination landscape, we inferred

and compared the mean recombination rates in exons, introns, intergenic regions, and 5’ and

3’ flanking regions with a minimum of 3 filtered SNPs (500-bp upstream and downstream

CDS regions, respectively, Fig. 5A). Overall, we observe significant differences but with small

size effects in fine-scale rates of recombination across different genome regions (Kruskal-

Wallis test with post-hoc comparisons, FDR set to 1%). In both Z. tritici and Z. ardabiliae we

find the lowest recombination rates in introns and the highest rates in intergenic sequences

(Fig. 5A). A lower value of ρ = 2.Ne.r can result from a reduced Ne, a reduced r or both. Ne in

the proximity of genes is expected to be lower due to the presence of background selection

(Nordborg et al. 1996; Scally et al. 2012; Hobolth et al. 2011). The highly similar observed

recombination  rates  in  coding  and  non-coding  sequences  in  Z.  tritici and  Z.  ardabiliae

suggests that  r is not suppressed in these regions in the same way as observed in other

organisms. The pattern indicates that different mechanisms define fine-scale recombination

rates in these fungi leading to high recombination frequencies in protein-coding sequences. 

Because of the relatively high rates of recombination in exons of Z. tritici and Z. ardabiliae,

we  sought  to  determine  whether  recombination  could  play  a  particular  role  in  plant-

pathogen co-evolution.  Plant pathogens interfere with host defenses and manipulate the

host metabolism by the secretion of so-called effector proteins produced to target molecules

from the host (Lo Presti et al. 2015). Antagonistic co-evolution of these interacting proteins is

often reflected in accelerated evolution and signatures of positives selection (Stukenbrock

and McDonald 2009).  To assess the role of  recombination on effector evolution,  we first

predicted effector  proteins  computationally  in  the secretomes of  both species  using  the

EffectorP software (Sperschneider et al. 2016). This approach identified 868 putative effector

proteins in Z. tritici and 1,122 and Z. ardabiliae.
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By comparing  the recombination rates  in  different  genetic regions  for  effector  and  non-

effector  encoding genes,  we show a  significantly  lower recombination rate  in  exons and

introns for effector proteins in Z. ardabiliae (Wilcoxon rank test, p-value = 1.305e-4 (exons)

and 2.534e-5 (introns), p-values corrected for multiple testing) (Fig. 5B).  These differences

are  mostly  driven  by  an  excess  of  zero  estimates  in  these  regions,  as  visible  on  the

distribution of measures (Fig. 5B). Discarding these regions with a mean recombination of

zero  leads  to  non-significant  differences  between  effector  and  non-effector  genes.  A

recombination rate estimated to zero can either be due to suppression of recombination in

the region or to an estimation error. Intron and exons with a recombination estimate of zero

in  Z. ardabiliae are found to be shorter and to have a higher SNP density (Supplementary

Data 3). While these differences are significant, they are of a small size and are unlikely to be

a cause of estimation error, and the suppression of recombination in some effector genes of

Z. tritici therefore appears as a biological signal which origin remains to be elucidated. 

Large scale but not fine scale correlation of recombination landscapes in  Z. tritici and  Z.

ardabiliae 

Recombination landscapes have been compared in different model  species to assess the

extent of conservation of recombination rate variation. Broad-scale recombination rates in

zebra finches and long-tailed finches have similar levels and present correlation factors as

high  as  0.82  and  0.86  at  the  10-kb  and  1-Mb scales,  respectively  (Singhal  et  al.  2015).

Similarly, broad-scales recombination rates in human and chimpanzee tend to be conserved

with  few  exceptions  such  as  the  human  chromosome  2,  which  originates  from  a

chromosome fusion in the human lineage (Auton et al. 2012). However, when comparing the

recombination  rates  of  more  distantly  related  mammal  species,  the  correlation  of

recombination rates decreases even when comparing homologous syntenic blocks (Jensen-

Seaman  et  al.  2004).  In  studies  of  mammals  and  fruit  flies,  it  is  considered  that  the

recombination  landscape  evolves  as  a  results  of  evolution  of  other  sequence  variables

(Jensen-Seaman et al. 2004), and the dynamics of fine-scale recombination rates including

the positions of hotspots (Winckler et al. 2005; Chan et al. 2012). 

To  address  the  evolution  of  recombination  landscapes  in  Z.  tritici and  Z.  ardabiliae we

compared the genome-wide recombination maps of the two species. We previously showed

that the genomes of the two species show a high extent of co-linearity and we found a mean

sequence divergence of dxy= 0.13 substitutions per site (Stukenbrock et al. 2011). Here, we
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first  aligned  the  two  reference  genomes  of  Z.  tritici and  Z.  ardabiliae to  compare

recombination rates in homologous genome regions (Fig.  6, see Materials and Methods).

Next,  we calculated the average recombination rate in non-overlapping windows with at

least 100 SNPs in each species, which resulted in 3,851 windows for which recombination in

both  species  could  be  averaged.  The  two  maps  show  a  moderate  yet  highly  significant

correlation (Kendall's rank correlation test,  τ   = 0.2327, p-value < 2.2e-16, Fig. 7A), which

suggests certain similarities in the recombination landscape of the two fungi. To determine

the scale at which the maps are most correlated (broad or fine-scale recombination rates),

we further investigated how the correlations vary with the scale at which the comparison is

performed.  We find that  the correlations,  consistently  inferred with  different  correlation

measures, peak at 0.5-1 Mb scale (Fig. 7B), suggesting that the recombination landscape is

conserved at large scales but shows rapid evolution at smaller scales. These results mirror

findings from other eukaryotic species (e.g., (Winckler et al. 2005; Singhal et al. 2015)) and

suggest that distinct mechanisms determine the recombination landscape at fine and broad

scales in these two species.

Frequency and intensity of recombination hotspots is higher in Z. tritici 

The fine scale Ldhat recombination maps clearly reveal the presence of distinct peaks of

recombination in both Z. tritici and Z. ardabiliae (Fig. 3).  We used the program Ldhot to call

positions of statistically significant recombination hotspots (Auton et al. 2014) and applied

highly stringent selection criteria  (see Materials  and Methods) to obtain positions of the

most significant hotspots in  Z. tritici and Z. ardabiliae (Fig. 8A). Interestingly, our approach

revealed  a  considerably  greater  number  of  recombination  hotspots  in  Z.  tritici (2,578

hotspots) than in Z. ardabiliae (862 hotspots). Furthermore, we find a significant difference

in the size of the hotspot regions between the two species. In general, the recombination

hotspots  span significantly  shorter  regions in  Z.  tritici (median 39 base pairs)  than in  Z.

ardabiliae (66 base pairs, Wilcoxon ranked test p-value < 2.2e-16). We also compared the

intensity of the recombination hotspots, as estimated by Ldhot (ρ across hotspot) and also

find the median value of ρ in hotspots to be significantly higher in Z. tritici (median of 16.44

compared  with  8.42  for Z.  ardabiliae,  Wilcoxon  rank  test  p-value  <  2.2e-6).  The  higher

frequency of more intense hotspots in Z. tritici not only reveals a different hotspot landscape

in  the  wheat  pathogen;  it  also  suggests  that  the  overall  higher  recombination  rate  we

observe in Z. tritici partly is explained by the different recombination hotspots architecture.
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While the differences to some extent can mirror the larger density of SNPs in  Z. tritici that

enables a finer resolution of the hotspot distribution and structure, we also speculate that

recombination hotspots in these fungi have evolved since the divergence of Z. tritici and Z.

ardabiliae.  To address the extent of conservation in hotspot positions, we correlated the

hotspot maps of the two species. 

The position of recombination hotspots is defined by different mechanisms in different taxa,

e.g. PRDM9 in primates and transcription start and end sites in other species such as birds

(Myers et al. 2005; Singhal et al. 2015). Consequently, hotspot positions are highly conserved

in some species (Singhal et al. 2015), and highly variable in other species (Myers et al. 2010).

We mapped Z. ardabiliae hotspots on the Z. tritici genomes and counted the numbers of co-

localizing  hotspots  in  the  two species.  We considered  that  a  hotspot  in  Z.  tritici  as  co-

localizing with a hotspot in Z. ardabiliae if the distance between the two hotspots is less than

1kb and if not other hotspot is present in between. We report that only 149 hotspots are co-

localizing (6% of hotspots in  Z. tritici and 20% of hotspots in  Z. ardabiliae). This number is

however significantly more than expected by chance (p-value < 9.99e-5, permutation test,

Fig. 8B). These results are consistent with the previously reported genetic maps of Z. tritici,

which also show little overlap of hotspots positions between two Swiss crosses (Croll et al.

2015).  Conversely,  the patterns are highly different from  Saccharomyces species in which

hotspot positions are highly conserved and associated with functional elements across the

yeast genomes (Tsai et al. 2010). 

Given the dense genomes of Z. tritici and Z. ardabiliae we assessed the number of hotspots

mapped to coding sequences. Of the 2,578 Z. tritici hotspots, 132 are located in introns and

1,435 are located in exons. Interestingly, in Z. ardabiliae we find 44 hotspots in introns and

only 396 in exons. We plotted the number of hotspots as a function of the number of called

sites in each region (Fig. 8C). We observe a general trend in which the number of detected

hotspots increases with the number of called sites as a power law (linear relationship in log

space), and with more hotspots detected in  Z. tritici. In contrast to patterns of previously

studied species, this reveals the presence of hotspots in all parts of the genome, including

coding regions. We do not observe a significant enrichment close to transcription start site

(upstream regions) like in yeast (Lam and Keeney 2015). We further note that comparatively

fewer hotspots locate in intergenic regions of Z. tritici, these regions displaying a density of

hotspots similar to what is expected in  Z. ardabiliae  for the observed number of callable

sites. We hypothesize two non-exclusive possible origins for this result: (1) the number of

callable sites is higher in Z. tritici intergenic regions than in Z. ardabiliae, due to the lack of
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telomere-to-telomere assembly of a reference genome for this species. The missing regions

could potentially bias our estimate of hotspot densities in intergenic regions. (2) another

possible explanation is that the comparatively larger number of hotspots in Z. tritici is due to

an  increased  hotspot  density  in  protein-coding  genes  in  this  species,  which  raises  the

question whether intragenic  recombination hotspots  represent  a  selected feature  during

evolution of the wheat-infecting lineage. 

Conclusions

Pathogens need to adapt rapidly to overcome immune responses in their host (Jones and

Dangl 2006).  Several  examples from animal and plant pathogens document exceptionally

high rates  of  genome re-arrangements including changes in  ploidy and full  chromosome

gains or losses (e.g., (Hickman et al. 2013, 2015; Ma et al. 2010; Croll et al. 2013)). So far the

importance  of  meiotic  recombination  in  rapid  evolution  of  pathogens  has  been  poorly

addressed. Our analyses demonstrate extraordinary high recombination rates in two fungal

plant pathogens and thereby suggest that sexual recombination also can be a major driver of

rapid pathogen evolution. 

The overall higher recombination rate and the increased density of recombination hotspots

in  the crop pathogen  Z.  tritici are  remarkable.  Z.  tritici and  Z.  ardabiliae share  a recent

common ancestor, but exist and evolve in highly different environments. While Z. ardabiliae

infects wild grasses in a natural ecosystem, Z. tritici infects a crop host and propagate only in

managed  ecosystems.  Agricultural  management  strategies,  dense  host  populations  and

increased gene flow between geographically distant populations are factors that contribute

to a different population structure of  Z. tritici.  We hypothesize that an increased rate of

recombination  in  coding  sequences  of  Z.  tritici was  selected  as  it  favored  the  rapid

generation of new alleles and allele combinations (Brunner et al. 2008). The exceptionally

high  recombination  rate  in  Z.  tritici allows  the  pathogen  to  rapidly  overcome new  host

resistances and explains the current difficulties of controlling this important wheat pathogen.

Materials and methods

Genome data

The lifecycle of Z. tritici is predominantly haploid and the genome analyses conducted here

thus rely on haploid genome data.  The 40-Mb reference genome of  the  Z.  tritici isolate
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IPO323 was sequenced at the Joint Genome Institute using Sanger sequencing (Goodwin et

al.  2011a).  Two  Iranian  Z.  tritici isolates  and  four  Iranian  Z.  ardabiliae isolates  were

sequenced in a previous study using Illumina sequencing (Table S1) (Stukenbrock et al. 2011).

We used genome data from an additional ten isolates of Z. tritici that originate from wheat

fields in Denmark, France and Germany (Grandaubert, Dutheil and Stukenbrock, in prep). In

this study, we report the genome sequences of hirteen isolates of Z. ardabiliae that originate

from wild grasses collected in the province of Ardabil in Iran (Table S1). DNA extraction was

performed as previously described (Stukenbrock et al. 2011). Library preparation and paired

end  sequencing  using  an  Illumina  HiSeq2000  platform  were  conducted  at  Aros,  Skejby,

Denmark. Sequence data has been deposited under the NCBI BioProject IDs PRJNA277174. 

The thirteen Z. ardabiliae re-sequenced genomes were assembled from 100 bp paired end

reads using the de novo assembly algorithm of the CLC Genomics Workbench version 5.5

(Qiagen, Aarhus, Denmark). The assemblies were created using standard settings for paired-

end reads.  We used a  previously  published RNAseq based annotation to distinguish the

parameter estimates for coding and non-coding sequences (Grandaubert  et  al.  2015).  To

predict the genes that encode effectors we used the software EffectorP (Sperschneider et al.

2016) with default settings, on sequence predicted to be secreted by SignalP (Petersen et al.

2011)  

Genome alignment and SNP calling

Genome alignments were separately created for each population using the MultiZ program

from the TBA package (Blanchette et al. 2004). Default parameters were used, although LastZ

was  used instead  of  BlastZ  for  pairwise  alignments.  Genome alignments  were  projected

against the two reference genomes of each species: IPO123 for Z. tritici and STO4IR-1.1.1 for

Z. ardabiliae  (Goodwin et al. 2011a; Stukenbrock et al. 2011). The projected alignments in

MAF format were filtered using the MafFilter program [27] with the following filters: 1) each

syntenic block was realigned using Mafft (Katoh et al. 2009), and blocks with more than 10

kb were split for computer efficiency; 2) only blocks where all individuals were present were

retained (13  Z.  tritici and 17  Z.  ardabiliae);  3)  a window of  10 bp was slid by 1 bp, and

windows containing at least one position with gaps in at least 2 species were discarded and

the containing blocks were split; 4) a window of 10 bp was slid by 1 bp, and windows with a

total of more than 100 gaps were discarded and the containing blocks were split; and 5) all

blocks were merged according to the reference genome with empty positions filled by 'N',
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which resulted in  one masked alignment  per  chromosome for  Z.  tritici and one masked

alignment per contig for Z. ardabiliae. The chromosome and contig alignments were further

divided in non-overlapping windows of 1 Mb (data set 1) or 100 kb (data set 2). The MafFilter

program was further used to estimate statistics on the alignments at each filtering step, and

to  compute  the  nucleotide  diversity  (Watterson's  θ)  from  the  final  filtered  genome

alignments.

Estimating recombination

Filtered alignments (1-Mb windows, data set 1) were exported as fasta files for the Ldhat and

Ldhelmet packages. The program convert from the Ldhat package was used to convert fasta

files  into  input  loci  files  for  the  program  interval  (Auton  and  McVean  2007).  Only  fully

resolved  biallelic  positions  were exported  (see  Table  1  for  the details  of  SNP numbers).

Likelihood  tables  were  generated  for  θ  values  of  0.0005,  0.005  and  0.05.  The  interval

program was run with 10,000,000 iterations and sampled every 5,000 iterations with a burn-

in of 100,000 iterations. Ldhelmet was run with the parameters suggested in the user manual

((Chan et al. 2012) and  https://sourceforge.net/projects/ldhelmet/). We calculated average

recombination  rates  in  windows  and  regions  by  taking  the  average  of  recombination

estimates between every pairs of SNPs, weighted by the physical distance between the SNPs.

Pairs of SNPs for which the confidence interval of the recombination estimate was higher

than  two  times  the  mean  were  discarded  and  therefore  not  used  in  the  average

computation.  Using  the  gene  annotations  available  for  the  two  reference  species

(Grandaubert et al.  2015),  we calculated the following information for each gene: 1)  the

average recombination rate in exons, 2) the average recombination rate in introns, and 3) the

average recombination rate in the 500 bp flanking 5' region and 4) in the 500 bp flanking 3'

region. We also calculated the average recombination rate for each intergenic region (500 bp

from / to genes). GFF3 files from (Grandaubert et al. 2015) were retrieved and processed

using  the  “genometools”  package  to  add  intron  annotations  (Gremme et  al.  2013).  The

resulting gene annotations were analyzed in R together with recombination maps (R Core

Team 2013).

Assessment of LD-based recombination estimates by simulation

We  used  the  SCRM  coalescent  simulator  (Staab  et  al.  2015)  in  order  to  simulate

polymorphism  data  with  a  constant  mutation  rate  but  variable  recombination  rate.
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Recombination rates were drown randomly from an exponential distribution with mean 0.02.

Segments  with  piecewise  constant  recombination  rate  were  taken  randomly  from  an

exponential distribution with mean 100 kb. Sample sizes of 10, 30  and 100 individuals were

tested for comparison, with a population mutation rate equal to 0.05, 0.005, 0.0005 and

0.00005. We generated a locus of 10 Mb for simulations with θ  equal to 0.005, 0.0005 and

0.00005, but only 1 Mb for simulations with  θ equal to 0.05, as the resulting output file from

Ldhat would otherwise become excessively large due to the high number of SNPs. The exact

recombination  rate  used  at  each  position  of  the  alignment  was  recorded  for  later

comparison. The output of SCRM was converted to Ldhat input format using python scripts.

Recombination rates were estimated using the interval  program from the Ldhat  package

(Auton and McVean 2007). For simulations with  θ = 0.05 and 0.005 a likelihood lookup table

with  θ = 0.01 was used, whereas a lookup table with  θ = 0.001 was used for simulations

with  θ = 0.0005 and 0.00005. The inferred recombination rate at each position was then

compared to the real rate.

Reference species alignment and comparison

The two reference strains IPO323 (Z. tritici) and ST11IR-11.4.1 (Z. ardabiliae) were aligned

using LastZ (Blanchette et al. 2004). The resulting genome alignment was used to map the

coordinates of Z. ardabiliae SNPs to the Z. tritici genome, using the MafFilters “lift-over” filter

(Dutheil et al. 2014). A total of 893,171 (86%) positions could be mapped from Z. ardabiliae

to Z. tritici and were used for further analyses. Non -overlapping windows containing at least

100 analysed SNPs in each species were generated for the comparison of  recombination

rates between the two species.

Multi-scale correlations

We calculated the average recombination rates in windows of varying sizes and retained only

windows that  contained at  least  1% of  the window polymorphic  positions.  To enforce a

similar statistical power among different window sizes, a number of windows were chosen

randomly.  The  same  number  of  randomly  chosen  windows  was  used  for  the  distinct

comparisons.  To  assess  the  sampling  variance,  1,000  independent  samplings  (with

replacement) were performed for each window size. Window sizes of 0.5, 1, 2, 4, 8, 16, 32,

64, 128, 256, 512 and 1,024 kb were tested, with 27 windows sampled in each case. We

measured  correlation coefficients  using  the  Spearman,  Kendall  and  Pearson’s  correlation

coefficients.  Spearman and Kendall’s coefficients are ranked-based; therefore they do not

21

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/158907doi: bioRxiv preprint 

https://doi.org/10.1101/158907
http://creativecommons.org/licenses/by-nc-nd/4.0/


assume bi-normality as Pearson’s coefficient does. Because recombination rates are typically

exponentially distributed, Pearson’s coefficient was measured for the log rates instead of the

raw ρ rates. Spearman’s coefficient assumes that the variables are continuously distributed;

therefore it does not resolve ties. Thus jittering was used to randomly resolve ties in the

input variables (R function ‘jitter’, with default parameters). Conversely, Kendall’s coefficient

assumes ordinal input variables. Therefore, using the three correlation measures allows to

assess the robustness of the correlation signal. A graphical representation was performed

using the ggplot2 package for R, which performed local polynomial regression fitting for the

curves and their confidence intervals (Wickham 2016).

Mapping of hotspots

Hotspots were detected using the Ldhot program (Auton et  al.  2014).  For computational

efficiency, Ldhot was run on the 100 kb alignments (data set 2). A background recombination

map was first estimated for each alignment using the  interval  program of Ldhat with a θ

value of 0.005 [28]. The resulting maps were highly correlated with the maps based on 1-Mb

alignments  and  showed  little  effect  of  the  discretization  scheme.  The  background

recombination map was used as input to Ldhot with default parameter values and 1,000

simulations.

Significant hotspots were filtered for further analysis. First, only the hotspots with a value of

ρ between 5 and 100 across the hotspot coordinates were selected because higher values

are most likely artifacts and the performance of Ldhot is low for weak hotspots (Auton et al.

2014).  A  few  hotspots  with  extremely  large  sizes  (>  2  kb)  were  further  discarded.  This

process  identified  9,133  hotspots  in  Z.  tritici and  1,287  hotspots  in  Z.  ardabiliae.  We

calculated the mean background rate in each detected hotspot and in the two 20-kb flanking

regions. We further selected hotspots for which the within-hotspot rate was at least ten

times higher than the flanking regions. Thus 2,578 and 862 hotspots were identified in  Z.

tritici and  Z. ardabiliae, respectively.  The  Z. ardabiliae hotspots were mapped onto the  Z.

tritici genome  using  MafFilter’s  liftover  function  (Dutheil  et  al.  2014).  We  considered  a

hotspot in  Z. tritici as co-localizing with a hotspot in  Z. Ardabiliae if the distance between

them was less than 1kb, and if no other hotspot was found between the two. We compared

statistics on the distribution of hotspots by randomizing the hotspot positions while keeping

their  original  size,  for  each chromosome independently.  In  order  to  do so,  we used the

following procedure:
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1)  compute  the  total  “inter-hostpots”  distance,  L,  as  the  sum  of  all  distances  between

consecutive hotspots,

2)  draw  random  distinct  positions  uniformly  in  [1  -  L].  These  positions  are  the  starting

positions of each randomized interval,

3) order, then expand each interval to match its original size and compute the corresponding

end positions. Correct the coordinates in order to account for previous intervals.

We  assessed  the  significance  of  the  number  of  co-localizing  hotspots  using  10,000

permutations.  The corresponding R scripts are available as Supplementary Data 3.

Models of GC content evolution

The two reference strains IPO323 (Z. tritici) and ST11IR-11.4.1 (Z. ardabiliae) were aligned

using  LastZ  (Blanchette  et  al.  2004).  Several  filtering  steps  were  further  applied  to  the

alignment.  First,  each synteny block was realigned using the MAFFT aligner (Katoh et  al.

2009) after splitting block longer than 10 kb for computational efficiency, which resulted in

an alignment of 27,918,318 bp that included both species. Second, a window of 30 bp was

slid by 1 bp along the alignment. Windows with more than 29 gaps were further discarded,

which resulted in 27,237,601 filtered positions. To minimize the effect of selection on GC

patterns,  we further discarded regions in the alignment that were annotated as protein-

coding genes in one or both species. This resulted in a total alignment of 9,143,114 bp. The

alignment was further divided into windows ranging from 1 to 4 kb and only data from the

essential chromosomes (Z. tritici chromosomes 1 to 13) were retained. The final alignment

contained 2,052 cleaned windows containing sequences for both species with no synteny

break, and it encompassed 3,179,581 bp. A model of sequence evolution was independently

fitted on each window using maximum likelihood (Dutheil and Boussau 2008). The HKY85

model was used as a basis allowing three frequency parameters ((G + C) / (A + C + G +T), A /

(A + T) and G / (G + C)) in addition to the transition over transversion ratio (Hasegawa et al.

1985). We fitted a non-homogeneous, non-stationary model of substitution, allowing us to

estimate three distinct GC contents for  Z. tritici,  Z. ardabiliae and their common ancestor.

Other parameters were consider constant between species and their ancestor. A molecular

clock was assumed (so that the two branches leading to Z. tritici and Z. ardabiliae were equal

in length) and a 4 classes gamma distribution of rates with a shape parameter fixed to 0.5

was used. We further calculated the observed GC content in each species for each window.
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The average recombination rate was calculated for  each windows containing at  least  1%

polymorphic position (leaving 1,642 windows).

As similar analysis was conducted using recombination rate estimated from (Croll et al. 2015)

which were calculated in  20 kb windows.  The corresponding pairwise  alignment  regions

were extracted and filtered, and coding regions from both species were discarded, which

resulted in 1,948 windows of at least 1 kb where a non-homogeneous, non-stationary model

of substitution could be fitted.
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Tables

Table 1: Summary of genome alignment processing and whole-genome SNP analyses for Z.

tritici and Z. ardabiliae. 
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Z. tritici Z. ardabiliae
Size of sequenced reference genome 39,686,251 bp 31,546,591 bp

17,296,247 bp (43.6%) 15,570,421 bp (49.4%)

Number of haplotypes 13 17

Summary genome alignment 

MultiZ alignment 40.8 Mb 21,500 32.4 Mb 22,296
Splitting in max 10 Kb 40.8 MB 21,904 32.4 Mb 23,001
MAFFT Realignment 40.5 Mb 21,904 32.2 Mb 23,001

Keep blocks with all strains 27.7 Mb 6,455 28.2 Mb 7,117
Filter 1 27.5 Mb 15,703 28.0 Mb 18,402
Filter 2 27.3 Mb 18,785 27.7 Mb 26,074

19.74% 3.36%

0.93% 1.38%

Total number of SNPs 1,483,950 1,069,014

1,438,385 (96.9%) 1,035,158 (96.8%)

713,733 (48.1%) 403,895 (37.8%)

690,096 (96.7%) 396,247 (98.1%)

Summary SNP analyses

Min. number of SNPs 143 0 0 0
Median number of SNPs 43,680 3,556 1,598 634
Max. number of SNPs 102,400 15,170 33,680 20,110

0.0139 0.008663

Number of exonic sites in reference 
genome

Total 
alignment 

length

Number of 
alignment 

blocks

Total 
alignment 

length

Number of 
alignment 

blocks

Percentage of repeated sequences in 
initial alignment
Percentage of repeated sequences in 
final alignment

Total number of analyzed SNPs (biallelic, 
no unresolved state) and percent of 
total SNPs
Total number of SNPs in exons and 
percent of total SNPs
Total number of analyzed SNPs in exons 
(biallelic, no unresolved state), and 
percent of total analyzed SNPs in exons

1 Mb 
windows

100 kb
Windows

1 Mb 
windows

100 kb 
windows

Diversity (median of Watterson's theta 
in windows of 10 kb)
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Table 2: Recombination and repeat content in centromeres of Z. tritici.
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Es
se

n
ti

al

1 3839299 3851749 12450 0.229 20 0.021 0.94% 31.33%

2 512901 521916 9015 0.053 77 0.024 0.00% 32.39%

3 3348307 3356535 8228 0.097 269 0.025 0.00% 0.00%

4 217113 226545 9432 0.033 421 0.028 0.00% 9.88%

5 2604117 2614736 10619 0.104 47 0.027 0.94% 28.19%

6 625186 637601 12415 NA 0 0.026 3.10% 37.46%

7 255824 266207 10383 0.006 79 0.044 0.32% 0.00%

8 213892 227444 13552 0.059 62 0.029 0.45% 39.99%

9 2067589 2076063 8474 0.015 106 0.040 0.50% 0.00%

10 99716 109365 9649 0.016 77 0.049 0.00% 15.32%

11 365130 373557 8427 NA 0 0.049 0.00% 46.30%

12 180233 188209 7976 0.001 150 0.052 2.48% 7.10%

13 236993 242558 5565 0.015 156 0.037 0.50% 0.00%

D
is

p
en

sa
b

le

14 59960 70870 10910 0.000 785 0.000 0.00% 35.86%

15 382500 394754 12254 0.001 1098 0.001 0.86% 20.04%

16 332004 342592 10588 0.099 83 0.023 0.00% 35.97%

17 406958 418893 11935 NA 0 0.000 0.24% 46.85%

18 159000 171999 12999 NA 0 0.159 0.00% 46.62%

19 148227 159387 11160 0.001 4 0.000 0.76% 1.38%

20 94677 105169 10492 NA 0 0.008 0.30% 11.86%

21 340264 346657 6393 NA 0 NA 0.31% 2.33%
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Figure legends

Figure  1:  Correlations  among  recombination  maps  in  Z.  tritici  show  highly  correlated

estimates  from  two  composite  likelihood  methods. A)  Correlation  circle  of  the  six

population genomic recombination maps based on the two first principal components. The

programs Ldhat interval (Auton and McVean 2007) and Ldhelmet (Chan et al. 2012) were

both used with three distinct input scaled effective population sizes (Θ) of 0.0005, 0.005 and

0.05. B) Correlation of the Ldhat and Ldhelmet maps with Θ = 0.005. The Ldhat map was

discretized into 10 categories with equal number of points. The points represent the mean

+/-  the  standard  error  for  each  category.  C)  To  assess  the  quality  of  the  inferred

recombination  maps,  genome-wide  estimates  of  recombination  were  correlated  with  a

genetic map obtained by experimental crossing of  Z. tritici isolates. Correlations between

population genomic maps (obtained by Ldhat and Ldhelmet) with a scaled population size of

0.005 and the average recombination map from two independent crosses (Croll et al. 2015).

Figure 2: effect of sample size and diversity on the estimation of recombination rate by

Ldhat.  10 Mb regions (1Mb for regions with  θ = 0.05) were simulated using a coalescent

model  with  variable  recombination  rate.  Dots  are  average  of  point  estimates  of  local

recombination rate  inferred using  Ldhat  (“interval”  program).  Each dot  corresponds to  a

region with constant recombination rate in the simulated alignment. Bars indicate the 1 st and

3rd quartiles of Ldhat estimates for the region. Grey points are raw estimates; black points are

computed from filtered estimates (see Methods). The red diagonal line shows the 1:1 ratio.

Columns indicate distinct population mutation rate ( θ = 4 Ne u) and rows distinct sample

sizes (number of haploid genomes).

Figure 3: Variation in recombination rate across chromosomes. Based on the population

genomics data of  Z.  tritici and  Z. ardabiliae,  genome-wide patterns of recombination are

estimated. Patterns of variation across chromosome 1 of  Z. tritici  is shown as example. A)

SNP density in 10 kb windows with corresponding smoothing curve. B) Distribution of called

sites along the chromosome in black, corresponding to the regions that were included in the

analyses. C) Estimates of the population recombination rate ρ show a highly heterogeneous

recombination landscape across the chromosomes. D) Observed GC content. The position of

the centromere of chromosome 1 is marked over the chromosome plots as a vertical stippled

line. 
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Figure  4:  Broad-scale  recombination  rates  in  Z.  tritici and  Z.  ardabiliae. Broad-scaled

patterns of recombination rate in  Z. tritici and Z. ardabiliae demonstrate a strong effect of

chromosome size and chromosome type. A) Mean recombination rate in  Z. tritici and  Z.

ardabiliae per  essential  chromosome  as  a  function  of  the  chromosome  size.  B)  Mean

recombination  rate  per  essential  chromosome  arm  as  a  function  of  the  arm  size.  C)

Distribution   of  mean  recombination rate  per  chromosome in  Z.  tritici  as  a  function of

chromosome type (essential or accessory).

Figure 5:  Fine-scale recombination patterns within chromosomes. A)  The distribution of

recombination rate estimates in different sequence features in  Z.  tritici and  Z.  ardabiliae

reveals small, but significant differences among the non-coding, coding and UTR sequences

in  both  species.  Top  line  numbers  indicate  significance  groups  by  decreasing  value  of

recombination rate. Categories with identical numbers are not significantly different at the

1% level.  B) Distribution  of  recombination rate  estimates  in  exons,  introns  and  UTRs  of

effector and non-effector genes is shown. Bow widths are proportional to the sample sizes.

For Z. ardabiliae, the recombination rate in exons and introns is significantly lower in effector

genes compared to non-effector genes (Wilcoxon rank test corrected for multiple testing, NS:

non significant, *: 5% level, ***: below 0.1% level).

Figure 6: Recombination maps of Z. tritici and Z. ardabiliae plotted along the chromosome

1 of  Z. tritici.  A) Recombination map in 100 kb windows plotted together with smoothing

curves. B) Cumulative curves of the recombination maps, scaled in order to be comparable.

Figures for other chromosomes are available as Supplementary Data.

Figure 7: Correlation of recombination maps of Z. tritici and Z. ardabiliae. A) Comparison of

the two recombination maps based on average recombination rates in windows of at least

100 SNPs in each species.  Points represent averages in 10 classes with equal number of

windows, error bars represent the mean +/- standard error. B) Correlation of recombination

maps in sliding windows of different sizes. Three distinct correlation coefficients are plotted

against recombination rates averaged in different window sizes (see Materials and Methods).

Points indicate the averages of 1,000 samples and bars shows the standard errors of the

means. Lines correspond to local regression smoothing (LOES).
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Figure 8: Distribution of hotspots in the genomes of  Z. tritici and Z. ardabiliae. A: example

mapped hotspot in a homologous region in  Z. tritici and  Z. ardabiliae.  Lines indicate the

background recombination rate as estimated by Ldhat. Bars indicate the positions, width and

strength  of  hotspots  detected  by  Ldhot  in  the  region,  after  filtering  (see  Materials  and

Methods).  B:  Number of hotspots in  Z. tritici in the direct 1 kb range of a hotspot in  Z.

ardabiliae (vertical line) and the corresponding distribution under the null hypothesis of a

random  distribution  of  hotspots.  C:  Frequencies  of  hotspots  in  distinct  regions  of  the

genome. Number of detected hotspots in each region as a function of the number of called

sites. Lines correspond to ordinary least square regressions.

Supplementary Material 

Table S1: Summary information of Z. tritici and Z. ardabiliae isolates used in the study. 

Figure S1: Genome-wide recombination rate and GC content. A) Observed GC content in Z.

tritici plotted against observed GC content in  Z. ardabiliae. B) Equilibrium GC content in  Z.

tritici plotted against equilibrium GC content in Z. ardabiliae. C) GC content as a function of

recombination  rate.  Recombination  rate  was  discretized  in  10  categories  with  the  same

amount  of  points.  Points  indicate  the  mean  GC  content  in  each  category;  and  bars

correspond to standard errors of the means.

Supplementary Data 1: Chromosomal patterns for every chromosomes. Legends as in Figure

3.

Supplementary Data 2: Correlation of recombination maps for every chromosomes. Legends

as in Figure 6.

Supplementary Data 3: All scripts and data allowing reproducing results and figures in this

manuscript (deposited on FigShare). 
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