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Abstract 
Although it is generally accepted that geography is a major factor shaping human genetic 
differentiation, it is still disputed how much of this differentiation is a result of a simple 
process of isolation-by-distance, and if there are factors generating distinct clusters of 
genetic similarity. We address this question using a geographically explicit simulation 
framework coupled with an Approximate Bayesian Computation approach. Based on six 
simple summary statistics only, we estimated the most probable demographic parameters 
that shaped modern human evolution under an isolation by distance scenario, and found 
these were the following: an initial population in East Africa spread and grew from 4000 
individuals to 5.7 million in about 132 000 years. Subsequent simulations with these 
estimates followed by cluster analyses produced results nearly identical to those obtained 
in real data. Thus, a simple diffusion model from East Africa explains a large portion of 
the genetic diversity patterns observed in modern humans. We argue that a model of 
isolation by distance along the continental landmasses might be the relevant null model 
to use when investigating selective effects in humans and probably many other species.  

 
Keywords: spatially explicit simulations; isolation-by-distance; approximate Bayesian computation; 
human dispersal; cline vs. clusters. 
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Introduction 
Departing from Africa around 100 kya (thousands year ago), modern humans colonized the globe, 
scattering over the continents. This slow migration process created genetic divergence as populations 
migrated, splitting along the way, to settle over the landmasses. The history of humans can be 
deciphered using genetic differences between populations, reaching further than anthropological 
knowledge [1]. With the increasing amount of genetic data, as well as the advance of theoretical 
models, historical and prehistorical processes playing a major role in shaping the observed genetic 
diversity can be better identified [2–4]. 
In particular it has been recognized that geography plays a major role in structuring populations [5]. 
The significance of geography as a driver of genetic diversity has already been demonstrated in many 
studies, for example in work based on blood group polymorphism [6], enzyme polymorphism [7], 
mitochondrial DNA complete sequences [8–10], and even complete genome sequences [11]. Acting as 
a barrier to migration, mountains and seas decrease the connectivity between populations, which 
correlates with genetic distance [3,12]. This monotonous relationship between (geographic) distance 
and diversity, known as cline, is expected under isolation by distance, in a continuous diffusion model. 
However, looking at populations worldwide, genetic patterns show clustering of populations into major 
groups (European, Asian, Melanesian, Native Americans and Africans) [12]. Although this continental 
split suggests the action of specific environmental or cultural forces , it remains unclear under which 
conditions these continental clusters emerge. 
 
Hence, two types of patterns arise out of empirical population genetic studies, cline and cluster, which 
seems contradictory. Interpretations have flourished around these patterns, fueling the misplaced debate 
of human races [13,14]. 
 
Favoring a clinal view, some researchers have shown that human genetic variability declines as one 
moves further away from East Africa [4,15]⁠. Moreover, it has been observed that there is a clear 
correlation (R2=0.85) between genetic distances (e.g., FST) and geographic distances (along probable 
colonization routes). Although agreeing with this observed global pattern, studies favoring a cluster 
view point to discontinuities along the decline of diversity. For these clusters to appear, serial 
bottleneck events associated with isolation, must have generated what one could see as steps in a 
staircase of genetic diversity [3].  
 
As an attempt to reconcile both perspectives, Serre et al. [2] brought the possibility that the 
geographically uneven sampling scheme used in most, if not all, worldwide studies on human genetics 
may have generated these clusters, which would merely reflect sampling bias. Rosenberg et al. [3] 
challenged this view taking advantage of an expanded dataset to argue that, among all other variables 
to be considered in the detection of clusters, geographic dispersion of samples has relatively little effect 
on the final outcome. In such cases, large amount of genetic data would always allow detecting 
discontinuities even if the distribution of sampled populations were completely uniform. Such 
discontinuities could be small, but still detectable and biologically relevant. Finally, another study, that 
focused on the geographical origin of modern humans, detected similar patterns of clines in FST and 
genetic diversity, and attributed the few deviations from these trends as being caused by “admixture or 
extreme isolation” [16]. Concretely, it remains unclear which underlying genetic and demographic 
processes could explain both cline and cluster observed pattern. 
 
This apparent opposition between a clinal and a cluster view of human diversity arises because current 
models fails to re-create both patterns. Indeed those models tend simplify the complexity of human 
demographic history (population growths, migrations) as well as genetic processes (selection, drift). 
For example, studies looking for adaptation [17,18] as well as the association between genotype and 
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phenotype [19] rely strongly on neutral models (diversity expected from drift and demography, no 
selection). Typically, some demographic scenarii create genetic polymorphisms which are 
indistinguishable from those supposedly left by selection. The deconvolution of selection and 
demographic signal is hindered by the lack of simple demographic model that would reproduce basic 
patterns of human diversity. For instance, Hofer et al. [20], looking at four continental human 
populations, detected an unexpected large proportion of loci (nearly a third of their database) with 
strong differences in allelic frequency. The authors suggested that the observed patterns are better 
explained by the combination of demographic and spatial bottlenecks with allele surfing in the front of 
range expansion rather than by selective factors [21]. In the allele surfing process, drift takes random 
samples of alleles at potentially different frequencies from the source population (i.e. founder effect), 
while the combination of range and demographic expansions amplifies this effect on the overall 
population by increasing the contribution of these alleles in the newly colonized regions. Therefore, to 
understand the recent genetic evolution of human populations, it is essential to have a good grasp on 
the demographic events underlying it. A first step to this end is to understand the spatial distribution of 
human genetic diversity and the emergence of strong discontinuities in empirical studies (i.e. formation 
of clusters). 
 
To bridge the gaps between theoretical study and the discordance in empirical genetic studies, we 
present a simulation-based study. Here, we investigate the distribution of neutral genetic diversity in 
modern humans using spatially explicit simulations to model the demographic diffusion of our species 
throughout the globe and to recover the genetic signature left by this process. The simulations are used 
to estimate, the demo-genetic parameters best fitting a large microsatellite dataset of published data 
[22, 23] using Approximate Bayesian Computation (ABC) [24]. We do so by generating genetic data 
under a simple stepping stone model constrained by the shape of the continental masses. Based on the 
parameter estimates, we simulate a full dataset of individual genetic markers. We then compare 
simulated and empirical data using Principal Component Analysis (PCA) and analyses with the 
STRUCTURE software [25]. This permits to assess whether the proposed model is suitable for further 
population genetic studies, if it can generate patterns similar to the one observed in real data (clusters 
and cline). We then discuss the outcomes of such a model for the understanding of the processes 
defining human genetic diversity around the world and possible applications in the field. 
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Material and Methods 
 

Empirical data 
Data from this study represent a subset of the dataset originally made available by Pemberton et al. 
[23], Rosenberg et al. [3] and Wang et al. [22]. Since we used a strict mutation model, we chose 346 
microsatellite loci whose length is proportional to the repeated segment length. These loci represent the 
ones termed ‘regular’ by Pemberton et al. [23] that are also available in the Wang et al [22] dataset. The 
number of populations in the original dataset was 78, totaling 1484 individuals distributed throughout 
the world (more details in Figure S1, Figure S2, and Table S1 in the Supplemental Data available on-
line).  
Although dense SNP datasets are available, we used a microsatellite dataset in this study for the 
following reasons: (i) The microsatellites used here have been extensively checked and shown to have 
equally sized repeat units, which is expected if they evolve under the stepwise mutation model ; (ii) 
they are unlinked and essentially neutral; (iii) the number of samples and populations publicly available 
is greater than for SNPs [78 instead of 51 for the latter [26]] or whole genome (1000 genome project), 
and with better coverage of the American continent; and (iv) we could only simulate so many loci in a 
spatially-explicit approach with the currently available computational power. Note that being multi-
allelic markers, microsatellites contain more information per locus than SNPs [27]. 
 
ABC 
We estimated demographic and genetic parameters using an Approximate Bayesian Computation 
(ABC) framework. In brief, simulated dataset are generated over a large set of demographic parameters 
(start of expansion, initial population size, growth, etc.). The simulation outcome that best match the 
empirical data are selected to define a posterior probability distribution for each parameter. Genetic 
data were generated using a modified version of quantiNEMO [28] in a two-step process. First, 
individual-based forward-in-time simulations produce the demography of the expanding population. 
Then a backward in time coalescent-based process simulates the genetic polymorphism. Parameters 
were estimated using the ABC package ABCtoolbox [29]. 
For the demographic part, all simulations started at one single deme with a varying initial population 
size (Ni, uniform prior distribution, from 2 to 5120), in Eastern Africa (9°1’48”N, 38°44’24”E) – 
today’s Ethiopian city of Addis Ababa, the origin of human expansion as estimated by Ray et al. [30] 
and place of the oldest known modern humans remains [31]. The prior distribution for the time of the 
onset of this expansion had a normal distribution with mean of 155 000 years and standard deviation of 
32,000 years (T, generation time of 25 years). These values were based on the combination of 
independently estimated dates of 141 455 ± 20 000 [32] and 171 500 ± 25 500 years ago [8]. These 
dates are more recent than the oldest reliably dated fossil remains in Ethiopia (195 000 ± 5000), which 
is expected since they most likely predate the spatial expansion of interest in this study [33]. Population 
regulation followed a stochastic logistic model [34] with intrinsic growth rate (r, lognormal prior, 
mean=0.5, SD=0.6) delimited by the deme’s carrying capacity (N, uniform prior of 2-5120 
individuals). Individuals are allowed to move between the four directly neighboring demes in a two-
dimensional stepping-stone pattern with a given dispersal rate (m) sampled uniformly between 0 and 
0.5. Genetic data were generated using a coalescent approach to simulate genealogies for 20 
microsatellite loci (single stepwise mutation model) with a mutation rate µ (uniform prior of 10-5-10-3 
mutations/locus/generation) for the same 70 populations and same number of individuals as the 
observed sampling scheme (see Table S2). 
 
Summary statistics 
In ABC, summary statistics are used to compare observations with simulations [24,35]. Ideally, these 
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summaries should be a set of a small number of measures that maximize the information. Initially, we 
explored a large set of different summary statistics: number of alleles, allelic richness [36], Garza-
Williamson’s M [37] and gene diversity [38] per sampled population; pairwise FST [39] and Chord-
distances [40] between samples. Considering that many of them did not bring extra information to our 
inference scheme, while hindering the estimation [41], we used two different techniques to reduce the 
dimensionality of the dataset. We retained a subset made of the 2,415 pairwise FST between populations 
and the number of alleles (A) for each of the 70 demes. These 2,485 summary statistics were then 
transformed into six “pattern” statistics, summarizing the relationships between FST, number of alleles 
and geographic distance as follows: The number of alleles sample was regressed on the geographic 
distance between the sampled location and Addis Abeba, and pairwise Fst were regressed against 
pairwise geographic distances. From these two regressions,  we extracted six pattern statistics, namely 
the means, slopes, and the logarithm of the sum of residuals. The calculations of summary and pattern 
statistics for the observed data were carried out in R and the R-package hierfstat [42]. Finally, these six 
pattern statistics were used for the estimates of the demo-genetic parameters and subsequent 
validations. We also used partial least squares (PLS) to reduce the original 2,485 summary statistics to 
a small number of components [43]. This technique gave very similar (but no better) results for the 
validations and a few parameters had slightly different estimated values (Figure S4). In the main text, 
we only report the results obtained with the six pattern statistics. 
 
Estimates 
The six simulations parameters (Ni, µ, m, N, r, T) were estimated based on a comparison of the 
simulated and the observed summary statistics and a subsequent estimation step. The comparison of the 
summary statistics was obtained by assessing the Euclidean distance between simulations and the 
statistics from the empirical data, which can be used to rank the simulations from closest to most 
distant from the observations. Here, we retained the 5,000 simulations with smallest Euclidean 
distances from the observations. This subset of simulations was then used to estimate the parameter 
values using a weighted generalized linear model (GLM) [44] of the six pattern statistics with the 
ABCtoolbox software [29].  
 
Validation 
In order to assess the quality of our estimation process, we perform a standard ABC validation. Hence, 
we used pseudo-observed values taken from the simulations. We quantify how well these values could 
be recovered when estimated through our ABC pipeline [45]. This was done for 1000 different pseudo-
observations for each of the six investigated parameters. We calculated then the correlation (R2) for the 
regression between pseudo-observed and estimated values, the slope of this regression, the standardized 
root mean squared error of the mode (SRMSE) and the proportion of estimates for which the 95% 
higher posterior density interval included the true value. 
 
Full-dataset simulations 
Using these estimated parameters we generate new simulated samples with 100 loci per individual, 
with quantiNEMO. To investigate the effect of our estimated parameters, we ran three sets of 100 
simulations each whose parameter values were sampled from the (i) prior distribution of the estimation 
step, (ii) posterior distribution (95%HPD) of the estimation step or (iii) taken directly from the point 
estimates (mode values of the posteriors) of the estimation step. Using the output of these simulations, 
we investigated how well these simulations could reproduce analyses carried out on the real data set.  
To check for consistency, the first comparison was based on the same six pattern statistics used for the 
estimations (i.e. mean, slope and sum of residuals for number of alleles and pairwise FST). A second 
comparison was based on the first two axes of a principal component analysis (PCA) computed on the 
individual allele frequencies in each sampled population. Since the sign of the coordinates along PCA 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/158923doi: bioRxiv preprint 

https://doi.org/10.1101/158923


components can differ between replicates, we compared the different sets of simulations by means of 
the squared correlation between observed and simulated PCA results. Each axis was considered 
separately. Thus, for each simulation, we estimated an R2 representing the correlation between 
simulated and observed populations coordinates on the PCA axes. These R2 values were compared 
across the three different sets of simulations (Prior, 95%HPD and Mode). 
 
Finally, we ran a clustering analysis using STRUCTURE v2.3.4 [25] on the point estimate simulated 
set. Each simulation was analyzed for varying K (the number of clusters) between 1 and 7. Each 
structure analysis was run for 250 000 iterations, discarding the first 50 000 as burn-in. To assess the 
accuracy of our model, we ran STRUCTURE on the empirical data, but for these analyses we used the 
whole set of 346 microsatellite loci and ran 25 replicates for each K. We processed the STRUCTURE 
outputs with CLUMPP [46] in order to align the different replicates to compare the simulations data 
with the observations. We also carried out the estimation of the number of groups (K) best explaining 
the variation present in simulations and observations following Evanno et al. [47]. The ΔK was 
estimated based on 25 replicates for each STRUCTURE run. 
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Results 
 
 We ran in total 1,183,831 simulations based on prior distributions; 974,934 (82.4%) successfully 
colonized all the sampled patches and were therefore used in the subsequent analyses. We obtained 
posterior estimates for all six demo-genetic parameters, which are presented in Table 1 (point estimates; 
for their complete distributions, see Figure S3). The inferred distribution of each parameter presents a 
clear unique peak, as expected under a good estimation. Briefly, we estimate a first expansion 132 kya 
with an initial population size close to 4,000 individuals, expanding with a growth rate of 0.149 and a 
migration rate of 0.041. The mutation rate µ is estimated at 2.6x10-4 mutation/site/generations. 
 
 To assess the accuracy of these inferred parameters, we used a validation procedure [29] based on 
1000 independent simulations. The mutation rate (µ) estimation is satisfactory since we observed a 
strong correlation between pseudo-observations and estimations (R2=0.877) for which the slope was 
nearly 1 (slope=0.908), and the error rate low (SRMSE=0.099). The proportion of the estimates that 
included the pseudo-observed value within their 95%HPD interval was 0.977, suggesting that our 
posteriors are slightly conservative. Good inference was also achieved for migration rate (m), current 
population size (N) and initial population size (Ni) for which the R2 values were about 0.5 and the 
slopes above 0.6. We had rather poor estimations for time of the onset (T) and population growth rate 
(r) where R2 values were below 0.3 (Table 1). 
 
Full-dataset simulations. The posterior estimates above were then used in further simulations to create 
three sets of simulated genetic markers (100 simulated microsatellite loci), mimicking the empirical 
sampling scheme. These additional simulations were carried-out by randomly sampling parameter 
values from either (i) the prior posterior, (ii) the truncated posterior (at the 95%HPD level) distributions 
or (iii) the point estimates.  As these parameters were estimated using basic genetic polymorphism 
summary statistics, it is essential to check whether such simple expansion can produce the empirical 
cline and clustering patterns. 
 
We first verified that our simulations were able to replicate the clinal pattern observed in the original 
genetic data. Figure 1A shows the empirical cline with a reduction of genetic diversity while increasing 
geographic distance, while Figure 1B shows in comparison the simulated cline using point estimates 
parameters. In both cases, the general pattern is the same: a steady reduction of diversity for 
populations as one moves away from Addis Ababa, and a clear-cut increase of genetic differentiation 
with geographic distance.  
 
The comparison of the three simulation sets and the empirical cline emphasizes the power of the ABC 
inference. Indeed, as expected, parameters sampled from posterior distribution produce patterns closer 
to the empirical dataset than the prior distribution. The points estimates produce patterns close, on 
average, to the posterior distribution, with less variation around the true value (Figure 2 and Figure S5). 
Finally the cline produced by the set of point estimate simulations is very close to the empirical cline. 
Next, we investigated whether the simulated genetic data could reproduce the clustering patterns 
observed in the Principal Component Analysis (PCA). In the empirical dataset, one observes clear 
divisions between continental groups (Figure 3A), as previously demonstrated elsewhere [9,48]. The 
PCA results based on our simulations returned a pattern very similar to that observed (Figure 3A). The 
convergence of the estimation of parameters, from prior, to 95% HPD, to point estimates, can also be 
assessed looking at the PCA. The correlation between observation and simulations in their principal 
components (PC1 and PC2) are presented in Figure 3B. The data simulated under the 3 scenarios 
generated patterns for the first PCA component extremely similar to what is observed in the real data 
set. For the second PCA component, the similarity to the observed pattern was small for dataset 
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generated under the prior parameters distribution, and increased for data simulated with the posterior 
parameters distribution and point estimates. 
  
Finally, we also looked at the partitioning pattern generated by the software STRUCTURE. 
Simulations and empirical data gave the same estimates of the most likely number of groups (K) within 
the worldwide sample either using the highest likelihood of the data as the criteria for defining K 
(which led to K=7 in both observations and simulations), or using ΔK [47], which favored K=2 both for 
observations and simulations (Figure S7). The similarities also persist in the way the different 
individual genomes are allocated to the different clusters resulting from this analysis. They generated, 
for both empirical and simulated data, remarkably similar results for K=2 to K=4 (Figure 4). For K=2, 
we observe a cluster of Africans and a cluster of Americans whereas all other individuals are admixed 
of these groups to different extent; the proportion of admixture obtained for the different individuals in 
the simulations matches almost perfectly with that seen in the observation. For K=3, Eurasian 
populations emerge from the previous African cluster with a few differences between simulations and 
observation: In the observations, Middle-Easterners and Europeans group with Africans; whereas in the 
simulations, they are admixed between the African and East Asian clusters. For K=4, the sub-Saharan 
samples split from the rest of the world creating a cluster unique to Africans. While for the empirical 
observation this division is very clear, the results based on the simulated data show a more gradual 
pattern with Middle-Eastern and European mixed-ancestry samples. Beyond K=4, the patterns 
observed between simulations and observations diverge: while single populations start to emerge as 
separate clusters in the observation; higher values of K lead to the appearance of admixed individuals 
and populations within the already existing groups, creating no new clusters (Figure S6). Interestingly, 
in both simulations and observation, the grouping pattern is relatively consistent with the continental 
partitioning of the populations. 
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Discussion 
 
We have shown using approximate Bayesian computation that a simple model of expansion from East 
Africa using the world-wide landmasses leads to meaningful estimates of the past demography of our 
species. Furthermore, when genetic data sets generated according to this past demography are analyzed 
with Principal component analyses or the Structure program, we obtain results that are extremely 
similar to those observed in the original human microsatellite dataset. We discuss these findings below 
 
Despite the increasing use of genetic markers in anthropological reconstruction, it remains unclear how 
to model the observed patterns of genetic diversity around the world, largely because of the complexity 
of evolutionary processes of the human species. Specifically, the apparent opposition between cline and 
clustering patterns, as observed in empirical studies, remains a challenge as most existing model fail to 
reproduce both patterns. Owing to the release of new fast simulation tools, such as quantiNemo, and 
the rising availability of global datasets, we reconstruct a simple expansion scenario that reproduces the 
clustering effect of modern populations, using large samples of published microsatellites data.  
 
Based on empirical data of 346 microsatellites in 1,484 individuals from 70 populations, this study has 
inferred six parameters (T, Ni, N, µ, r, m) that defines a worldwide expansion model using the 
computationally intensive ABC framework. Despite the simplicity of the model, the inference works 
remarkably well. The estimated values are similar to other studies. The mutation rate (µ=2.6 10-4 
mut/allele/gen) matches recent estimates [49]. The growth rate (r=0.149) is close to rates described 
elsewhere when applying logistic growth to humans [30]. We inferred a start of expansion from Addis 
Ababa around 132 kya, close to previous estimates [32]. Moreover, the validation, based on the 
estimation of known parameters using simulated pseudo-observation, confirms the accuracy of the 
inferred values. 
 
The inferred demic expansion model along landmasses generates genetic patterns very similar to those 
observed in the real dataset. Similarly, to other studies [9], these simulations confirm the signatures of 
isolation-by-distance and constant decrease of genetic diversity with increasing distances from Addis 
Ababa. Strikingly, these similarities are robust towards the inferred parameters, as tested with  three 
simulation sets (parameters issued from prior distribution, posterior distribution or point estimates). 
 
To investigate clustering patterns, PCA and STRUCTURE analyses were performed. The PCA on the 
simulated dataset shows a strong correlation with both the first and second principal components 
calculated from the observation. The STRUCTURE analysis presents closely related results between 
real data and simulations: the number of groups which better explains the diversity in the samples is the 
same for both. The population division for up to four clusters remains very similar. Hence, this study 
shows the possibility to reproduce both observed isolation by distance and continental clusters under a 
unifying model of simple expansion. 
To understand the underlying processes reproducing this pattern, it is interesting to have a close look at 
the partitioning analyses. PCA has long been used in human population genetics [50], it relates genetic 
variation to the geographic distribution of populations [51] and individuals [52]. Simulated and 
empirical data are similarly scattered on the two first principal components. The coordinates of the 
samples along the first axis (Figure 3B) show a very high correlation with the observed coordinates, 
even for simulations based on the prior, uninformative, distribution of the parameters. This indicates 
that the first component of the PCA (capturing the largest fraction of the genetic variance) probably 
relates to the origin of the expansion (which occurs in the same place, East Africa, for all simulations) 
and demic diffusion. The second principal component seems to be more sensitive to the choice of the 
parameter values, the correlation between observation and simulations increasing when the parameters 
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used for the simulations get closer to the estimation.  
 
Although admixture-based analyses are not completely independent from PCA [53], the most 
surprising result obtained in this study comes from the population clustering analysis in STRUCTURE. 
Indeed, no previous study has shown the appearance of clusters from a simple diffusion process such as 
that we used in our simulations. In fact, based on ΔK, the estimation of the best number of groups, 
allowing for admixt individuals, is consistent between simulated and empirical data with K=2 which 
suggests weak support to separate genetic groups. In both cases, the assignment of each populations to 
the clusters is extremely similar, the model is therefore able to reproduce the overall genetic patterns. 
However, global population genetic studies have been – regardless of the previous finding – 
consistently analyzed as if continental clusters were relevant [3]. Hence, we overlook the lack of 
significance of multiple partitioning on worldwide samples to analyze the data with K>2; the apparition 
of continental clustering is investigated in the simulations. The American populations are the first to 
stand out; second, a separation between European and African versus East Asian; and then the Africans 
alone stand out from the rest. There are a few exceptions though. The Mozabite population, from North 
Africa, tends to group with the other African populations in the PCA results for the simulations; while, 
in the observed data, they group with the Middle-Eastern and European populations. It is possible that 
more recent events of contact through the Strait of Gibraltar [54] or the Fertile Crescent, which are not 
captured by our simulations, contributed to this discrepancy. Another explanation could be the absence 
of the potentially important barrier of the Sahara Desert in the simulations, which may have played an 
important role in isolating North Africans from sub-Saharan populations. Although previous studies 
have modeled such environmental heterogeneity [30] it is extremely difficult to model environmental 
changes, like the expansion of Sahara, through the last 100,000 years. Moreover, the simulated 
European/Middle-Eastern populations are admixed unlike the empirical data, which may be caused by 
the absence of the Sahara as well. Other studies have shown that the peopling of Europe, the Fertile 
Crescent and North Africa is more complex than a simple expansion [1,55]. Despite these few (albeit 
important) discrepancies, this very basic model reproduces the global worldwide patterns remarkably 
well. 
 
A potential bias in this study appears with the use of microsatellite loci which have a higher 
polymorphism than the more popular SNP data which are becoming standard. However, unlike SNP 
that are affected by ascertainment bias, evolutionary models of microsatellite data are better known. 
Moreover, the amount information captured with a limited number of loci, constraining the speed of 
simulations, is higher in microsatellites. Hence to grasp any bias introduced by the type of markers we 
provide a comparison of previous studies across these two kinds of markers. For the PCA results, 
studies on SNP worldwide datasets [48,52,56] return results very similar those obtained here both for 
the empirical and simulated data (Figure 3A). The first component correlates with the distance from the 
start of expansion, with Americas being the furthest. The second axis correlates with a north south 
geographical separation. For the STRUCTURE analyses, the clustering pattern remains similar across 
markers. Indeed, Rosenberg et al. [3] using STRUCTURE on microsatellite data have found results 
very similar to those obtained with SNPs in Li et al. [9], which are, in turn, very similar to our results in 
Figure 4. Therefore, for capturing the overall human genetic distribution, the SNP data may increase 
the resolution of the results, but does not seem to affect the general patterns that are replicated in the 
model we propose here. 
 
The results obtained here shed new light on the “cline vs. clusters” controversy. The fact that a simple 
model of two-dimensional dispersion on a homogeneous world succeeds in producing results so similar 
to the real data in many different analyses is strong support for an overall clinal view of the distribution 
of human genetic diversity over the globe. Even though the simulations used here involve some 
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sophistication, the underlying model is simple and can easily be considered in further population 
genetics studies: isolation-by-distance and continuous decline of diversity as we move away from East 
Africa. These two patterns are easily described by two linear regressions after all. 
 
The clinal model for the global distribution of human diversity encounters support in other biological 
and cultural systems. Skull morphological diversity, for example, shows a clear and steady decline 
within population diversity as the distance from Africa increases and is in perfect agreement with what 
is found in DNA [57]. Language, a cultural feature, also shows a similar pattern. Distance from Africa, 
alone, explains 30% of the reduction in phonemic diversity as measured in 504 languages worldwide 
[58]. 
This view of human genetic diversity distributed over a continuous cline reinforces the inadequacy of 
biological “races” as clear separation between different human groups [14,59–61]. Nonetheless, 
classifying humans in different groups is still common practice in many genetic studies (mostly 
medical genetics) [62]. Typically, cluster identification can be useful for localized studies. At a smaller 
scale, a refinement of the genetic specificity of populations can be linked to the local prevalence of 
some conditions such as the identification of some genes involved in malaria resistance or lactase 
persistence [63]. However, if one is interested in broader scale studies, separating individuals by 
continents may lead to mistakes and misconceptions, as each individual genetic marker will be better 
defined by cline.  
 
 
Working against the current trend of always more intricate models that capture a maximum of variation 
in the data, but failing to reproduce the global genetic patterns of cline and clusters, we present here a 
very simple expansion scheme over continental landmasses. Although additional spatial heterogeneity 
could help to improve this basic neutral model (e.g. by accounting for the Sahara), the simple one used 
here proved to be very useful for explaining the main patterns of human genetic variation. Such a 
model may represent a good choice for establishing a neutral background in future studies looking at 
more complex questions in modern human evolution such as the detection of selective events [64–66]. 
Specifically, its simplicity permits large scale fast simulations necessary for quantitative analysis of 
genetic markers. Indeed, the more specific models of local individual movement are not able to 
produce the vast amount of simulations needed for statistical analysis [67]. Moreover, with added 
complexity comes a vast set of added parameters (for example, local migration, time of demographic 
events, spatial heterogeneity). Although these may seem more biologically significant, these models 
tend to over-fit the data, as the information contained in the genetic markers may not be sufficient to 
infer a large set of parameters. A bigger number of inferred parameters also decreases the power of 
ABC while increasing exponentially the computation time. The good fit of this very simple model over 
the dataset argues for using expansion-diffusion models or more simply isolation by distance, instead of 
discrete populations, as a fundamental model of human population genetics. 
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Figure legends 
 
Figure 1: Comparison of the patterns of isolation by distance generated with the empirical and 
simulated data.  
In A, the patterns obtained for the observed data; in B, the result of one of the simulations based on the 
point estimates. Each point represents a population (top) or a pairwise population comparison (bottom); 
the dashed lines represent the linear regressions of these points (whose R² values are informed). 
 
Figure 2: Distribution of estimated statistics from three simulated dataset and empirical observation 
(horizontal gray line).  
Within each plot, we present the different sources for the simulations that generated the distributions: 
“Prior” are simulations sampled randomly from the whole prior; “95%HPD” are simulations run based 
on the 95% higher posterior density estimates for all parameters; and “Mode” represent simulations 
based on the point estimates for all parameters.  
 
Figure 3: PCA results in real observation and simulations.  
A, Comparison of PCA applied to the empirical data (left) and one selected simulation (right). The first 
(PC 1) and second (PC 2) principal components are represented here, where each point represents one 
of the analyzed populations, grouped by continents. B, Boxplots of the correlation values between the 
two first principal components in observations and simulations based on the prior distribution (“Prior”), 
95% higher posterior density distribution (“95%HPD”), and on the point estimates (“Mode”). 
 
Figure 4: Comparison between the STRUCTURE results obtained for observed (OBS) and simulated 
(SIM) data.  
Horizontal bars represent the 70 populations as used in the simulations and the different shades of gray 
code for the proportion of each inferred ancestry group (K from 2 to 4). 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/158923doi: bioRxiv preprint 

https://doi.org/10.1101/158923


Tables 
 

Table 1: Accuracy table and estimates of the six variable parameters inferred by the ABC framework. 
Point estimate corresponds to the mode of the posterior distribution, while HPD95% interval represents 
the parameter values comprised within the 95% higher posterior density interval. R2 stands for the 
coefficient of determination of pseudo-observed on estimated values; SRMSE is the root mean squared 
error of the mode, standardized between 0 and 1; Prop. HPD95% stands for the proportion of tests for 
which 95% higher posterior density intervals include the true value. All rates are per generation (25 
years). 
 

  
T (years) 

Ni 
(ind.) 

N (ind.) µ r m 

Point 
estimate 

132 250 3952 5 725 656 2.6x10-4 0.149 0.041 

HPD95% 
interval 

60 850 - 
203 900 

920 - 
5120 

35 658 - 20 
905 776 

9.3x10-5 - 
4.4x10-4 

0.036 - 
0.679 

0 - 0.177 

R² 0.235 0.399 0.431 0.877 0.286 0.57 

SRMSE 0.132 0.233 0.227 0.099 0.108 0.187 

Slope 0.248 0.536 0.602 0.908 0.352 0.682 

Prop. 
HPD95% 

0.993 0.956 0.981 0.977 0.983 0.979 
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