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Abstract 
Over the past few decades, neuroscience research has illuminated the neural 

mechanisms supporting learning from reward feedback, demonstrating a critical role for 

the striatum and midbrain dopamine system. Learning paradigms are increasingly being 

extended to understand learning dysfunctions in mood and psychiatric disorders as well 

as addiction in the area of computational psychiatry. However, one potentially critical 

characteristic that this research ignores is the effect of time on learning: human 

feedback learning paradigms are conducted in a single rapidly paced session, while 

learning experiences in ecologically relevant circumstances and in animal research are 

almost always separated by longer periods of time. Event spacing is known to have 

strong positive effects on item memory across species and in reward learning in 

animals. Remarkably, the effect of spaced training on human reinforcement learning 

has not been investigated. In our experiments, we examined reward learning distributed 

across weeks vs. learning completed in a traditionally-paced or “massed” single 

session. Participants learned to make the best response for landscape stimuli that were 

either associated with a positive or negative value. In our first study, as expected, we 

found that after equal amounts of extensive training, accuracy was high and equivalent 

between the spaced and massed conditions. However, in a final online test 3 weeks 

later, we found that participants exhibited significantly greater memory for the value of 

spaced-trained stimuli. In our second study, our methods allowed for a direct 

comparison of maintenance of conditioning. We found that spaced training again had a 

beneficial effect: more than 87% of conditioning was maintained for spaced-trained 

stimuli, while only 30% was maintained for massed-trained stimuli. In addition, 

supporting a role for working memory in massed learning, across both studies we found 

a significant positive correlation between initial learning and working memory capacity. 

Our results indicate that single-session learning tasks may not lead to the kind of robust 

and lasting value associations that are characteristic of “habitual” value associations. 

Overall, these studies begin to address a large gap in our knowledge of fundamental 

processes of human reinforcement learning, with potentially broad implications for our 

understanding of learning in mood disorders and addiction.  
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Introduction 
Rewarding and aversive experiences exert a strong influence on later decision making. 

When making a choice between an apple and a banana, for example, our decision likely 

relies on values shaped by countless previous experiences. In general, by learning over 

time which stimuli and actions regularly lead to favorable outcomes, we can make more 

adaptive choices in the future. Over the past few decades, neuroscience research has 

revealed the neural mechanisms supporting this kind of learning from reward feedback, 

demonstrating a critical role for the striatum and the midbrain dopamine system (Schultz 

et al., 1997; Rangel et al., 2008; Steinberg et al., 2013). Phasic activity in striatum-

projecting dopamine neurons closely matches learning signals derived from 

reinforcement learning models in machine learning (Barto, 1995; Houk et al., 1995; 

Sutton and Barto, 1998). 

More recently, researchers have also begun to apply reinforcement learning 

models to increase our understanding of behavioral dysfunctions in mood and 

psychiatric disorders as well as addictions in the growing area of “computational 

psychiatry” (Maia and Frank, 2011; Schultz, 2011; Montague et al., 2012; Whitton et al., 

2015; Moutoussis et al., 2016). Foundational assumptions of this translational work on 

human reward-based learning are that learning behavior in these experiments is 1) 

supported by the same learning mechanisms illuminated in animal research, and 2) 

these learning mechanisms also support learning outside the lab. However, one 

important difference between feedback learning in the lab and learning in the real world 

is the effect of time: while the development of our habits and reward associations can 

involve separate learning events spread over days, weeks, and even years, human 

feedback learning paradigms involve only a single session, with events separated by 

seconds at most. At this condensed timescale, such “massed” learning paradigms allow 

processes other than habit learning, such as working memory, to dominate behavior 

(Collins and Frank, 2012; Collins et al., 2014).  

The massed single-session nature of human learning experiments is in contrast 

to most animal experiments, where the neural systems supporting feedback learning 

were originally identified. In these experiments, learning spans hours and days in rodent 

studies or months in non-human primate studies (Schultz et al., 1997; Roesch et al., 

2007). While functional imaging studies in humans have revealed robust correlates of 
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reward learning variables in human brain activity, in particular correlates of reward 

prediction error in the ventral striatum (Garrison et al., 2013), it is possible that the use 

of condensed learning sessions may lead to a distorted understanding of the underlying 

system which support reward learning. Thus, current feedback learning studies may not 

be able to provide a clear or complete understanding of the cognitive and neural 

mechanisms supporting gradual reward learning outside of the lab. 

Previous research has shown powerful effects of spacing in various domains. 

Early research on memory for lists of items by Ebbinghaus (reported in Ebbinghaus, 

1913) demonstrated a powerful beneficial effect of spaced learning on memory. Since 

these studies, research has continued to explore the positive effects of temporal 

spacing on episodic memory as well as learning in educational settings (Cepeda et al., 

2006; Ellenbogen et al., 2007; Litman and Davachi, 2008; Carpenter et al., 2012). 

However, this kind of episodic or “relational” learning is known to depend on the medial 

temporal lobe and hippocampus, a separate, dissociable learning system from the 

striatal learning system (Eichenbaum and Cohen, 2001) (Knowlton et al., 1996). 

Importantly, early research on feedback learning also demonstrated a beneficial effect 

of spacing between learning events. A positive influence of spacing between one trial 

and another in simple conditioning has been shown in species ranging from Aplysia to 

honeybees to rats (Teichner, 1952; Carew et al., 1972; Terrace et al., 1975; Menzel et 

al., 2001). In these studies, learning is more rapid when events are spaced in time, even 

when there are fewer total learning events. Animal studies also hint at the possibility 

that feedback learning in spaced conditions is more robust, as demonstrated by less 

sensitivity to reward omission (Teichner, 1952). Surprisingly, only a handful of studies 

have examined the effect of spacing on human feedback learning, and all of these 

studies used a passive aversive learning task, eyeblink conditioning, which relies on a 

specialized cerebellar circuit (Humphreys, 1940; Spence and Norris, 1950; Kim and 

Thompson, 1997). Thus, very little is known about human feedback learning when event 

spacing more closely approximates how learning might occur in more ecologically 

relevant circumstances. 

Our aim was to characterize the cognitive mechanisms which support learning 

long-term reward associations by spacing learning across days. We utilized a simple 

reward-based learning task where participants initially learned value associations for 
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spaced stimuli first in the lab and then online across two weeks using a novel online 

experiment portal (expfactory.org; Sochat et al., 2016). Associations for massed stimuli 

were only learned in a second in-lab session, closely matching the kind of training 

commonly used in reinforcement learning tasks. Finally, in order to study the 

maintenance of learning over longer timespans, we administered a delayed test three 

weeks after the completion of training.  
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Methods 

 
 

Figure 1. a) Experimental timeline. Learning for the spaced-trained stimuli is indicated 

in blue and learning for the massed-trained stimuli is indicated in grey. b) Reward 

learning task. Participants learned to select “Yes” for reward-associated stimuli and 

select “No” for loss-associated stimuli. c) Reward association rating test. This rating 

scale followed the initial in-lab learning sessions and was also administered 3 weeks 

after the last learning session. 

 

Participants and Overview. Participants were recruited via advertising on the Stanford 

Department of Psychology paid participant pool web portal 

(https://stanfordpsychpaid.sona-systems.com). Informed consent was obtained in a 

manner approved by the Stanford University Institutional Review Board. In study 1, 

behavioral and fMRI data acquisition proceeded until fMRI seed grant funding was 

expired, leading to a total of 34 scanned participants in the reward learning task. In 

order to ensure that the fMRI sessions two weeks after the first in-lab session were fully 

subscribed, a total of 62 participants completed the first behavioral session. Of this 

group, a total of 28 participants did not complete the fMRI and behavioral experiment 

described below. The results of 33 participants (20 female) are included in the analyses 

and results, with a mean age of 22.9 years (range: 18-34). Of the initial 34 scanned 

participants, we excluded one participant who exhibited extreme motion during the fMRI 

scan, indicating an inability to follow instructions. Of the 33 included participants, in two 

participants, rating and choice phase data from the second in-lab session were lost due 
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to errors in data recording; behavioral data from all other session are included. 

Participants were paid $10/hour for the first in-lab session and $30/hour for the second 

in-lab (fMRI) session, plus monetary rewards from the learning phase and choice test 

phase. The current report focuses only on the behavioral results of Study 1. fMRI results 

will be reported separately. 

In Study 2, a total of 35 participants participated in the first session of the 

experiment, but 4 were excluded from the final dataset, as described below. Our sample 

size was designed to approximately match the size of Study 1. The final dataset 

included 31 participants (24 female), with a mean age of 23.3 years (range: 18-32). Two 

participants failed to complete the second in-lab session and all data were excluded; 

one other participant exhibited poor performance the first session (less than 54% 

correct during learning and less than 40% correct in the choice test) and was therefore 

excluded from participation in the follow-up sessions. Of the 31 included participants, 

one participant failed to complete the third in-lab session, but data from other sessions 

was included. Participants were paid $10/hour for the two in-lab sessions, monetary 

rewards from the learning phase and choice test phase, plus a bonus of $12 for the 5-

minute duration third in-lab session. 

Both Study 1 and Study 2 utilized the same reward-based learning task. 

Participants learned the best response for individual stimuli in order to maximize their 

payoff. Two different sets of stimuli were either trained across two weeks (“spaced-

trained” stimuli) or in a single session (“massed-trained” stimuli; Figure 1a). Spaced 

training began in the first in-lab session and continued across three online training 

sessions spread across approximately 2 weeks. Training on massed stimuli began in 

the second in-lab session. Spaced training always preceded massed training, so that by 

the end of the second in-lab session both sets of stimuli had been shown on an equal 

number of learning trials. This design was the same across Study 1 and Study 2, with 

the difference that Study 1 included an fMRI portion. Additionally, the three-week follow-

up measurement was conducted online for Study 1 and in-lab for Study 2. 

 

Experimental design, Study 1. In Study 1, before the learning phase, participants 

rated a set of 38 landscape picture stimuli based on liking, using a computer mouse, 

preceded by one practice trial. The same selection procedure and landscape stimuli 
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were used previously (Wimmer and Shohamy, 2012). These ratings were used to select 

the 16 most neutrally-rated set of stimuli per participant to be used in Study 1. Stimuli 

were then randomly assigned to condition (spaced or massed) and value (reward or 

non-reward). In Study 2, we used the ratings collected across participants in Study 1 to 

find the most neutrally-rated stimuli on average and then created two counterbalanced 

lists of stimuli from this set. 
Next, in the reward game across both studies, participants learned the best 

response (arbitrarily labeled “Yes” and “No”) for each stimulus. Participants used up and 

down arrow keys to make “Yes” and “No” responses, respectively. Reward-associated 

stimuli led to a win of $0.35 on average when “Yes” was selected and a small loss of -

$0.05 when “No” was selected. Non-reward-associated stimuli led to a neutral outcome 

of $0.00 when “No” was selected and -$0.25 when “Yes” was selected. These 

associations were probabilistic, such that the best response led to the best outcome 

80% of the time during training. If no response was recorded, at feedback a warning 

was given: “Too late or wrong key!  - $0.50”, and participants lost $0.50. 

To increase engagement and attention to the feedback, we introduced 

uncertainty into the feedback amounts in two ways: first, all feedback amounts were 

jittered ± $0.05 around the mean using a flat distribution. Second, for the reward-

associated stimuli, half were associated with a low reward amount ($0.45) and half with 

a higher reward amount ($0.25). We did not find that this second manipulation 

significantly affected learning performance at the end of the training phase, and thus our 

analyses and results collapse across the reward levels. 

In a single reward learning trial, a stimulus was first presented with the options 

“Yes” and “No” above and below the image, respectively (Figure 1b). Participants had 2 

seconds to make a choice. After the full 2 s choice period, a 1 s blank screen ITI 

preceded feedback presentation. Feedback was presented in text for X s, leading to a 

total trial duration of 1.5 s. Reward feedback above +$0.10 was presented in green, and 

feedback below $0.00 was presented in red, while other values were presented in white. 

After the feedback, an ITI of duration 2 preceded the next trial (min, 0.50 s; max, 3.5 s), 

where in the last 0.25 s prior to the next trial the fixation cross turned from white to 

black. The background for all parts of the experiment was grey (RGB value [111 111 

111]). 
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In the first in-lab session, participants learned associations for spaced-trained 

stimuli, which differed from the training for massed-trained stimuli only in that training for 

spaced stimuli was spread across 4 sessions, 1 in-lab and 3 online. Training for 

massed-trained stimuli only occurred in the subsequent second in-lab session. Initial 

learning for both spaced-and massed-trained stimuli included 8 stimuli, of which half 

were rewarded and half were non-rewarded. In the initial learning phase for both 

conditions, each stimulus was repeated 10 times. The lists for the initial learning session 

were pseudo-randomized, with constraints introduced to facilitate initial learning and to 

achieve ceiling performance before the end of training. In the first learning session for 

both spaced- and massed-trained stimuli, 4 stimuli were introduced in the first 40 trials 

and the other 4 stimuli were introduced in the second 40 trials. Further, when a new 

stimulus was introduced, the first repetition followed immediately. The phase began with 

4 practice trials including 1 reward-associated practice stimulus and 1 non-reward-

associated practice stimulus, followed by a question about task understanding. Three 

rest breaks were distributed throughout the rest of the phase. 

After the initial learning phase in both conditions, participants completed a rating 

phase and a choice phase. In the rating phase, participants tried to remember whether 

a stimulus was associated with reward or not. They were instructed to use a rating scale 

to indicate their memory and their confidence in their memory using a graded scale, with 

responses made via computer mouse (Figure 1c). Responses near the scale line were 

recorded. Responses were self-paced. After 0.5 s, trials were followed by a 3 s ITI. For 

analyses, responses (recorded in pixel left-right location values) were transformed to 0-

100 percent.  

In the choice phase, participants made a forced-choice response between two 

stimuli, only including spaced stimuli in the first in-lab session and only including 

massed stimuli in the second in-lab session. Stimuli were randomly presented on the 

left and right side of the screen. Participants made their choice using the 1-4 number 

keys in the top row of the keyboard, with a ‘1’ or ‘4’ response indicating a confident 

choice of the left or right option, respectively, and a ‘2’ or ‘3’ response indicating a guess 

choice of the left or right option, respectively. The trial terminated 0.25 s after a 

response was recorded, followed by a 2.5 s ITI. Responses were self-paced. 

Participants were informed that they would not receive feedback after each choice but 
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that the computer would keep track of the number of correct choices of the reward-

associated stimuli that were made and pay a bonus based on their performance. As the 

long-term follow-up only included ratings, choice analyses were limited to comparing 

how choices aligned with ratings. 

At the end of the session, participants completed the Beck Depression Inventory 

(BDI) and the operation-span task (OSPAN) to collect a measure of individual working 

memory capacity (Lewandowsky et al., 2010; Otto et al., 2013). In the operation-span 

task, participants made accuracy judgments about simple arithmetic equations (e.g. ‘2 + 

2 = 5’). After a response, an unrelated letter appeared (e.g. ‘B’), followed by the next 

equation. After arithmetic-letter sequences ranging in length from 4 to 8, participants 

were asked to type in the letters that they had seen in order, with no time limit. Each 

sequence length was repeated 3 times. In order to ensure that participants were fully 

practiced in the task before it began, the task was described in-depth in instruction 

slides, followed by 5 practice trials. Scores were calculated by summing the number of 

letters in fully correct letter responses across all 15 trials (mean, 49.9 ± 3.0; range, 19-

83) (Otto et al., 2013). 

 Subsequent to the first in-lab session where training on spaced stimuli began, 

participants completed three online sessions with the spaced-trained stimuli. Sessions 

were completed on a laptop or desktop computer (but not on mobile devices), using the 

expfactory.org platform (Sochat et al., 2016). Code for the online reward learning phase 

can be found at: https://github.com/gewimmer/reward_learning. Each online training 

session included 5 repetitions of the 8 spaced-trained stimuli, in a random order, leading 

to 15 additional repetitions per spaced-trained stimulus overall. The task and timing was 

the same as in the in-lab sessions, with the exception that the screen background was 

white and white feedback text was replaced with grey. Participants completed the online 

sessions across approximately 2 weeks, initiated with an email from the experimenter 

including login details for that session. In the case that participants had not yet 

completed the preceding online session when the notification about the next session 

was received, participants were instructed to complete the preceding session that day 

and the next session the following day. Thus, at least one overnight period was required 

between sessions. Participants were instructed to complete the session when they were 

alert and not distracted. 
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 Next, participants returned for a second in-lab session, approximately two weeks 

later (mean, 13.6 days; range, 10-20 days). Here, participants began and completed 

training on the massed-trained stimuli. Initial training across the first 10 repetitions was 

conducted as described above for the first in-lab session. Next, participants completed a 

rating phase including both spaced- and massed-trained stimuli and choice phase 

involving only the massed-trained stimuli. After this, participants finished training on the 

massed-trained stimuli, bringing total experience up to 25 repetitions, the same as for 

the spaced-trained stimuli to that point. 

 In Study 1, participants next entered the scanner for an intermixed training 

session. Across 3 blocks, participants engaged in additional training on the spaced- and 

massed-trained stimuli, with 6 repetitions per stimulus. During scanning, ITI durations 

were on average 3.5 s (min, 1.45 s; max, 6.55 s). Responses were made using a button 

cylinder, with the response box positioned to allow finger responses to mirror those 

made on the up and down arrow keys on the keyboard. Following the intermixed 

training session, participants engaged in a no-feedback block, where stimuli were 

presented with no response requirements. To provide a measure of attention and to 

promote recollection and processing of stimulus value, participants were instructed to 

remember whether a stimulus had been associated with reward or with no reward. On 

~10% of trials, after the stimulus had disappeared, participants were asked to answer 

whether the best response to the stimulus was a “Yes” or a “No”. Each stimulus was 

repeated 10 times during this no-feedback phase. 

After scanning, participants engaged in an exploratory block to study whether 

and how participants would reverse their behavior given a shift in feedback 

contingencies. Importantly, the “reversed” stimuli (2 per condition per participant) were 

not included in the analyses of the 3-week follow-up data. In brief, we did not find any 

differences between spaced- and massed-trained stimuli during reversal or in post-

reversal ratings, and thus these results are not discussed further. For further methods 

and results of this phase, please see Supplementary Information.  

 We administered a follow-up test of memory for the value of conditioned stimuli 

approximately 3 weeks later (mean, 24.5 days; range, 20-37 days). An online 

questionnaire was constructed with each participant’s stimuli using Google Forms 

(https://docs.google.com/forms). Participants were instructed to try to remember 
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whether a stimulus was associated with winning money or not winning money, using an 

adapted version of the scan from the rating phase of the in-lab experiment. Responses 

were recorded using a 10-point radio button scale, anchored with “0% lucky” on the left 

to “100% lucky” on the right. Similar to the in-lab ratings, participants were instructed to 

respond to the far right end of the scale if they were completely confident that a given 

stimulus was associated with reward and to the far left if they were completely confident 

that a given stimulus was associated with no reward. Thus, distance from the center 

origin represented confidence in their memory. 

In-lab portions of the study were presented using Psychtoolbox 3.0 (Brainard, 

1997), with the initial in-lab session conducted on 21.5” Apple iMacs. Online training 

was completed using expfactory.org (Sochat et al., 2016), with functions adapted from 

the jspsych library (de Leeuw, 2015). At the second in-lab session, before scanning, 

participants completed massed-stimulus training on a 15” MacBook Pro laptop. During 

scanning, stimuli were presented on a screen positioned above the participant’s eyes 

that reflected an LCD screen placed in the rear of the magnet bore. Responses during 

the fMRI portion were made using a 5-button cylinder button response box (Current 

Designs, Inc.). Participants used the top button on the side of the cylinder for “Yes” 

responses and the next lower button for “No” responses. We positioned the response 

box in the participant’s hand so that the arrangement mirrored the relative position of 

the up and down arrow keys on the keyboard from the training task sessions. 

 

Experimental design, Study 2. The methods for Study 2 were the same as in Study 1, 

with three main differences: training for massed stimuli was conducted without 

interruption for intermediate ratings, fMRI data were not collected, and the long-term 

follow-up was conducted in the lab rather than online. 

Stimuli for Study 2 were composed of the most neutrally-rated stimuli from Study 

1 pre-experiment ratings. Two counterbalance stimulus lists were created and assigned 

randomly to participants. The initial learning session for the spaced-trained stimuli and 

the three online training sessions were completed as described above. Following the 

training and testing phases, participants completed the OSPAN to collect a measure of 

working memory capacity. Scores were calculated as in Study 1 (mean, 49.7 ± 3.2; 

range 17-83). 
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The second in-lab session was completed approximately two weeks after the first 

session (mean, 12.8 days; range, 10-17 days). Here, participants learned reward 

associations for the set of “massed” stimuli. The training progressed through all 25 

repetitions of the massed-trained stimuli with only short rest breaks, omitting the 

intervening test phases of Study 1. In the last part of the learning phase, to assess end-

state performance on both spaced-trained and massed-trained stimuli, 3 repetitions of 

each stimulus were presented in a pseudo-random order. Rating and choice phase data 

were acquired after this learning block, with trial timing as described above. 

 After the choice phase, we administered an exploratory phase to assess potential 

conditioned stimulus-cued biases in new learning. This phase was conducted in a 

subset of 25 participants, as the task was still under development when the data from 

the initial 6 participants were acquired. In brief, participants engaged in learning about 

new stimuli (abstract characters) in the same paradigm as described above (Figure 1b) 

while unrelated spaced- or massed-trained landscape stimuli were presented in the 

background during the choice period. We tested for but did not find any influence. For 

further methods and results, please see Supplementary Information.  

 Approximately 3 weeks after the second in-lab session (mean, 21.1 days; range, 

16-26 days), participants returned to the lab for the third and final in-lab session. Using 

the same testing rooms as during the previous sessions (which included the full training 

session on massed stimuli), participants completed another rating phase. Participants 

were reminded of the reward rating instructions and told to “do their best” to remember 

whether individual stimuli had been associated with reward or non-reward during 

training. Trial timing was as described above, and the order of stimuli was pseudo-

randomized. 

 

Analysis. Behavioral analyses were conducted in Matlab 2016a (The MathWorks, Inc., 

Natick, MA). Results presented below are from the following analyses: t-tests vs. 

chance for learning performance, within-group (paired) t-tests comparing differences in 

reward- and non-reward-associated stimuli across conditions, Pearson correlations, and 

Fisher z-transformations of correlation values. We additionally tested whether non-

significant results were weaker than a moderate effect size using the Two One-Sided 

Test (TOST) procedure (Schuirmann, 1987; Lakens, 2017) and the TOSTER library in R 
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(Lakens, 2017). We used bounds of Cohen’s d = 0.51 (Study 1) or d = 0.53 and d = 0.54 

(Study 2), where power to detect an effect in the included group of participants is 

estimated to be 80%. 

End-state learning accuracy in Study 1 averaged across the last 5 of 6 repetitions 

in the scanned intermixed learning session. End-state learning accuracy for Study 2 

averaged across the last 2 of 3 repetitions in the final intermixed learning phase. For the 

purpose of correlations with working memory, initial learning repetitions 2-10 were 

averaged (as repetition 1 cannot reflect learning). In Study 1, the post-learning ratings 

were taken from the pre-scan ratings (following learning repetition 25).  
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Results 
Across two studies, we measured learning and maintenance of conditioned stimulus-

value associations over time. In the first in-lab session, participants learned stimulus-

value associations for a set of “spaced-trained” stimuli. Over the course of the next two 

weeks, participants engaged in three further short training sessions online. Participants 

then returned to complete a second in-lab session, where they learned stimulus-value 

associations for a new set of “massed-trained” stimuli. All learning for the massed-

trained stimuli occurred consecutively in the same session. By the end of training on the 

massed-trained stimuli, experience was equated between the spaced- and massed-

trained stimuli. While the timing of trials was equivalent across the spaced-trained and 

massed-trained stimuli, the critical difference was that multiple days were inserted in-

between training sessions for spaced-trained stimuli.  

 
Study 1 
Learning of value associations. Participants rapidly acquired the best “Yes” or “No” 

response for the reward- or non-reward-associated stimuli during learning. Within the 

first 3 repetitions of each stimulus, accuracy quickly increased to 77.0 % (95% 

Confidence Interval (CI) [73.7 80.2]) for spaced-trained stimuli and 79.0 % (CI [75.9 

82.0]) for massed-trained stimuli (p-values < 0.001). By the end of the initial training 

section (repetition 10), performance increased to 82.9 % (CI [76.4 89.4]) for the spaced-

trained stimuli and 93.2 % (CI [89.8 96.5]) for the massed-trained stimuli (Figure 2a). 

Performance was moderately higher by the end of initial learning for the massed-trained 

stimuli (t(32) = 3.13, CI [0.036 0.170]; p = 0.0037). However, as expected, after further 

experience we found that by the end of training participants no significant difference in 

performance across conditions (repetition 26-31; spaced-trained, 91.4 % CI [87.1 95.7]; 

massed-trained, 93.6 % CI [89.8 97.4]; t(32) = 1.34, CI [-0.012 0.055], p = 0.19; Figure 
2a). However, this effect was statistically not equivalent to no effect, as indicated by an 

equivalence test using the TOST procedure (Lakens, 2017): the effect was not 

significantly within the bounds of a medium effect of interest (Cohen’s d = ± 0.51, 

providing 80% power with 33 participants; t(32) = 1.59, p = 0.061), and thus we cannot 

reject the presence of a medium-size effect. 
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Figure 2. Study 1 learning results. a) Initial and endpoint learning performance for the 

spaced- and massed-trained stimuli. b) Positive trending correlation between early 

massed-trained stimulus learning phase performance and working memory capacity (O-

SPAN). (*	p < 0.05). Rep. = repetition. Error bars represent one standard error of the 

mean (s.e.m.). 

 

After sufficient general experience in the task, we expected to find a positive 

relationship between learning performance for new stimuli and working memory. We 

thus estimated the correlation between learning during the initial acquisition of massed-

trained stimulus-value associations during the second in-lab session with the operations 

span measure of working memory. We found that learning performance positively 

related to working memory capacity (r = 0.377, p = 0.044; Figure 2b). While significant 

at the p < 0.05 level, it is possible that our power to detect a stronger relationship with 

working memory was decreased by the near-ceiling level of performance in the reward 

task for many participants. Initial performance for spaced-trained stimuli did not 

correlate with working memory (r = 0.031, p = 0.86; TOST equivalence test, p = 0.037, 

providing 80% power in range r ± 0.34). We did not predict a relationship between 

spaced condition performance and working memory because early during instructed 

tasks, working memory may be primarily taxed by maintaining task instructions (Cole et 

al., 2013). Similarly, while working memory capacity likely contributed to performance, 

initial task performance is also affected by numerous other noise-introducing factors 
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such as the acquisition of general task rules (“task set”) and adaptation to the testing 

environment.  

 

Long-term maintenance. Next, we turned to the critical question of whether spaced 

training over weeks led to differences in long-term memory for conditioned reward 

associations. Ratings were collected before the fMRI session and again at the end of 

the second in-lab session. High ratings indicate strong confidence in a reward 

association while low ratings indicate higher confidence in a neutral/loss association; 

ratings more toward the middle of the scale indicated less confidence (Figure 1c). After 

training but before fMRI scanning, when experience was matched across the spaced 

and massed conditions, we found that ratings across condition clearly discriminated 

between reward- and non-reward-associated stimuli (p-values < 0.001; Figure 3a, left). 

The difference between reward vs. non-reward ratings was larger in the massed than 

the spaced condition (spaced difference, 50.3 % CI [40.5 60.1]; massed difference, 62.0 

% CI [55.5 68.6]; t(30) = 2.52; CI [2.2 21.2]; p = 0.017). Supporting the use of reward 

associations ratings as a measure of value in the long-term follow-up, we found that 

massed-trained stimulus ratings were strongly correlated with preferences in the 

separate choice test phase (mean r = 0.93 CI [0.90 0.96]; t-test on z-transformed 

correlation, t(30) = 11.06; CI [1.82 2.64]; p < 0.001). 

To measure long-term maintenance of conditioning, after approximately 3 weeks, 

participants completed an online questionnaire on reward association strength using a 

10-point scale. The instructions for ratings were the same as the in-lab ratings phase. 

Critically, we found that while the reward value discrimination was significant in both 

conditions (spaced difference, 4.46 CI [3.64 5.29]; t(32) = 11.08, p < 0.001; massed 

difference, 2.20 CI [1.51 2.90]; t(32) = 6.44, p < 0.001), reward value discrimination was 

significantly stronger in the spaced than in the massed condition (t(32) = 4.62; CI [1.26 

3.26]; p < 0.001; Figure 3b). This effect was driven by the reward-associated stimuli 

(spaced vs. massed, t(32) = 4.91; CI [1.08 2.60]; p < 0.001; non-reward spaced vs. 

massed, t(32) = -1.33; CI [-1.07 0.23]; p = 0.19; TOST equivalence test, t(32) = 1.55, p = 

0.066, n.s.). 

Although the 3-week follow-up rating was collected on a 10-point scale and the 

post-learning ratings were collected on a graded scale, preventing direct numeric 
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comparison, the initial ratings and follow-up ratings can be analyzed with an across-time 

correlation. Such an analysis can test whether ratings in the massed case were simply 

scaled down (preserving an across-time correlation) or if actual forgetting introduced 

noise (disrupting an across-time correlation). We predicted that the value association 

memory for massed-trained stimuli actually decayed, leading to a higher correlation 

across time for spaced-trained stimuli. We indeed found that ratings were significantly 

more correlated across time in the spaced-trained condition (spaced r = 0.75 CI [0.64 

0.87]; massed r= 0.45 CI [0.33 0.57]; t-test on z-transformed values, t(30) = 4.46; CI [0.51 

1.38]; p < 0.001). We also collected the BDI as a measure of depressive symptoms in a 

subset of participants (n = 30); however, scores in this group were quite low (median = 

3) and the distribution was strongly skewed toward zero, and thus we did not examine 

any relationship between BDI and learning. Overall, these results indicate that spaced-

trained stimuli exhibited significantly stronger long-term memory for conditioned 

associations and more stable memory than massed-trained stimuli. 

One limitation to these results is that in the current design, cues in the learning 

environment may bias performance in favor of the spaced-trained stimuli: online training 

for spaced stimuli was conducted outside the lab, likely on the participant’s own 

computer, which was likely the same environment for the 3-week follow-up measure. 

While it seems unlikely that a testing environment effect would fully account for the large 

difference in long-term maintenance that we observed, we conducted a second study to 

replicate these results in a design where the testing conditions would if anything bias 

performance in favor of the massed-trained stimuli. 
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Figure 3. Study 1 post-learning value association strength and long-term maintenance 

of value associations. a) Post-learning reward association ratings for the massed- and 

spaced-trained stimuli (left); 3-week-later reward association ratings (right). Reward-

associated stimuli in darker colors. b) Average of the correlation within-participant of 

massed-trained stimulus reward ratings and spaced-trained stimulus reward-ratings (z-

transformed). Error bars, s.e.m.  

 

Study 2 

Learning of value associations. In Study 2, our aim was to replicate the findings of 

Study 1 and to extend them by conducting the 3-week follow-up session in the lab, 

allowing for a direct comparison with post-learning performance. During learning, within 

the first 3 trials, accuracy rapidly increased to 77.9 % (CI [74.8 81.0]) for spaced-trained 

stimuli and to 79.2 % CI [76.0 82.4] for massed-trained stimuli (p-values < 0.001). By 

the end of the initial training session, performance was at a level of 84.3 % (CI [79.3 

89.3]) for the spaced-trained stimuli and 86.2 % (CI [81.2 91.1]) for the massed-trained 

stimuli (Figure 4a), which was matched across conditions (10th repetition; t(30) = 0.59, p 

= 0.56; TOST equivalence test within a range of Cohen’s d = ± 0.53, providing 80% 

power with 31 participants; t(30) = 2.37, p = 0.012). By the end of training, after the online 

sessions for spaced-trained stimuli and the completion of the in-lab learning for massed-

trained stimuli, we found that performance was equivalent across conditions (spaced-

trained, 86.4 % CI [82.2 90.6]; massed-trained, 87.1 % CI [81.4 92.8]; t(30) = 0.248, p = 

0.806; TOST equivalence test, t(30) = 2.70, p = 0.006; Figure 4a). 
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Figure 4. Study 2 learning results. a) Initial and endpoint learning performance for the 

spaced- and massed-trained stimuli. b) Positive correlation between early massed-

trained stimulus learning performance and working memory capacity (OSPAN). (**	p < 

0.01). Error bars, s.e.m. 

 

As in Study 1, after sufficient general experience in the reward association 

learning task, we expected to find a positive relationship between performance on the 

reward association learning task and working memory. Indeed, we found a significant 

correlation between massed-stimulus performance and working memory capacity (r = 

0.484, p = 0.0058; Figure 4b). Initial learning performance was relatively lower in Study 

2 than in Study 1, which may have helped reveal a numerically stronger correlation 

between massed-trained stimulus performance and working memory. Meanwhile, the 

relationship between working memory and initial performance for spaced-trained stimuli 

was weak (r = 0.040, p = 0.83; TOST equivalence test, p = 0.043, providing 80% power 

in range r ± 0.35), as expected, given the other noise-introducing factors in initial 

learning performance discussed above. 

 

Long-term maintenance. Next, we turned to the critical question of whether spaced 

training over weeks led to differences in long-term memory for conditioned reward 

associations. Ratings were collected at the end of the massed-stimulus training session 

but before fMRI scanning. With training experience matched, we found that ratings 
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across condition clearly discriminated between reward- and non-reward-associated 

stimuli (p-values < 0.001; Figure 5a, left). The difference between values tended to be 

higher in the massed than the spaced condition (massed difference, 52.5 % CI [46.7 

58.3]; spaced difference, 47.1 % CI [40.9 53.2]; difference, t(30) = -1.86; CI [-0.5 11.4]; p 

= 0.073; Figure 5a). In the next phase, we found that incentive compatible choices 

overall were near ceiling (93.1% CI [89.9 96.4]; t(30) = 26.80) and did not differ between 

conditions (p > 0.26; TOST equivalence test, t(30) = 1.83, p = 0.04). Supporting the use 

of ratings in the long-term follow-up, we found that ratings positively correlated with 

choice preference across all stimuli (mean r = 0.87 CI [0.82 0.91]; t-test on z-

transformed ratings, t(30) = 14.08; CI [1.33 1.78]; p < 0.001). 

To measure long-term maintenance of conditioning, after approximately 3 weeks, 

participants returned for a third in-lab session. Rating discrimination between reward- 

and non-reward-associated stimuli was significant in both conditions (spaced difference, 

39.1 % CI [32.4 45.8]; t(29) = 11.96, p < 0.001; massed difference, 16.7 % CI [9.4 24.1]; 

t(29) = 4.65, p < 0.001). Importantly, reward value discrimination was significantly 

stronger in the spaced than in the massed condition (t(29) = 4.98 CI [13.2 31.5], p < 

0.001; Figure 5a, right). At follow-up, this stronger maintenance of learned value 

associations in the spaced condition was significant for both reward and non-reward 

stimuli (reward, t(29) = 3.43 CI [5.0 20.0], p = 0.0018; non-reward, t(29) = -4.11 CI [-14.7 -

5.0], p < 0.001). The design of Study 2 allowed us to directly compare post-learning 

ratings and 3-week later ratings to calculate the degree of maintenance of conditioning. 

As expected, the difference in maintenance for reward associations was significantly 

greater for spaced- than massed-trained stimuli (spaced, 87.3 % CI [73.2 101.5]; 

massed, 30.0 % CI [16.2 43.9]; t(29) = 5.49 CI [36.0 78.6]; Figure 5b). Moreover, we 

found that ratings significantly decayed toward neutral for both reward- and non-reward-

associated massed-trained stimuli (massed reward, t(29) = -6.09 CI [-21.7 -10.8], p < 

0.001; non-reward, t(29) = 9.95 CI [15.3 23.3], p < 0.001). For spaced-trained stimuli, we 

found no decay for reward-associated stimuli but some decay for non-reward-

associated stimuli (spaced reward, t(29) = -1.21 CI [-4.0 1.0], p = 0.23; TOST 

equivalence test, t(29)  = 1.74, p = 0.045; non-reward, t(29) = 3.00 CI [2.1 11.4], p = 

0.0055).  
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Finally, as in Study 1, we predicted that the value association memory for 

massed-trained stimuli was not decreased by scaling but actually decayed, which would 

lead to a lower across-time correlation in ratings. To test this, we correlated ratings in 

the second in-lab session with ratings in the third in-lab session separately for massed- 

and spaced-trained stimuli. We replicated the finding that ratings were significantly more 

correlated across time in the spaced-trained condition (spaced r = 0.82 CI [0.74 0.90]; 

massed r = 0.50 CI [0.37 0.63];  t-test on z-transformed values, t(29) = 5.22 CI [0.45 

1.03], p < 0.001). 

By collecting the long-term follow-up ratings in the same lab environment as the 

massed training sessions, our design would, if anything, be biased to find stronger 

maintenance for massed-trained stimuli because the training and testing environments 

overlap. However, we found similar differences in long-term conditioning across Study 1 

and Study 2, suggesting that testing environment was not a significant factor in our 

measure of conditioning maintenance. The replication and extension of the findings of 

Study 1 provide strong evidence that spaced training leads to more robust maintenance 

of conditioned value associations at a delay, while performance in short-term learning is 

partly explained by working memory. 
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Figure 5. Study 2 post-learning reward association strength and maintenance of value 

associations. a) Reward association ratings for the massed- and spaced-trained stimuli 

after the second in-lab session (left), and after the 3-week-later in-lab final reward 

association rating session (right). b) Percent of initial reward association difference 

(reward minus non-reward associated rating) after the second in-lab session maintained 

across the 3-week delay to the third in-lab session, separately for massed- and spaced-

trained stimuli. c) Post-learning and 3-week follow-up ratings re-plotted within condition 

for reward-associated (solid line) and non-reward-associated stimuli (dotted line). d) 

Average of the correlation within-participant of massed-trained stimulus reward ratings 

and spaced-trained stimulus reward-ratings (z-transformed). Error bars, s.e.m. (a, b, d), 

and within-participants s.e.m (c). 
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Discussion 
When reward-based learning is distributed over time instead of massed in a 

single session, we found significant gains in maintenance of learned value associations. 

Controlling for the amount of training and post-training performance, across two 

experiments we found that stimuli trained across weeks exhibited significantly stronger 

maintenance of value associations in a surprise test 3 weeks later. Conversely, single-

session massed training, as common employed in human experimental research, 

results in to weaker maintenance of value associations. This weaker maintenance may 

be related to greater reliance on short-term memory during massed learning, as we 

found that initial learning performance was significantly correlated with individual 

differences in working memory. Together, these results indicate that reward 

associations acquired from a single condensed session of learning will be less effective 

at guiding choices adaptively in the future. In order to understand the cognitive and 

neural mechanisms of habitual reward associations, including the potential influence of 

mood disorders and compulsive behaviors, it may be important to develop alternative 

paradigms that rely less on working memory and more on long-term reward association 

learning. 

Research on learning and decision making has focused on two extreme 

timescales: short-term learning from reward feedback across minutes, for example, in 

“bandit” tasks (Daw et al., 2006), or choices based on well-learned values, for example, 

in snack food choices (Plassmann et al., 2007). There has been remarkably little 

research in humans that examines how well-learned value associations are actually 

established (Tricomi et al., 2009), even though our preferences are often shaped across 

days, months, or years of experience. Reward-based learning is known to depend on 

the striatum and its midbrain dopaminergic projections (Schultz et al., 1997; Rangel et 

al., 2008; Steinberg et al., 2013). It is possible that condensed single-session learning is 

primarily supported by the same neural mechanisms that support long-term and more 

habitual learning. However, recent findings strongly suggest that learning performance 

in tasks with condensed repetitions of stimuli is better captured by a reinforcement 

learning model augmented with a working memory component (Collins and Frank, 

2012; Collins et al., 2014). Our results support the hypothesis that massed training in 

part relies on different neural systems than long-term training by demonstrating that 
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initial learning performance is also related to basic individual differences in working 

memory capacity, and further, that values learned in a massed session show significant 

decay over time. 

What mechanisms support the improvement in long-term maintenance of values 

with spaced training? Previous research indicates several different, non-exclusive, 

mechanisms. At a cognitive level of analysis, a promising hypothesis is that spaced 

feedback learning is supported by additional neural mechanisms that, in normal 

situations, complement habitual value learning mechanisms in the striatum. One likely 

additional system supporting spaced learning is a memory system including the 

hippocampus. When learning events are spaced, an agent is forced to retrieve option 

values from longer-term memory (Bouton and Moody, 2004). Repeated retrieval in 

spaced conditions may itself support stronger learning: in another domain, repeated 

retrieval in an educational setting is known to increase test performance (Karpicke and 

Roediger, 2008).  

At a circuit level, the hippocampus also presents a mechanism that may support 

beneficial effects of spacing. During navigation, activity in hippocampal cells represents 

the location of the animal in the environment, while during brief pauses or rest, rapid 

replay of these patterns of activity represent past and future paths to rewards (Johnson 

and Redish, 2007; Pfeiffer and Foster, 2013). Targeted online disruption of potential 

replay events significantly slows maze learning in rats (Jadhav et al., 2012). Further, 

striatal activity representing rewards occurs at expected timepoints in hippocampal 

replay events (Lansink et al., 2009; van der Meer and Redish, 2009). These findings 

suggest that coordinated replay in the hippocampus and striatum may support feedback 

learning. 

Computationally, learning by offline replay fits well with the DYNA-Q model, 

where habitual values are trained by post-event replay or simulation of experience 

(Sutton, 1990; Johnson and Redish, 2005; Gershman et al., 2014). While such a 

mechanism has not been tested in simple reward-association learning in humans, 

episodic memory research has shown that the strength of post-event activity in the 

hippocampus and striatum is related to successful memory formation (Ben-Yakov and 

Dudai, 2011; Ben-Yakov et al., 2013). These findings suggest that spaced learning may 

benefit from active post-feedback processes that complement habitual value learning 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/158964doi: bioRxiv preprint 

https://doi.org/10.1101/158964
http://creativecommons.org/licenses/by-nc-nd/4.0/


mechanisms in the striatum. In typical rapid learning paradigms, such processes may 

be masked or inhibited. 

At the cellular level, it is possible that processes supporting learning may operate 

more effectively with more time between learning events (Reynolds et al., 2001). Long-

term plasticity (LTP), which is believed to support learning in neural systems, involves 

an essential late phase, including nuclear transcription and even the recruitment of new 

synapses, which can take from minutes to hours (Woo et al., 2003; Kramar et al., 2012; 

Aziz et al., 2014). Post-learning consolidation that includes sleep may be particularly 

advantageous, based on what is known about the effects of sleep in other domains 

(Walker and Stickgold, 2006). By spacing training over long time periods, the cellular 

processes underlying LTP processes can be re-engaged multiple times. Indeed, early 

studies of LTP demonstrate positive effects of spacing (Carew et al., 1972). Spaced 

training may establish a larger number of potentiated synapses and/or a more efficient 

storage of the memory, which may be more resistant to decay over time. 

During massed learning, other cognitive mechanisms may be engaged during 

that mask or impair normal reward-based learning mechanisms. One likely mechanism 

is short-term or working memory, which can maintain a representation of the recent 

past. During a reward-based learning task, when events are close together in time, 

working memory can in principle support the maintenance of choice- and feedback-

related information to guide the next choice. Such short-term representations of recent 

stimuli can lead to different learning processes, as these maintained representations 

may block the retrieval of associations from longer-term memory (Bouton and Moody, 

2004). In humans, recent work has demonstrated that working memory likely plays an 

important role in feedback learning, over and above the role of traditional mechanisms 

of habitual value learning (Collins and Frank, 2012; Collins et al., 2014). In these 

experiments, the authors examined simple stimulus-reward association learning when 

participants needed to learn the correct (rewarded) responses for different numbers of 

stimuli in a set. This manipulation of set size effectively increases the spacing between 

repetitions of a given stimulus. Contrary to predictions from simple reinforcement 

learning models, participants exhibited significantly slower learning as set size 

increased. To explain the negative effect of set size on learning, the authors developed 

an augmented reinforcement learning model that included a working memory 
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component. Using this model, in a study of patients with Schizophrenia, the authors 

found that deficits in performance were primarily due to differences in the working 

memory parameter but not reward learning parameters (Collins et al., 2014). 

The mechanisms described above may also lead to differences in how well-

learned vs. recently-learned reward associations represented in the brain. Decades of 

animal research have shown that different regions of the striatum are important for 

different types of reward associations, with dorsomedial striatal regions critical for 

flexible (and newly-acquired) goal-directed learning and the dorsolateral striatum critical 

for inflexible habit learning (Balleine and Dickinson, 1998; Yin and Knowlton, 2006). In 

conjunction with the development of representations in the dorsolateral striatum, habits 

frequently come to dominate behavior over time. Recently, in non-human primates it 

has been reported that months-long versus single-session learning of reward 

associations leads to the establishment of reward associations in distinct striatal and 

midbrain regions (Kim and Hikosaka, 2013; Kim et al., 2015). In the striatum, anterior 

caudate neurons reflected recently-learned and switching values, while neurons in the 

caudate tail reflected stable value associations learned over weeks and months (Kim 

and Hikosaka, 2013). Critically, even after stimulus-reward associations were 

extinguished, the authors found that a novel population of dopamine neurons persisted 

in responding to the long-extinguished stimuli, an effect that correlated with residual 

attentional bias. This work suggests that attentional orientation to reward-associated 

cues may be considered a “habit” that is resistant to extinction (Kim et al., 2015; 

Anderson, 2016). 

In humans, an initial demonstration that habit-like responding can be studied in 

the brain was reported by Tricomi and colleagues (Tricomi et al., 2009). Here, 

participants engaged in reward association learning across multiple days of scanning. 

The authors report that training led to participant’s being less sensitive to devaluation, a 

hallmark of habitual behavior (Dickinson and Balleine, 2002), and to an increase in 

activity in the putamen, a region believed to be homologous to the rodent dorsolateral 

striatum, increased over time (Tricomi et al., 2009). Multi-day training was also 

employed by Wunderlich and colleagues (Wunderlich et al., 2012), where stimulus-

reward associations learned over days led to value-correlated responses in the 

putamen. These results suggest that in humans, similar to research in animals, the 
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posterior striatum may be important for encoding well-learned values. However, these 

experiments did not compare multi-day training to matched massed training, and 

posterior striatal activity is not specific, as reward-related responses in the posterior 

striatum have also been reported for single-session fMRI experiments (O'Doherty et al., 

2003; Dickerson et al., 2011; Wimmer et al., 2014). Thus, the neural signatures specific 

to well-learned vs. transient value associations in the human brain remain unknown. 

Our results have implications for understanding reward-based learning in the 

healthy brain and for translating this research to patient populations (Huys et al., 2016). 

Many reward-based learning studies examine behavior and brain activity in rapidly-

paced probabilistic choice tasks (e.g. Pessiglione et al., 2006) or drifting “bandit” 

paradigms (e.g. Daw et al., 2006; Wimmer et al., 2012; Doll et al., 2016). Learning- and 

choice-related parameters estimated from computational models can then be related to 

differences in neural activity and individual differences in personality or group 

membership. However, the interpretation of parameters derived from massed training 

paradigms is difficult for several reasons. First, the optimality of faster or slower reward 

learning is dependent on the reward statistics of the environment (Daw, 2011), 

complicating generalizations based on a single task. Second, as we demonstrate, initial 

learning in a massed training session is significantly related to individual differences in 

working memory capacity, a finding supported by reinforcement learning models that 

include a working memory component (Collins and Frank, 2012). Third, we found that 

spaced training, which matches more closely the training paradigms used to study habit 

learning in animal research, results in significantly better maintenance of conditioned 

value associations. Thus, characteristics of reward-based learning in massed 

paradigms are not likely to be pure indications of individual differences in reward 

learning outside the lab. For translational research in learning and in cognitive 

neuroscience in general, it will be important to develop and utilize more ecologically 

valid experimental designs (Moutoussis et al., 2016). 

By demonstrating that we can establish and measure long-term reward 

associations that are resistant to decay, our experimental design provides a starting 

point for studying behavioral change. We have provided an initial demonstration that 

long-term conditioned associations can be studied in a controlled manner. In future 

translational research, it will be important to examine how well-learned value 
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associations and habits of behavior be adjusted or unlearned. Well-learned behaviors 

are notoriously difficult to modify. As noted above, the maintenance of long-term reward 

associations may also be reflected in a qualitatively different neural response that 

persists after devaluation, distinct from the well-known reward prediction error response 

in dopamine neurons (Schultz et al., 1997; Kim et al., 2015). 

In summary, across two studies we found that spacing of reward-based learning 

across weeks versus minutes results in significantly greater maintenance of conditioned 

value associations. We also found that learning performance in the massed condition 

was related to individual differences in working memory. Our experiments represent the 

first demonstration of spacing effects on reward-based learning in humans. While it is 

widely assumed that a habitual value learning system in the striatum supports feedback 

learning in recent behavioral and fMRI studies in humans, the beneficial effects of a 

more ecologically relevant spaced training condition suggest that current massed 

paradigms may be eliciting a mixture of different learning systems. Spaced reward-

based learning and long-term maintenance of conditioning may thus help provide 

cleaner measures of feedback-based learning in the striatal dopamine system. This 

possibility has implications for the interpretation and future direction of reward-based 

learning research, as feedback learning paradigms are becoming widely used in studies 

of mood and psychiatric disorders as well as addiction (Herbener, 2009; Maia and 

Frank, 2011; Montague et al., 2012; Whitton et al., 2015). Our study of healthy adults 

points to potential promising avenues to explore in order to more fully understand the 

cognitive and neural learning mechanisms of feedback-based learning. 
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