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Abstract 
Over the past few decades, neuroscience research has illuminated the neural 

mechanisms supporting learning from reward feedback. Learning paradigms are 

increasingly being extended to study mood and psychiatric disorders as well as 

addiction. However, one potentially critical characteristic that this research ignores is the 

effect of time on learning: human feedback learning paradigms are usually conducted in 

a single rapidly paced session, while learning experiences in ecologically relevant 

circumstances and in animal research are almost always separated by longer periods of 

time. In our experiments, we examined reward learning distributed across weeks vs. 

learning completed in a traditionally-paced “massed” single session. As expected, we 

found that after equal amounts of training, accuracy was matched between the spaced 

and massed conditions. However, in a 3-week follow-up, we found that participants 

exhibited significantly greater memory for the value of spaced-trained stimuli. 

Supporting a role for short-term memory in massed learning, we found a significant 

positive correlation between initial learning and working memory capacity. Neurally, we 

found that patterns of activity in the medial temporal lobe and prefrontal cortex showed 

stronger discrimination of spaced- vs. massed-trained reward values. Further, patterns 

in the striatum discriminated between spaced- and massed-trained stimuli overall. Our 

results indicate that single-session learning tasks likely engage different learning 

mechanisms than spaced training. Our studies begin to address a large gap in our 

knowledge of human reinforcement learning, with potentially broad implications for our 

understanding of learning in mood disorders and addiction. 
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Significance statement 
Humans and animals learn to associate predictive value with stimuli and actions, and 

these values then guide future behavior. Such reinforcement-based learning often 

happens over long time periods, in contrast to most studies of reward-based learning in 

humans. In experiments that tested the effect of spacing on learning, we found that 

associations learned in a single massed session were associated with short-term 

memory capacity and significantly decayed over time, while associations learned over 

weeks were well-maintained. Additionally, we found that patterns of activity in the 

medial temporal lobe and prefrontal cortex discriminated the values of stimuli learned 

over weeks but not minutes. These results highlight the importance of studying learning 

over time, with potential applications to drug addiction and psychiatry.  
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Introduction   
When making a choice between an apple and a banana, our decision often relies on 

values shaped by countless previous experiences. By learning from the outcomes of 

these repeated experiences, we can make efficient and adaptive choices in the future. 

Over the past few decades, neuroscience research has revealed the neural 

mechanisms supporting this kind of learning from reward feedback, demonstrating a 

critical role for the striatum and the midbrain dopamine system (Houk et al., 1995; 

Schultz et al., 1997; Dolan and Dayan, 2013; Steinberg et al., 2013). However, research 

in humans has tended to focus on two extreme timescales: short-term learning from 

reward feedback across minutes, for example, in “bandit” tasks (Daw et al., 2006), or 

choices based on well-learned values, for example, in snack food choices (Plassmann 

et al., 2007). There has been remarkably little research in humans that examines how 

value associations are acquired beyond a single session (Tricomi et al., 2009), even 

though our preferences are often shaped across multiple days, months, or years of 

experience.  

Recently, researchers have begun to use learning tasks in combination with 

reinforcement learning models to investigate behavioral dysfunctions in mood and 

psychiatric disorders as well as addiction in the growing area of “computational 

psychiatry” (Maia and Frank, 2011; Schultz, 2011; Montague et al., 2012; Whitton et al., 

2015; Moutoussis et al., 2016). Foundational assumptions of this translational work on 

human reward-based learning are 1) that behavior in these experiments is supported by 

the same learning mechanisms illuminated in animal research, and 2) that these 

learning mechanisms also support learning outside the lab. However, at the condensed 

timescale of most experimental tasks, “massed” timing may allow processes other than 

gradual feedback-based learning, such as working memory, to dominate behavior 

(Collins and Frank, 2012; Collins et al., 2014). Additionally, the massed single-session 

nature of human learning experiments is in contrast to most animal experiments 

(Schultz et al., 1997; Roesch et al., 2007).  

Several recent neuroimaging studies have examined the neural representation of 

values learned across days (Tricomi et al., 2009; Wunderlich et al., 2012), supporting a 

role for the human posterior striatum in humans in representing the value of well-

learned stimuli. These findings aligns with neurophysiological recordings in the striatum 
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of animals (Yin and Knowlton, 2006; Kim and Hikosaka, 2013). However, reward-related 

BOLD responses in the putamen are not selective to consolidated associations (e.g. 

O'Doherty et al., 2003; Dickerson et al., 2011; Wimmer et al., 2014); moreover, previous 

studies did not allow for a matched comparison between newly-learned reward 

associations and consolidated associations.  

In addition to the striatum, fMRI and neurophysiological studies have shown that 

responses in the medial temporal lobe and hippocampus are correlated with reward and 

value (Lebreton et al., 2009; Wirth et al., 2009; Lee et al., 2012; Wimmer et al., 2012). 

While these responses are not easily explained by a relational memory theory of MTL 

function (Eichenbaum and Cohen, 2001), they may fit within a more general view of the 

hippocampus in supporting some forms of statistical learning (including stimulus-

stimulus associations; Schapiro et al., 2012; Schapiro et al., 2014). Memory 

mechanisms in the MTL may also play a role in representing previous episodes that can 

be sampled to make a reward-based decision (Murty et al., 2016; Wimmer and Buechel, 

2016; Bornstein et al., 2017), a role that could be enhanced by consolidation.  

To characterize the cognitive and neural mechanisms which support learning 

long-term reward associations, we utilized a simple reward-based learning task. 

Participants initially learned value associations for spaced stimuli in the lab and then 

online across two weeks. Associations for massed stimuli were acquired during a 

second in-lab session over approximately 20 minutes (followed by fMRI scanning in one 

group), similar to the kind of training commonly used in reinforcement learning tasks. 

Finally, to examine maintenance of learning, a long-term test was administered three 

weeks after the completion of training.  
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Methods 

 
 

Figure 1. a) Experimental timeline. Learning for the spaced-trained stimuli is indicated 

in blue and learning for the massed-trained stimuli is indicated in grey. b) Reward 

learning task. Participants learned to select “Yes” for reward-associated stimuli and 

select “No” for loss-associated stimuli. c) Reward association rating test. This rating 

scale followed the initial in-lab learning sessions and was also administered 3 weeks 

after the last learning session. 

 

Participants and Overview. Participants were recruited via advertising on the Stanford 

Department of Psychology paid participant pool web portal 

(https://stanfordpsychpaid.sona-systems.com). Informed consent was obtained in a 

manner approved by the Stanford University Institutional Review Board. In study 1, 

behavioral and fMRI data acquisition proceeded until fMRI seed grant funding expired, 

leading to a total of 33 scanned participants in the reward learning task. In order to 

ensure that the fMRI sessions two weeks after the first in-lab session were fully 

subscribed, a total of 62 participants completed the first behavioral session. Of this 

group, a total of 29 participants did not complete the fMRI and behavioral experiment 

described below. The results of 33 participants (20 female) are included in the analyses 

and results, with a mean age of 22.8 years (range: 18-34). Participants were paid 

$10/hour for the first in-lab session and $30/hour for the second in-lab (fMRI) session, 

plus monetary rewards from the learning phase and choice test phase. 
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In Study 2, a total of 35 participants participated in the first session of the 

experiment, but 4 were excluded from the final dataset, as described below. Our sample 

size was designed to approximately match the size of Study 1. The final dataset 

included 31 participants (24 female), with a mean age of 23.3 years (range: 18-32). Two 

participants failed to complete the second in-lab session and all data were excluded; 

one other participant exhibited poor performance the first session (less than 54% 

correct during learning and less than 40% correct in the choice test) and was therefore 

excluded from participation in the follow-up sessions. Of the 31 included participants, 

one participant failed to complete the third in-lab session, but data from other sessions 

were included. Participants were paid $10/hour for the two in-lab sessions, monetary 

rewards from the learning phase and choice test phase, plus a bonus of $12 for the 5-

minute duration third in-lab session. 

Both Study 1 and Study 2 utilized the same reward-based learning task. 

Participants learned the best response for individual stimuli in order to maximize their 

payoff. Two different sets of stimuli were either trained across two weeks (“spaced-

trained” stimuli) or in a single session (“massed-trained” stimuli; Figure 1a). Spaced 

training began in the first in-lab session and continued across three online training 

sessions spread across approximately 2 weeks. Training on massed stimuli began in 

the second in-lab session. Spaced training always preceded massed training, so that by 

the end of the second in-lab session both sets of stimuli had been shown on an equal 

number of learning trials. This design was the same across Study 1 and Study 2, with 

the difference that Study 1 included an fMRI portion. Additionally, the three-week follow-

up measurement was conducted online for Study 1 and in-lab for Study 2. 

 

Experimental design, Study 1. In Study 1, before the learning phase, participants 

rated a set of 38 landscape picture stimuli based on liking, using a computer mouse, 

preceded by one practice trial. The same selection procedure and landscape stimuli 

were used previously (Wimmer and Shohamy, 2012). These ratings were used to select 

the 16 most neutrally-rated set of stimuli per participant to be used in Study 1. Stimuli 

were then randomly assigned to condition (spaced or massed) and value (reward or 

loss). In Study 2, we used the ratings collected across participants in Study 1 to find the 
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most neutrally-rated stimuli on average and then created two counterbalanced lists of 

stimuli from this set. 
Next, in the reward game in both studies, participants’ goal was to learn the best 

response (arbitrarily labeled “Yes” and “No”) for each stimulus. Participants used up and 

down arrow keys to make “Yes” and “No” responses, respectively. Reward-associated 

stimuli led to a win of $0.35 on average when “Yes” was selected and a small loss of -

$0.05 when “No” was selected. Loss-associated stimuli led to a neutral outcome of 

$0.00 when “No” was selected and -$0.25 when “Yes” was selected. These 

associations were probabilistic, such that the best response led to the best outcome 

80% of the time during training. If no response was recorded, at feedback a warning 

was given: “Too late or wrong key!  - $0.50”, and participants lost $0.50. 

To increase engagement and attention to the feedback, we introduced 

uncertainty into the feedback amounts in two ways: first, all feedback amounts were 

jittered ± $0.05 around the mean using a flat distribution. Second, for the reward-

associated stimuli, half were associated with a low reward amount ($0.45) and half with 

a higher reward amount ($0.25). We did not find that this second manipulation 

significantly affected learning performance at the end of the training phase, and thus our 

analyses and results collapse across the reward levels. 

In a single reward learning trial, a stimulus was first presented with the options 

“Yes” and “No” above and below the image, respectively (Figure 1b). Participants had 2 

seconds to make a choice. After the full 2 s choice period, a 1 s blank screen ITI 

preceded feedback presentation. Feedback was presented in text for 1.5 s, leading to a 

total trial duration of 4.5 s. Reward feedback above +$0.10 was presented in green, and 

feedback below $0.00 was presented in red, while other values were presented in white. 

After the feedback, an ITI of duration 2 preceded the next trial (min, 0.50 s; max, 3.5 s), 

where in the last 0.25 s prior to the next trial the fixation cross turned from white to 

black. The background for all parts of the experiment was grey (RGB value [111 111 

111]). 

In the first in-lab session, participants learned associations for spaced-trained 

stimuli, which differed from the training for massed-trained stimuli only in that training for 

spaced stimuli was spread across 4 sessions, 1 in-lab and 3 online. Training for 

massed-trained stimuli only occurred in the subsequent second in-lab session. Initial 
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learning for both spaced-and massed-trained stimuli included 8 stimuli, of which half 

were associated with reward and half were associated with loss. In the initial learning 

phase for both conditions, each stimulus was repeated 10 times. The lists for the initial 

learning session were pseudo-randomized, with constraints introduced to facilitate initial 

learning and to achieve ceiling performance before the end of training. In the first 

learning session for both spaced- and massed-trained stimuli, 4 stimuli were introduced 

in the first 40 trials and the other 4 stimuli were introduced in the second 40 trials. 

Further, when a new stimulus was introduced, the first repetition followed immediately. 

The phase began with 4 practice trials including 1 reward-associated practice stimulus 

and 1 loss-associated practice stimulus, followed by a question about task 

understanding. Three rest breaks were distributed throughout the rest of the phase. 

After the initial learning phase in both conditions, participants completed a rating 

phase and a choice phase. In the rating phase, participants tried to remember whether 

a stimulus was associated with reward or not. They were instructed to use a rating scale 

to indicate their memory and their confidence in their memory using a graded scale, with 

responses made via computer mouse (Figure 1c). Responses near the scale line were 

recorded. Responses were self-paced. After 0.5 s, trials were followed by a 3 s ITI. For 

analyses, responses (recorded in pixel left-right location values) were transformed to 0-

100 percent.  

In the choice phase, participants made a forced-choice response between two 

stimuli, only including spaced stimuli in the first in-lab session and only including 

massed stimuli in the second in-lab session. Stimuli were randomly presented on the 

left and right side of the screen. Participants made their choice using the 1-4 number 

keys in the top row of the keyboard, with a ‘1’ or ‘4’ response indicating a confident 

choice of the left or right option, respectively, and a ‘2’ or ‘3’ response indicating a guess 

choice of the left or right option, respectively. The trial terminated 0.25 s after a 

response was recorded, followed by a 2.5 s ITI. Responses were self-paced. 

Participants were informed that they would not receive feedback after each choice but 

that the computer would keep track of the number of correct choices of the reward-

associated stimuli that were made and pay a bonus based on their performance. As the 

long-term follow-up only included ratings, choice analyses were limited to comparing 

how choices aligned with ratings. 
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At the end of the session, participants completed two additional measures. We 

collected the Beck Depression Inventory (BDI), but scores were too low and lacked 

enough variability to enable later analysis (median score = 2 out of 69 possible; scores 

above 13 indicate mild depression). The second measure we collected was the 

operation-span task (OSPAN), which was used as an index of working memory capacity 

(Lewandowsky et al., 2010; Otto et al., 2013). In the OSPAN, participants made 

accuracy judgments about simple arithmetic equations (e.g. ‘2 + 2 = 5’). After a 

response, an unrelated letter appeared (e.g. ‘B’), followed by the next equation. After 

arithmetic-letter sequences ranging in length from 4 to 8, participants were asked to 

type in the letters that they had seen in order, with no time limit. Each sequence length 

was repeated 3 times. In order to ensure that participants were fully practiced in the task 

before it began, the task was described in-depth in instruction slides, followed by 5 

practice trials. Scores were calculated by summing the number of letters in fully correct 

letter responses across all 15 trials (mean, 49.9; range, 19-83) (Otto et al., 2013); mean 

performance on the arithmetic component was 81.9%. 

 

Online training. Subsequent to the first in-lab session where training on spaced stimuli 

began, participants completed three online sessions with the spaced-trained stimuli. 

Sessions were completed on a laptop or desktop computer (but not on mobile devices), 

using the expfactory.org platform (Sochat et al., 2016). Code for the online reward 

learning phase can be found at: https://github.com/gewimmer-neuro/reward_learning_js.  

Each online training session included 5 repetitions of the 8 spaced-trained stimuli, in a 

random order, leading to 15 additional repetitions per spaced-trained stimulus overall. 

The task and timing were the same as in the in-lab sessions, with the exception that the 

screen background was white and the white feedback text was replaced with grey. 

Participants completed the online sessions across approximately 2 weeks, initiated with 

an email from the experimenter including login details for that session. In the case that 

participants had not yet completed the preceding online session when the notification 

about the next session was received, participants were instructed to complete the 

preceding session that day and the next session the following day. Thus, at least one 

overnight period was required between sessions. Participants were instructed to 

complete the session when they were alert and not distracted. We found that data for 
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two sessions in one participant were missing and for an additional 7 participants, data 

for one online session was missing. Based on follow-up with a subset of participants, we 

can conclude that missing data was due in some cases to technical failures and in some 

cases due to non-compliance. Among participants with a missing online spaced training 

session, performance during scanning for spaced-trained stimuli was above the group 

mean (94.8% vs. 91.0%). Note that if a subset of participants did not complete some 

part of the spaced training, this would, if anything, weaken any differences between 

spaced and massed training. 

 

Second in-lab session. Next, participants returned for a second in-lab session, 

approximately two weeks later (mean, 13.5 days; range, 10-20 days). Here, participants 

began and completed training on the massed-trained stimuli. Initial training across the 

first 10 repetitions was conducted as described above for the first in-lab session. Next, 

participants completed a rating phase including both spaced- and massed-trained 

stimuli and choice phase involving only the massed-trained stimuli. After this, 

participants finished training on the massed-trained stimuli, bringing total experience up 

to 25 repetitions, the same as for the spaced-trained stimuli to that point. 

 In Study 1, participants next entered the scanner for an intermixed learning session. 

Across 2 blocks, participants engaged in additional training on the spaced- and massed-

trained stimuli, with 6 repetitions per stimulus. With four initial practice trials, there were 

100 total trials. During scanning, task event durations were as in the behavioral task 

above, and ITI durations were on average 3.5 s (min, 1.45 s; max, 6.55 s). Responses 

were made using a button cylinder, with the response box positioned to allow finger 

responses to mirror those made on the up and down arrow keys on the keyboard. 

Following the intermixed learning session, participants engaged in single no-

feedback block, where stimuli were presented with no response requirements. This 

block provided measures of response to stimuli without the presence of feedback, and 

lists were designed to allow for tests of potential cross-stimulus repetition-suppression 

(Barron et al., 2013; Klein-Flugge et al., 2013; Barron et al., 2016). Stimuli were 

presented for 1.5 s, followed by a 1.25 s ITI (range, 0.3 – 3.7 s). To provide a measure 

of attention and to promote recollection and processing of stimulus value, participants 

were instructed to remember whether a stimulus had been associated with reward or 
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with no reward. On ~10% of trials, 1 s after the stimulus had disappeared, participants 

were asked to answer whether the best response to the stimulus was a “Yes” or a “No”. 

Participants had a 2 s window in which to make their response; no feedback was 

provided unless a response was not recorded, in which case the warning “Too late or 

wrong key! -$0.50” was displayed. Each stimulus was repeated 10 times during the no-

feedback phase, yielding 160 trials. Different stimuli of the same type (spaced training 

by reward value) were repeated on sequential trials to allow for repetition suppression 

analyses. At least 18 sequential events for each of these critical 4 comparisons were 

presented in a pseudorandom order. 

In Study 1, participants also engaged in an additional unrelated cognitive task 

during the scanning session (approximately 30 min) and a resting scan (8 min). The 

order of the cognitive task and the reward learning task were counterbalanced across 

participants. Results from the cognitive task will be reported separately. 

After scanning, participants engaged in an exploratory block to study whether 

and how participants would reverse their behavior given a shift in feedback 

contingencies. Importantly, the “reversed” stimuli and control non-reversed stimuli (4 per 

condition per participant) were not included in the analyses of the 3-week follow-up 

data. One medium-reward stimulus and one loss-associated stimulus each from the 

spaced and massed conditions were subject to reversal. These reversed stimuli were 

pseudo-randomly interspersed with a non-reversed medium-reward stimulus and a non-

reversed loss stimulus from each condition, yielding 8 stimuli total. In the reversal, the 

feedback for the first presentation of the reversed stimuli was as expected, while the 

remaining 9 repetitions were reversed (at a 78% probability). 

We did not find any reliable effect of spaced training on reversal of reward or loss 

associations. Massed-trained reward-associated stimulus performance across the 

repetitions following the reversal (3-10) was 65.7 % [58.7 76.9]; spaced-trained 

performance was 60.1 % [49.1 71.1]. While performance on the spaced-trained stimuli 

was lower, this effect was not significant (t(30) = 1.06, CI [-5.2 16.5]; p = 0.30; TOST t(30) 

= 1.89, p = 0.034). Massed-trained loss-associated stimulus performance across the 

repetitions following the reversal was 36.3% [23.6 49.0]; spaced-trained performance 

was 38.3% [23.9 52.8] (t(30) = -0.26, CI [-18.0 13.0]; p = 0.80; TOST equivalence test, 

t(30) = -2.69, p = 0.005). As the reversal phase came after a long experiment before and 
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during scanning, including an unrelated demanding cognitive control task, it is possible 

that the results were affected by general fatigue. The lack of an effect of spaced training 

of reversal performance indicates that alternative cognitive or short-term learning 

mechanisms can override well-learned reward associations. 

 

Three-week follow-up. We administered a follow-up test of memory for the value of 

conditioned stimuli approximately 3 weeks later (mean, 24.5 days; range, 20-37 days). 

An online questionnaire was constructed with each participant’s stimuli using Google 

Forms (https://docs.google.com/forms). Participants were instructed to try to remember 

whether a stimulus was associated with winning money or not winning money, using an 

adapted version of the scan from the rating phase of the in-lab experiment. Responses 

were recorded using a 10-point radio button scale, anchored with “0% lucky” on the left 

to “100% lucky” on the right. Similar to the in-lab ratings, participants were instructed to 

respond to the far right end of the scale if they were completely confident that a given 

stimulus was associated with reward and to the far left if they were completely confident 

that a given stimulus was associated with no reward. Thus, distance from the center 

origin represented confidence in their memory. 

In-lab portions of the study were presented using Psychtoolbox 3.0 (Brainard, 

1997), with the initial in-lab session conducted on 21.5” Apple iMacs. Online training 

was completed using expfactory.org (Sochat et al., 2016), with functions adapted from 

the jspsych library (de Leeuw, 2015). At the second in-lab session, before scanning, 

participants completed massed-stimulus training on a 15” MacBook Pro laptop. During 

scanning, stimuli were presented on a screen positioned above the participant’s eyes 

that reflected an LCD screen placed in the rear of the magnet bore. Responses during 

the fMRI portion were made using a 5-button cylinder button response box (Current 

Designs, Inc.). Participants used the top button on the side of the cylinder for “Yes” 

responses and the next lower button for “No” responses. We positioned the response 

box in the participant’s hand so that the arrangement mirrored the relative position of 

the up and down arrow keys on the keyboard from the training task sessions. 

 

Experimental design, Study 2. The methods for Study 2 were the same as in Study 1, 

with three main differences: training for massed stimuli was conducted without 
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interruption for intermediate ratings, fMRI data were not collected, and the long-term 

follow-up was conducted in the lab rather than online. 

Stimuli for Study 2 were composed of the most neutrally-rated stimuli from Study 

1 pre-experiment ratings. Two counterbalance stimulus lists were created and assigned 

randomly to participants. The initial learning session for the spaced-trained stimuli and 

the three online training sessions were completed as described above. Following the 

training and testing phases, participants completed the OSPAN to collect a measure of 

working memory capacity. Scores were calculated as in Study 1 (mean, 49.7; range 17-

83); mean performance on the arithmetic component was 93.1%. 

During the two weeks between the in-lab sessions, participants completed three 

online training sessions for the spaced-trained stimuli, as described above. We found 

that data for three sessions in one participant were missing, data for two sessions in 

one participant were missing, and data for one session in 5 participants was missing. 

Based on the information from Study 1, we can infer that some data was missing for 

technical reasons and some missing because of non-compliance. Among participants 

with at least one missing online session, performance during scanning for spaced-

trained stimuli was near the group mean (84.8% vs. 86.4%). Note that the absence of 

spaced training in some participants would, if anything, weaken any differences 

between the spaced and massed condition. 

 

Second in-lab session. The second in-lab session was completed approximately two 

weeks after the first session (mean, 12.8 days; range, 10-17 days). Here, participants 

learned reward associations for the set of “massed” stimuli. The training progressed 

through all 25 repetitions of the massed-trained stimuli with only short rest breaks, 

omitting the intervening test phases of Study 1. In the last part of the learning phase, to 

assess end-state performance on both spaced-trained and massed-trained stimuli, 3 

repetitions of each stimulus were presented in a pseudo-random order. Rating and 

choice phase data were acquired after this learning block, with trial timing as described 

above. 

 After the choice phase, we administered an exploratory phase to assess potential 

conditioned stimulus-cued biases in new learning. This phase was conducted in a 

subset of 25 participants, as the task was still under development when the data from 
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the initial 6 participants were acquired. Participants engaged in learning about new 

stimuli (abstract characters) in the same paradigm as described above (Figure 1b) 

while unrelated spaced- or massed-trained landscape stimuli were presented tiled in the 

background during the choice period. Across all trials, we found a positive influence of 

background prime reward value on the rate of “Yes” responding (reward prime mean 

54.4 % CI [48.2 60.4]; loss prime mean 43.2 % CI [36.6 48.0). This did not differ 

between the spaced and massed conditions (spaced difference, 13.0 % CI [4.4 21.6]; 

massed difference, 11.0 % CI [1.6 20.4]; t(24) = 0.71, CI [-3.8 7.8]; p = 0.49; TOST 

equivalence test, p = 0.017). One limitation in this exploratory phase was that learning 

for the new stimuli, similar to that reported below for the regular phases, was quite 

rapid, likely due to the sequential ordering of the first and second presentations of a new 

stimulus (performance reached 77.5 % correct by the second repetition). Rapid learning 

about the new stimuli may have minimized the capacity to detect differences in priming 

due to spaced vs. massed training. 

 

Three-week follow-up. Approximately 3 weeks after the second in-lab session (mean, 

21.1 days; range, 16-26 days), participants returned to the lab for the third and final in-

lab session. Using the same testing rooms as during the previous sessions (which 

included the full training session on massed stimuli), participants completed another 

rating phase. Participants were reminded of the reward rating instructions and told to 

“do their best” to remember whether individual stimuli had been associated with reward 

or loss during training. Trial timing was as described above, and the order of stimuli was 

pseudo-randomized. 

 

fMRI Data Acquisition. Whole-brain imaging was conducted on a GE 3T Discovery 

system equipped with a 32-channel head coil (Stanford Center for Cognitive and 

Neurobiological Imaging). Functional images were collected using a multiband 

(simultaneous multi-slice) acquisition sequence (TR = 680 ms, TE = 30 ms, flip angle = 

53, multiband factor = 8; 2.2 mm isotropic voxel size; 64 (8 by 8) axial slices with no 

gap). For participant 03, TR was changed due to error, resulting in runs of 924, 874, and 

720 ms TRs. Slices were tilted approximately 30° relative to the AC–PC line to improve 
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signal-to-noise ratio in the orbitofrontal cortex (Deichmann et al., 2003). Head padding 

was used to minimize head motion. 

During learning phase scanning, two participants was excluded for excessive 

head motion (5 or more >1.5 mm framewise displacement translations from TR to TR). 

No other participant’s motion exceeded 1.5 mm in displacement from one volume 

acquisition to the next. For seven other participants with 1 or more events of >0.5-mm 

displacement TR-to-TR, any preceding trial within 5 TRs and any current/following trial 

within 10 subsequent TRs of the motion event were excluded from multivariate 

analyses; for univariate analyses, these trials were removed from regressors of interest. 

For participant 08, the display screen failed in the middle of the first learning phase 

scanning run. This run was restarted at the point of failure and functional data were 

concatenated. For four participants, data from the final no-feedback fMRI block was not 

collected due to time constraints. Specifically, for the no-feedback block, three 

participants were excluded for excessive head motion, leaving 26 remaining participants 

for the no-feedback phase analysis. 

For each functional scanning run, 16 discarded volumes were collected prior to 

the first trial to both allow for magnetic field equilibration and to collect calibration scans 

for the multiband reconstruction. During the scanned learning phase, two functional runs 

of an average of 592 TRs (6 min and 42 s) were collected, each including 50 trials. 

During the no-feedback phase, one functional runs of an average of 722 TRs (8 min and 

11 s) was collected, including 160 trials. Structural images were collected either before 

or after the task, using a high-resolution T1-weighted magnetization prepared rapid 

acquisition gradient echo (MPRAGE) pulse sequence (0.9 x 0.898 x 0.898 mm voxel 

size). 

 

Behavioral analysis. Behavioral analyses were conducted in Matlab 2016a (The 

MathWorks, Inc., Natick, MA). Results presented below are from the following analyses: 

t-tests vs. chance for learning performance, within-group (paired) t-tests comparing 

differences in reward- and loss-associated stimuli across conditions, Pearson 

correlations, and Fisher z-transformations of correlation values. We additionally tested 

whether non-significant results were weaker than a moderate effect size using the Two 

One-Sided Test (TOST) procedure (Schuirmann, 1987; Lakens, 2017) and the TOSTER 
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library in R (Lakens, 2017). We used bounds of Cohen’s d = 0.51 (Study 1) or d = 0.53 

and d = 0.54 (Study 2), where power to detect an effect in the included group of 

participants is estimated to be 80%. 

End-state learning accuracy in Study 1 averaged across the last 5 of 6 repetitions 

in the scanned intermixed learning session. End-state learning accuracy for Study 2 

averaged across the last 2 of 3 repetitions in the final intermixed learning phase. For the 

purpose of correlations with working memory, initial learning repetitions 2-10 were 

averaged (as repetition 1 cannot reflect learning). In Study 1, the post-learning ratings 

were taken from the ratings collected before the scan (after 25 repetitions across all 

massed- and spaced-trained stimuli).  

 

fMRI Data Analysis. Data from all participants were preprocessed several times to fine 

tune the parameters. After each iteration the decision to modify the preprocessing was 

purely based on the visual evaluation of the preprocessed data and not based on 

results of model fitting. Results included in this manuscript come from application of a 

standard preprocessing pipeline using FMRIPREP version 1.0.0-rc2 

(http://fmriprep.readthedocs.io), which is based on Nipype (Gorgolewski et al., 2011). 

Slice timing correction was disabled due to short TR of the input data. Each T1 

weighted volume was corrected for bias field using N4BiasFieldCorrection v2.1.0 

(Tustison et al., 2010), skullstripped using antsBrainExtraction.sh v2.1.0 (using the 

OASIS template), and coregistered to skullstripped ICBM 152 Nonlinear Asymmetrical 

template version 2009c (Fonov et al., 2009) using nonlinear transformation 

implemented in ANTs v2.1.0 (Avants et al., 2008). Cortical surface was estimated using 

FreeSurfer v6.0.0 (Dale et al., 1999).  

Functional data for each run was motion corrected using MCFLIRT v5.0.9 

(Jenkinson et al., 2002). Distortion correction for most participants was performed using 

an implementation of the TOPUP technique (Andersson et al., 2003) using 3dQwarp 

v16.2.07 distributed as part of AFNI (Cox, 1996). In case of data from participants 8, 12, 

14, 27, and 36 spiral fieldmaps were used to correct for distortions due to artifacts 

induced by the TOPUP approach in those participants. This decision was made based 

on visual inspection of the preprocessed data prior to fitting any models. The spiral 

fieldmaps were processed using FUGUE v5.0.9 (Jenkinson, 2003). Functional data was 
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coregistered to the corresponding T1 weighted volume using boundary based 

registration 9 degrees of freedom - implemented in FreeSurfer v6.0.0 (Greve and Fischl, 

2009). Motion correcting transformations, field distortion correcting warp, T1 weighted 

transformation and MNI template warp were applied in a single step using 

antsApplyTransformations v2.1.0 with Lanczos interpolation. Framewise displacement 

(Power et al., 2014) was calculated for each functional run using Nipype 

implementation. For more details of the pipeline see 

http://fmriprep.readthedocs.io/en/1.0.0-rc2/workflows.html. 

 General linear model analyses were conducted using SPM (SPM12; Wellcome Trust 

Centre for Neuroimaging). MRI model regressors were convolved with the canonical 

hemodynamic response function and entered into a general linear model (GLM) of each 

participant’s fMRI data. Six scan-to-scan motion parameters (x, y, z dimensions as well 

as roll, pitch, and yaw) produced during realignment were included as additional 

regressors in the GLM to account for residual effects of participant movement. 

We first conducted univariate analyses to identify main effects of value and 

reward in the learning phase, as well as effects of presentation without feedback in the 

final phase. The learning phase GLM included regressors for the stimulus onset (2 s 

duration) and feedback onset (2 s duration). The stimulus onset regressor was 

accompanied by a modulatory regressor for reward value (reward vs. loss), separately 

for spaced- and massed-trained stimuli. The feedback regressor was accompanied by 

four modulatory regressors for reward value (reward vs. loss) and spacing (spaced- vs. 

massed-trained). The median performance in the scanner was 97.5%, and because 

learning was effectively no longer occurring during the scanning phase, we did not use 

a reinforcement learning model to create regressors. 

The no-feedback phase GLM included regressors for the stimulus onset (1.5 s 

duration) and query onset (3.0 s duration). In the no-feedback phase, we conducted an 

exploratory cross-stimulus repetition-suppression analyses (XSS; Klein-Flugge et al., 

2013). Here, non-perceptual features associated with a stimulus are predicted to 

activate the same neural population representing the feature. This feature coding is then 

predicted to lead to a suppressed response in subsequent activations, for example, 

when a different stimulus sharing that feature is presented immediately after the first 

stimulus (Barron et al., 2016). In the XSS model, we contrasted sequential 
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presentations of stimuli that shared value association (reward and loss) and spacing 

(spaced vs. massed), yielding four regressors. For example, if two different reward-

associated and spaced-trained stimuli followed in successive trials, the first trial would 

receive a 1 value and the second trial would receive a -1. These regressors were 

entered into contrasts to yield reward vs. non XSS for spaced-trained stimuli and reward 

vs. non XSS for massed-trained stimuli. 

For multivariate classification analyses, we estimated a mass-univariate GLM 

where each trial was modeled with a single regressor, giving 100 regressors for the 

learning phase. The learning phase regressor duration modeled the 2 seconds long 

initial stimulus presentation period. Models included the 6 motion regressors and block 

regressors as effects of no interest. Multivariate analyses were conducting using The 

Decoding Toolbox (Hebart et al., 2014). Classification utilized a L2-norm learning 

support vector machine (LIBSVM; Chang and Lin, 2011) with a fixed cost of c = 1. The 

classifier was trained on the full learning phase data, with the two scanning blocks 

subdivided into four runs (balancing the number of events within and across runs). We 

conducted four classification analyses: overall reward- vs. loss-associated stimulus 

classification, spaced- vs. massed-trained stimulus classification, and reward- vs. loss-

associated stimulus classification separately for spaced- and massed-trained stimuli. 

For the final two analyses, the results were compared to test differences in value 

classification performance for spaced vs. massed stimuli. Leave-one-run-out cross-

validation was used, with results reported in terms of percent correct classification. 

Statistical comparisons were made using t-tests vs. chance (50%); for the comparison 

of two classifier results, paired t-tests were used. 

In addition to the two ROI analyses, we conducted a searchlight analysis using 

The Decoding Toolbox (Hebart et al., 2014). We used a 4-voxel radius spherical 

searchlight. Training of the classifier and testing were conducted as described above for 

the region of interest MVPA. Individual subject classification accuracy maps were 

smoothed with a 4mm FWHM kernel prior to group-level analysis. A comparison 

between value classification between spaced- and massed-trained stimuli was 

conducted using a t-test on the difference between participant’s spaced- and massed-

trained classification SPMs (equivalent to a paired t-test). 
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For both univariate and searchlight results, linear contrasts of univariate SPMs 

were taken to a group-level (random-effects) analysis. We report results corrected for 

family-wise error (FWE) due to multiple comparisons (Friston et al., 1993). We conduct 

this correction at the peak level within small volume ROIs for which we had an a priori 

hypothesis or at the whole-brain cluster level (in each case using a cluster-forming 

threshold of p < 0.005 uncorrected). The striatum and MTL (including hippocampus and 

parahippocampal cortex) ROIs were adapted from the AAL atlas (Tzourio-Mazoyer et 

al., 2002). The striatal mask included the caudate and putamen, as well as the addition 

of a hand-drawn nucleus accumbens mask (Wimmer et al., 2012). All voxel locations 

are reported in MNI coordinates, and results are displayed overlaid on the average of all 

participants’ normalized high-resolution structural images using xjview and AFNI (Cox, 

1996). 

 

Data availability 
Behavioral data will be made publicly available on the Open Science Framework 

(www.osf.io). Whole-brain fMRI results will be made available on NeuroVault 

(https://neurovault.org/collections/3340/) and the full imaging dataset will be publicly 

available on OpenfMRI (openfmri.org). 
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Results 
Across two studies, we measured learning and maintenance of conditioned stimulus-

value associations over time. In the first in-lab session, participants learned stimulus-

value associations for a set of “spaced-trained” stimuli. Over the course of the next two 

weeks, participants engaged in three further short training sessions online. Participants 

then returned to complete a second in-lab session, where they learned stimulus-value 

associations for a new set of “massed-trained” stimuli. All learning for the massed-

trained stimuli occurred consecutively in the same session. By the end of training on the 

massed-trained stimuli, experience was equated between the spaced- and massed-

trained stimuli. While the timing of trials was equivalent across the spaced-trained and 

massed-trained stimuli, the critical difference was that multiple days were inserted in-

between training sessions for spaced-trained stimuli.  

 
Study 1 
Learning of value associations. Participants rapidly acquired the best “Yes” or “No” 

response for the reward- or loss-associated stimuli during learning. Within the first two 

repetitions of each stimulus, accuracy quickly increased to 72.0 % (95% Confidence 

Interval (CI) [68.6 75.3]) for spaced-trained stimuli and 72.2 % (CI [68.4 76.2]) for 

massed-trained stimuli (p-values < 0.001). By the end of the initial training section 

(repetition 10), performance increased to 83.3 % (CI [76.8 89.8]) for the spaced-trained 

stimuli and 93.6 % (CI [90.4 96.7]) for the massed-trained stimuli (Figure 2a). 

Performance was moderately higher by the end of initial learning for the massed-trained 

stimuli (t(32) = 3.13, CI [3.6 17.0]; p = 0.0037). Note that the only difference between the 

spaced and massed training sessions is that there is greater task exposure at the time 

of the massed training session; both sessions have the same within-session trial timing 

and spacing. As expected, after further experience we found that by the end of training 

participants showed no significant difference in performance across conditions 

(repetition 27-31; spaced-trained, 92.1 % CI [88.3 96.0]; massed-trained, 94.7 % CI 

[91.9 97.6]; t(32) = 1.59, CI [-1.0 5.9]; p = 0.123; Figure 2a). However, this effect was not 

statistically equivalent to a null effect, as indicated by an equivalence test using the 

TOST procedure (Lakens, 2017): the effect was not significantly within the bounds of a 
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medium effect of interest (Cohen’s d = ± 0.51, providing 80% power with 33 participants; 

t(32) = 1.34, p = 0.094), and thus we cannot reject the presence of a medium-size effect. 

 

 

 
 

Figure 2. Study 1 learning results. a) Initial and endpoint learning performance for the 

spaced- and massed-trained stimuli. b) Spaced performance across training, showing 

performance for the last in-lab repetition and the first and last (fifth) repetition of each 

stimulus per online session. c) Positive correlation between early massed-trained 

stimulus learning phase performance and working memory capacity (O-SPAN). (* p < 

0.05). Rep. = repetition. Error bars represent one standard error of the mean (s.e.m.). 

 

After the first in-lab session, participants continued learning about the set of 

spaced-trained stimuli across three online sessions. We found that across the 3 online 

sessions, mean performance increased for loss-associated stimuli (one-way ANOVA; 

F(2,72) = 9.26, p = 0.003; Figure 2b) but not for reward-associated stimuli (F(2,72) = 0.53, 

p = 0.59). This increase in performance for loss-associated stimuli was accompanied by 

a significant decrease in performance between sessions (mean change from end of 

session to beginning of next session: t(24) = 4.71, CI [14.5 37.1]; p < 0.001) but not for 

reward-associated stimuli (t(24) = 0.38, CI [-3.4 5.0]; p = 0.704). The drop in performance 

for loss stimuli could be due to a greater rate of forgetting for loss associations. 

However, we cannot rule out an influence of response bias, whereby greater overall 

“Yes” responses give the appearance of decreased performance only for loss-

associated stimuli.  
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After sufficient general experience in the task, we expected to find a positive 

relationship between learning performance for new stimuli and working memory. We 

thus estimated the correlation between learning during the initial acquisition of massed-

trained stimulus-value associations during the second in-lab session with the operations 

span measure of working memory. We found that learning performance on the massed-

trained stimuli positively related to working memory capacity (r = 0.369, p = 0.049; 

Figure 2c). Initial performance for spaced-trained stimuli did not correlate with working 

memory (r = -0.097, p = 0.617; TOST equivalence test providing 80% power in range r ± 

0.34, p = 0.080, and thus we cannot reject the presence of a medium-size effect). The 

correlation between working memory and massed performance was significantly greater 

than the correlation with spaced performance (z = 2.16, p = 0.031). In contrast to the 

predicted effect for massed performance in the second session, we did not predict a 

relationship between first session spaced condition performance and working memory. 

While working memory capacity likely contributed to spaced performance, absent a 

prolonged practice session, working memory is also likely to be utilized to maintain task 

instructions (Cole et al., 2013). Initial task performance is also likely to be affected by 

numerous other noise-introducing factors such as the acquisition of general task rules 

(“task set”) and adaptation to the testing environment. When interpreting these working 

memory correlations with respect to previous studies on the contribution of working 

memory to reinforcement learning (Collins and Frank, 2012), it is important to note that 

the 8 stimuli in the spaced and massed condition were introduced in two sequential sets 

of 4 stimuli. Thus, participants would only need to maintain 4 instead of 8 stimulus-

reward or stimulus-response in short-term memory, well within the range reported in 

previous studies. 

 

Long-term maintenance. Next, we turned to the critical question of whether spaced 

training over weeks led to differences in long-term memory for conditioned reward 

associations. Ratings were collected before the fMRI session and again at the end of 

the second in-lab session. High ratings indicate strong confidence in a reward 

association while low ratings indicate higher confidence in a neutral/loss association; 

ratings more toward the middle of the scale indicated less confidence (Figure 1c). After 

training but before fMRI scanning, when experience was matched across the spaced 
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and massed conditions, we found that ratings across condition clearly discriminated 

between reward- and loss-associated stimuli (p-values < 0.001; Figure 3a, left). The 

difference between reward vs. loss ratings was larger in the massed than the spaced 

condition (spaced difference, 50.7 % CI [41.2 60.1]; massed difference, 62.5 % CI [56.5 

68.4]; t(32) = 2.73, CI [3.0 20.6]; p = 0.01). Supporting the use of reward associations 

ratings as a measure of value in the long-term follow-up, we found that massed-trained 

stimulus ratings were strongly correlated with preferences in the separate choice test 

phase (mean r = 0.92, CI [0.88 0.95]; t-test on z-transformed correlation, t(32) = 11.10 CI 

[1.79 2.59]; p < 0.001). 

To measure long-term maintenance of conditioning, after approximately 3 weeks, 

participants completed an online questionnaire on reward association strength using a 

10-point scale. The instructions for ratings were the same as the in-lab ratings phase. 

Critically, we found that while the reward value discrimination was significant in both 

conditions (spaced difference, 4.55 CI [3.75 5.34]; t(32) = 11.61, p < 0.001; massed 

difference, 2.24 CI [1.59 3.01]; t(32) = 6.60, p < 0.001), reward value discrimination was 

significantly stronger in the spaced than in the massed condition (t(32) = 4.55, CI [1.23 

3.25]; p < 0.001; Figure 3b). This effect was driven by greater maintenance of the 

values of reward-associated stimuli (spaced vs. massed, t(32) = 4.73, CI [1.04 2.58]; p < 

0.001; loss spaced vs. massed, t(32) = -1.37, CI [-1.08 0.21]; p = 0.18; TOST 

equivalence test, t(32) = 1.56, p = 0.064, n.s.). 

Next, we analyzed the consistency of ratings from the end of learning to the long-

term follow-up. The post-learning ratings were collected on a graded scale and the 3-

week follow-up rating was collected on a 10-point scale; this prevents a direct numeric 

comparison but allows for a correlation analysis. Such an analysis can test whether 

ratings in the massed case were simply scaled down (preserving ordering) or if actual 

forgetting introduced noise (disrupting an across-time correlation). We predicted that the 

value association memory for massed-trained stimuli actually decayed, leading to a 

higher correlation across time for spaced-trained stimuli. We indeed found that ratings 

were significantly more correlated across time in the spaced-trained condition (spaced r 

= 0.74, CI [0.63 0.85]; massed r= 0.47, CI [0.35 0.59]; t-test on z-transformed values, 

t(32) = 4.13, CI [1.28 0.44]; p < 0.001). While the correlation for the spaced-trained stimuli 

was high (median r = 0.85), there was still variability in group, with individual participant 
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r-values ranging from -0.36 to 1.0. Overall, these results indicate that spaced-trained 

stimuli exhibited significantly stronger long-term memory for conditioned associations 

and more stable memory than massed-trained stimuli. 

One limitation to these results is that in the current design, cues in the learning 

environment may bias performance in favor of the spaced-trained stimuli: online training 

for spaced stimuli was conducted outside the lab, likely on the participant’s own 

computer, which was likely the same environment for the 3-week follow-up measure. 

While it seems unlikely that a testing environment effect would fully account for the large 

difference in long-term maintenance that we observed, we conducted a second study to 

replicate these results in a design where the testing conditions would if anything bias 

performance in favor of the massed-trained stimuli. 

 

 

 

 

 
 

Figure 3. Study 1 post-learning value association strength and long-term maintenance 

of value associations. a) Post-learning reward association ratings for the massed- and 

spaced-trained stimuli (left); 3-week-later reward association ratings (right). Reward-

associated stimuli in darker colors. b) Average of the correlation within-participant of 

massed-trained stimulus reward ratings and spaced-trained stimulus reward-ratings (z-

transformed). (*** p < 0.001). Error bars, s.e.m.  
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Study 2 

Learning of value associations. In Study 2, our aim was to replicate the findings of 

Study 1 and to extend them by conducting the 3-week follow-up session in the lab, 

allowing for a direct comparison with post-learning performance. During learning, within 

the first 3 trials, accuracy rapidly increased to 77.9 % (CI [74.8 81.0]) for spaced-trained 

stimuli and to 79.2 % (CI [76.0 82.4]) for massed-trained stimuli (p-values < 0.001). By 

the end of the initial training session, performance was at a level of 84.3 % (CI [79.3 

89.3]) for the spaced-trained stimuli and 86.2 % (CI [81.2 91.1]) for the massed-trained 

stimuli (Figure 4a), which was matched across conditions (10th repetition; t(30) = 0.59, CI 

[-4.72 8.52]; p = 0.56; TOST equivalence test within a range of Cohen’s d = ± 0.53, 

providing 80% power with 31 participants; t(30) = 2.37, p = 0.012). By the end of training, 

after the online sessions for spaced-trained stimuli and the completion of the in-lab 

learning for massed-trained stimuli, we found that performance was equivalent across 

conditions (spaced-trained, 86.4 % CI [82.2 90.6]; massed-trained, 87.1 % CI [81.4 

92.8]; t(30) = 0.248, CI [-4.76 6.08]; p = 0.806; TOST equivalence test, t(30) = 2.70, p = 

0.006; Figure 4a). 

 

 
 

Figure 4. Study 2 learning results. a) Initial and endpoint learning performance for the 

spaced- and massed-trained stimuli. b) Spaced performance across training, showing 

performance for the last in-lab repetition and the first and last (fifth) repetition of each 

stimulus per online session. c) Positive correlation between early massed-trained 

stimulus learning performance and working memory capacity (OSPAN). (** p < 0.01). 

Error bars, s.e.m. 
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After the first in-lab session, participants continued learning about the set of 

spaced-trained stimuli across three online sessions. As in Study 1, we found that across 

the 3 online sessions, mean performance did not change for reward-associated stimuli 

(one-way ANOVA; F(2,69) = 0.06, p = 0.94; Figure 4b). In contrast to Study 1, we did not 

find an increase across sessions for loss-associated stimuli (F(2,69) = 1.09, p = 0.34), 

although we did find that a paired post-hoc comparison of the first to the third session 

showed an increase (t(23) = 2.43, CI [1.1 3.4]; p = 0.024). However, we did replicate the 

finding that loss-associated stimuli showed a significant decrease in performance 

between sessions (mean change from end of session to beginning of next session: t(23) 

= 2.69, CI [2.4 18.2]; p = 0.013; reward-associated stimuli (t(23) = 1.40, CI [-1.6 8.3]; p = 

0.18). 

As in Study 1, after sufficient general experience in the reward association 

learning task, we expected to find a positive relationship between performance on the 

reward association learning task and working memory. Indeed, we found a significant 

correlation between massed-stimulus performance and working memory capacity (r = 

0.484, p = 0.0058; Figure 4c). Initial learning performance was relatively lower in Study 

2 than in Study 1, which may have helped reveal a numerically stronger correlation 

between massed-trained stimulus performance and working memory. Meanwhile, the 

relationship between working memory and initial performance for spaced-trained stimuli 

was weak (r = 0.040, p = 0.83; TOST equivalence test, p = 0.043, providing 80% power 

in range r ± 0.35; difference between massed and spaced correlation, z = 1.40 p = 

0.16), as expected, given the other noise-introducing factors in initial learning 

performance discussed above. 

 

Long-term maintenance. Next, we turned to the critical question of whether spaced 

training over weeks led to differences in long-term memory for conditioned reward 

associations. Ratings were collected at the end of the massed-stimulus training session 

but before fMRI scanning. With training experience matched, we found that ratings 

across condition clearly discriminated between reward- and loss-associated stimuli (p-

values < 0.001; Figure 5a, left). The difference between values tended to be higher in 

the massed than the spaced condition (massed difference, 52.5 % CI [46.7 58.3]; 

spaced difference, 47.1 % CI [40.9 53.2]; difference, t(30) = -1.86, CI [-0.5 11.4]; p = 
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0.073; Figure 5a). In the next phase, we found that incentive compatible choices overall 

were near ceiling (93.1% CI [89.9 96.4]; t(30) = 26.80) and did not differ between 

conditions (p > 0.26; TOST equivalence test, t(30) = 1.83, p = 0.04). Supporting the use 

of ratings in the long-term follow-up, we found that ratings positively correlated with 

choice preference across all stimuli (mean r = 0.87, CI [0.82 0.91]; t-test on z-

transformed ratings, t(30) = 14.08, CI [1.33 1.78]; p < 0.001). 

To measure long-term maintenance of conditioning, after approximately 3 weeks, 

participants returned for a third in-lab session. Rating discrimination between reward- 

and loss-associated stimuli was significant in both conditions (spaced difference, 39.1 % 

CI [32.4 45.8]; t(29) = 11.96, p < 0.001; massed difference, 16.7 % CI [9.4 24.1]; t(29) = 

4.65, p < 0.001). Importantly, reward value discrimination was significantly stronger in 

the spaced than in the massed condition (t(29) = 4.98, CI [13.2 31.5]; p < 0.001; Figure 
5a, right). At follow-up, this stronger maintenance of learned value associations in the 

spaced condition was significant for both reward and loss stimuli (reward, t(29) = 3.43, CI 

[5.0 20.0]; p = 0.0018; loss, t(29) = -4.11, CI [-14.7 -5.0]; p < 0.001). The design of Study 

2 allowed us to directly compare post-learning ratings and 3-week later ratings to 

calculate the degree of maintenance of conditioning. As expected, the difference in 

maintenance for reward associations was significantly greater for spaced- than massed-

trained stimuli (spaced, 87.3 % CI [73.2 101.5]; massed, 30.0 % CI [16.2 43.9]; t(29) = 

5.49, CI [36.0 78.6]; Figure 5b). Moreover, we found that ratings significantly decayed 

toward neutral for both reward- and loss-associated massed-trained stimuli (massed 

reward, t(29) = -6.09, CI [-21.7 -10.8]; p < 0.001; loss, t(29) = 9.95, CI [15.3 23.3]; p < 

0.001). For spaced-trained stimuli, we found no decay for reward-associated stimuli but 

some decay for loss-associated stimuli (spaced reward, t(29) = -1.21, CI [-4.0 1.0]; p = 

0.23; TOST equivalence test, t(29)  = 1.74, p = 0.045; loss, t(29) = 3.00, CI [2.1 11.4]; p = 

0.0055). Interestingly, we found that the ratings for loss-associated stimuli decayed 

significantly more than those for reward-associated stimuli (t(29) = -2.18, CI [-10.20 -

0.33]; p = 0.037), an effect in line with the between-sessions drop in performance for 

loss-associated stimuli. We did not find a difference in ratings decay for the massed-

trained stimuli (t(29) = -1.05, CI [-9.01 2.89]; p = 0.302); however, this null finding could 

be due to floor effects, as ratings are near 50%. 
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Finally, as in Study 1, we predicted that the value association memory for 

massed-trained stimuli was not decreased by scaling but actually decayed, which would 

lead to a lower across-time correlation in ratings. To test this, we correlated ratings in 

the second in-lab session with ratings in the third in-lab session separately for massed- 

and spaced-trained stimuli. We replicated the finding that ratings were significantly more 

correlated across time in the spaced-trained condition (spaced r = 0.82, CI [0.74 0.90]; 

massed r = 0.50, CI [0.37 0.63]; t-test on z-transformed values, t(29) = 5.22, CI [0.45 

1.03]; p < 0.001). 

By collecting the long-term follow-up ratings in the same lab environment as the 

massed training sessions, our design would, if anything, be biased to find stronger 

maintenance for massed-trained stimuli because the training and testing environments 

overlap. However, we found similar differences in long-term conditioning across Study 1 

and Study 2, suggesting that testing environment was not a significant factor in our 

measure of conditioning maintenance. The replication and extension of the findings of 

Study 1 provide strong evidence that spaced training leads to more robust maintenance 

of conditioned value associations at a delay, while performance in short-term learning is 

partly explained by working memory.  
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Figure 5. Study 2 post-learning reward association strength and maintenance of value 

associations. a) Reward association ratings for the massed- and spaced-trained stimuli 

after the second in-lab session (left), and after the 3-week-later in-lab final reward 

association rating session (right). b) Percent of initial reward association difference 

(reward minus loss associated rating) after the second in-lab session maintained across 

the 3-week delay to the third in-lab session, separately for massed- and spaced-trained 

stimuli. c) Post-learning and 3-week follow-up ratings re-plotted within condition for 

reward-associated (solid line) and loss-associated stimuli (dotted line). d) Average of 

the correlation within-participant of massed-trained stimulus reward ratings and spaced-

trained stimulus reward-ratings (z-transformed). (** p < 0.01, *** p < 0.001) Error bars, 

s.e.m. (a, b, d), and within-participants s.e.m (c). 
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fMRI Results 
 In Study 1, after the completion of matched training for the massed-trained 

associations, we collected fMRI data during an additional learning phase, where 

massed- and spaced-trained stimuli were intermixed. 

Initial univariate analyses we did not reveal any value or reward-related 

differences in striatal or MTL responses due to spaced training (see Table 1-1). At 

stimulus onset, across conditions a contrast of reward vs. loss-associated stimuli 

revealed activation in the bilateral occipital cortex and right somatomotor cortex (Table 
1-1), with no differences due to spaced- vs. massed-trained stimuli. At feedback, we 

found expected effects of reward vs. non-reward feedback for reward-associated stimuli 

in the ventral striatum (x, y, z: -10, 9, -8; z = 4.48, p = 0.019 whole-brain FWE-

corrected) and VMPFC (-15, 51, -1; z = 4.93, p < 0.001 FWE; see Table 1-1). Across 

conditions, loss vs. neutral feedback activated the bilateral anterior insula and anterior 

cingulate (Table 1-1). Loss feedback led to greater activity for massed- vs. spaced-

trained stimuli in the bilateral DLPFC, parietal cortex, and ventral occipital cortex (Table 
1-1). A second model contrasting spaced- vs. massed-trained stimuli across value 

revealed no significant differences in subcortical regions of interest or in the whole 

brain. In a subsequent no-feedback scanning block, we examined the effect of cross-

stimulus repetition-suppression (XSS) for reward- vs. loss-associated stimuli. We found 

no differences due to condition, but several clusters that showed overall repetition-

enhancement by value, including the right dorsolateral PFC and anterior insula (Table 
1-1).  

 To gain greater insight into the neural response to massed- and spaced-trained 

stimuli, we leveraged multivariate analysis methods. Specifically, we tested whether 

distributed patterns of brain activity within regions of interest or in a whole-brain 

searchlight analysis were able to discriminate between reward value, spaced vs. 

massed training condition, or their interaction. Our primary question was whether 

patterns of activity differentially discriminated the value of spaced- vs. massed-trained 

stimuli. 

Our first analysis tested for patterns that discriminated between reward- vs. loss-

associated stimuli. In the striatal region of interest, classification was not significantly 

different than zero (49.5 % CI [47.5 51.6]; t(30) = -0.48, p = 0.63), and a similar null result 
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was found in the hippocampus and parahippocampus MTL ROI (49.1 % CI [47.1 51.2]; 

t(30) = -0.89, p = 0.38). Using a whole-brain searchlight analysis, thresholding at the 

standard cluster-forming threshold of p < 0.005 resulted in a large single cluster 

spanning much of the brain; for this reason, we used a more stringent cluster-forming 

threshold of p < 0.0005 in order to obtain more interpretable clusters. We identified 

several regions that showed significant value discrimination, including the left pre- and 

postcentral gyrus and a large bilateral cluster in the posterior and ventral occipital cortex 

(p < 0.05 whole-brain FWE-corrected; Figure 6; Table 1). 

 

 

 
Figure 6. Searchlight pattern classification of reward- vs. loss-associated stimuli across 

the massed and spaced conditions (images whole-brain p < 0.05 FWE corrected.) 

 

To directly compare value-discriminating regions across condition, we examined 

the interaction of value by spacing condition. This analysis involved the contrast of two 

separate classifiers, one trained to discriminate rewarded vs. loss-associated stimuli for 

massed-trained stimuli and the other for spaced-trained stimuli. In our ROI classification 

analysis, we found that patterns of activity in the MTL showed significantly stronger 

discrimination for spaced vs. massed values (difference, 8.2 % CI [3.8 12.5]; t(30) = 3.81, 

p < 0.001; Figure 7a). Importantly, the effect in the spaced condition alone was 

significant (55.5 % CI [53.1 57.9]; t(30) = 4.58, p < 0.001; massed, 47.3 % CI [44.0 50.7]; 

t(30) = -1.60, p = 0.12). In the striatum, we found a similar effect (difference, 7.2 % CI [3.1 
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11.2]; t(30) = 3.63, p = 0.001), but the difference is difficult to interpret given the below-

chance performance in the massed condition (53.5 % CI [50.2 56.7]; t(30) = 2.20, p = 

0.036; massed, 46.3 % CI [43.8 48.8]; t(30) = -3.01, p = 0.005). 

Next, we examined whether more local patterns of activity showed significantly 

different discrimination of spaced- vs. massed-trained values. Thresholding at the 

standard cluster-forming threshold of p < 0.005 resulted in a large single cluster 

spanning much of the brain; for this reason, we used a more stringent cluster-forming 

threshold of p < 0.0005 in order to obtain more interpretable clusters. We found multiple 

clusters exhibiting greater value discrimination in the spaced vs. massed condition, 

including the bilateral dorsolateral prefrontal cortex (DLPFC), the ventromedial 

prefrontal cortex (VMPFC), and orbitofrontal cortex (OFC) (Figure 7b, Table 1). The 

searchlight analysis also demonstrated that the stronger classification of value observed 

in the spaced vs. massed conditions in the MTL ROI analysis was also found in the 

local searchlight analysis in the right hippocampus and parahippocampus (Figure 7c; 

Table 1.). No regions showed greater discrimination of massed-trained values. 

 

 

 
Figure 7. Pattern classification of spaced-trained values vs. massed-trained values. a) 

MTL (hippocampus and parahippocampus) ROI shows significant classification. b) MTL 

cluster (left) and significant right lateral OFC cluster, left anterior insula, and bilateral 

DLPFC. c) whole-brain searchlight analysis identified a cluster in the right medial 

temporal lobe. (** p < 0.01, *** p < 0.001; images whole-brain p < 0.05 FWE corrected.)  
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Finally, we examined the effect of spaced training by investigating which brain 

regions could successfully discriminate between spaced- vs. massed-trained stimuli. 

We found that the striatum showed significant discrimination of spacing condition (52.1 

% CI [50.4 53.8]; t(30) = 2.57, p = 0.016; Figure 8a) while the effect in the MTL was not 

significant (51.1 % CI [49.5 52.6]; t(30) = 1.40, p = 0.17). In the whole-brain searchlight 

analysis, we found several regions that discriminated the effect of time of training, 

including the left cingulate / supplementary motor area (3 -9 61; z = 3.93, p < 0.001 

FWE; Table 1) and right pre- and post-central gyrus (58 -13 32; z = 5.05, p < 0.0001 

FWE; Figure 8b). 

 

 
 

 
 
Figure 8. Pattern classification of spaced- vs. massed-trained stimuli. a) Striatal ROI 

shows significant classification. b) searchlight analysis identified additional clusters 

including the left cingulate and right pre- and post-central gyrus. (* p < 0.05; images 

whole-brain p < 0.05 FWE corrected.)  
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Discussion   
When reward-based learning is distributed over time instead of massed in a 

single session, we found significant gains in the long-term maintenance of learned value 

associations. Controlling for the amount of training as well as post-training performance, 

across two experiments we found that stimuli trained across weeks exhibited 

significantly stronger maintenance of value associations 3 weeks later. Conversely, 

single-session massed training, as common employed in human experimental research, 

resulted in weaker maintenance of value associations. Decaying memory for massed-

trained stimuli may be related to reliance on short-term memory during massed 

learning; supporting this view, we found that initial learning performance was 

significantly correlated with individual differences in working memory capacity. 

Neurally, we found that distributed patterns of activity in the MTL and cortex 

discriminated between well-learned versus newly-learned value associations. Moreover, 

patterns of activity in the striatum discriminated well-learned versus newly-learned 

stimuli independent of value. Together, these results indicate that reward associations 

acquired from weeks of training, in contrast to a single condensed session of learning, 

elicit stronger neural differentiation of value and may be more effective at guiding 

choices toward reward-associated options in the future. 

Previous research has shown powerful effects of spacing in humans in memory 

and educational settings, following the initial work of Ebbinghaus (reported in 

Ebbinghaus, 1913; Cepeda et al., 2006). For reward-based learning, a beneficial effect 

of spacing has been well-established in other species (Teichner, 1952; Carew et al., 

1972; Terrace et al., 1975). In humans, however, spacing has only been investigated in 

aversive eyeblink conditioning, which relies on a specialized cerebellar circuit 

(Humphreys, 1940; Spence and Norris, 1950; Kim and Thompson, 1997).  

From animal studies, reward-based learning is known to depend on the striatum 

and its midbrain dopaminergic projections (Schultz et al., 1997; Rangel et al., 2008; 

Steinberg et al., 2013). It is possible that condensed single-session learning in humans 

is primarily supported by the same neural mechanisms that support long-term learning. 

However, both our results and other recent findings strongly suggest that learning 

performance in tasks with condensed repetitions of stimuli benefit from short-term 

cognitive mechanisms such as working memory. For example, Collins et al. have found 
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that learning is better captured by a reinforcement learning model augmented with a 

working memory component (Collins and Frank, 2012; Collins et al., 2014). Our results 

extend these findings by demonstrating that initial learning performance is positively 

related to individual differences in working memory capacity, as assessed using a 

separately collected measure. Additionally, our results suggest extensions to current 

models employing a single short-term working memory module (Collins and Frank, 

2012). As values decayed for loss-associated spaced-trained stimuli between sessions 

and massed-trained value associations decayed across weeks, our results indicate that 

more flexible models with multiple timescales of forgetting (and learning) may better 

account for the data. Neurally, such different learning rates could relate to functional 

and anatomical gradients in supporting circuits, for example, across the ventromedial to 

dorsolateral striatum (Tanaka et al., 2004). 

What neural mechanisms support the improvement in long-term maintenance of 

values with spaced training? Our finding of significant value discrimination for spaced-

trained but not massed-trained associations in the MTL, including the hippocampus, 

indicates a potentially novel role for the hippocampus in representing well-learned 

values. While the hippocampus is known to respond to reward and value (Lebreton et 

al., 2009; Wirth et al., 2009; Lee et al., 2012), hippocampal dysfunction does not 

eliminate the capacity of animals or humans to gradually learn the value of stimuli (e.g. 

Packard et al., 1989; Knowlton et al., 1996; Bayley et al., 2005). However, without the 

support of the hippocampus, feedback-based learning in humans is extraordinarily slow 

and inflexible (Bayley et al., 2005). 

While often viewed as opposing systems, recent evidence suggests that striatal 

and hippocampal systems may cooperate during reward-based learning (Lansink et al., 

2009; van der Meer et al., 2010; Foerde and Shohamy, 2011). Specifically, the MTL 

may support learning and decision making by providing information about previous 

episodes (Shadlen and Shohamy, 2016). Critically, recent experimental work supports 

the representation and use of individual episodes in reward-based decision making 

(Murty et al., 2016; Wimmer and Buechel, 2016; Bornstein et al., 2017). The MTL may 

play a larger role in supporting learning over longer timescales, allowing for learning 

across contexts as well as the consolidation of synaptic plasticity (Kramar et al., 2012; 

Aziz et al., 2014; Smolen et al., 2016), which could explain selective value 
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discrimination in the hippocampus for spaced- but not massed-trained associations. 

Computationally, spaced training may allow for the benefits of offline replay as 

employed in models such as DYNA, where model-free values are trained by post-event 

replay of experience (Sutton, 1990; Johnson and Redish, 2005; Gershman et al., 2014; 

Russek et al., 2017). Finally, the hippocampus may also play a role in learning the 

statistical structure of stimulus-feedback associations similar to its role in learning 

stimulus-stimulus associations (Schapiro et al., 2012). 

Additionally, we found that patterns of activity in the striatum discriminated 

spaced-trained versus massed-trained stimuli overall. Decades of animal research have 

shown that different regions of the striatum are important for different types of reward 

associations, with the dorsomedial striatum critical for flexible (and newly-acquired) 

goal-directed learning and the dorsolateral striatum critical for inflexible model-free and 

habit learning (Balleine and Dickinson, 1998; Yin and Knowlton, 2006; Kim and 

Hikosaka, 2013; Foerde, 2018). In contrast to previous fMRI studies that employed a 

multi-day design (Tricomi et al., 2009; Wunderlich et al., 2012), our experimental design 

allows for a direct comparison between equivalent amounts of spaced and massed 

training. We did not find any effect of spacing on univariate measures of value in the 

striatum, in contrast to previous studies (Tricomi et al., 2009; Wunderlich et al., 2012), 

although null results should be treated with caution. The response to well-learned value 

associations in the striatum is an important question for future studies in humans, as 

recent findings in non-human primates indicate that a novel population of dopamine 

neurons responds to well-learned value associations, even after stimulus-reward 

associations are extinguished (Kim et al., 2015). Such a neural mechanism may support 

a “habit” of attentional orientation to reward-associated that is resistant to extinction 

(Kim et al., 2015; Anderson, 2016). 

In our experiments, in contrast to those in animals, at the long-term follow-up we 

directly asked participants to remember the value associated with stimuli. We did not 

collect a measure of devaluation sensitivity, the classic test of habitual behavior - albeit 

one difficult to administer in humans (Dickinson, 1985; Graybiel, 2008; Tricomi et al., 

2009). Whether or not the learned stimulus-action associations remained sensitive to 

outcomes, our results indicate that the brain may retain the ability to remember and 
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recall the value associated with stimulus using other representations in memory, such 

as those supported by the MTL. 

Our results have implications for understanding reward-based learning in the 

healthy brain and for translating this research to patient populations (Huys et al., 2016). 

In theory, learning-related parameters estimated from computational models can be 

related to individual differences in behavior, personality variables, and neural activity. 

However, the interpretation of parameters derived from massed training paradigms is 

difficult for various reasons, including, as we demonstrate, the contribution of working 

memory to performance (see also Collins and Frank, 2012). Additionally, the decaying 

nature of value associations learned in massed-training tasks suggests that parameters 

derived from massed paradigms may not translate to how participants acquire lasting 

value associations and habits over time outside the lab. Our experiments suggest that 

the long-term maintenance of value associations may be a promising individual 

difference measure to explore in future studies. While future studies will be needed to 

explore the boundaries of these effects, we found that 5 sessions with a total of 30 

repetitions across two weeks is capable of establishing long-lasting associations while 

preserving significant individual variability. Finally, beyond applications to more 

ecologically valid experimental designs for psychiatry (Moutoussis et al., 2016), by 

demonstrating a paradigm that can establish long-term reward associations that are 

resistant to decay, our experimental design provides a starting point for testing how 

these associations can be unlearned, with implications for research on behavioral 

change. 

 In summary, across two studies we found that spacing of reward-based learning 

across weeks results in significantly greater maintenance of conditioned value 

associations than training across minutes. Our experiments represent the first 

demonstration of spacing effects on reward-based learning in humans and identify 

neural signatures specific to well-learned vs. transient value associations in the human 

brain. Overall, our results indicate that spaced reward-based learning and long-term 

maintenance of conditioning may provide cleaner measures of feedback-based learning 

in the striatal dopamine system. This possibility has implications for the interpretation 

and direction of reward-based learning research, as feedback learning paradigms are 

becoming widely used in studies of mood and psychiatric disorders as well as addiction 
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(Herbener, 2009; Maia and Frank, 2011; Montague et al., 2012; Whitton et al., 2015). 

Our study of healthy adults points to potential promising avenues to explore in order to 

more fully understand the cognitive and neural learning mechanisms of human 

feedback-based learning. 
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Table 1. Summary of multivariate whole-brain searchlight analysis results. Clusters of 

activity exceeding whole-brain p < 0.05 FWE-corrected. Within each cluster, the first 10 

regions are listed that include >= 10 voxels of a cluster. For the spaced value and 

spaced vs. massed value results, the cluster-forming threshold was increased to p < 

0.005 to produce more interpretable clusters. 

 

Contrast Regions 
Cluster 

size 
x y z 

Peak 

z-stat 

Reward vs. Loss 

L, R Middle Occipital Gyrus      

L, R Inferior Occipital Gyrus 4017 -28 -79 -14 5.77 

L, R Fusiform Gyrus      

L Postcentral Gyrus           

L Precentral Gyrus 1009 -48 -20 47 4.24 

L Parietal Cortex      

Massed Reward vs. Loss -           

Spaced Reward vs. Loss 

R Middle Frontal Gyrus           

R Inferior Frontal Gyrus      

R Superior Frontal Gyrus      

R Superior Temporal Gyrus 4248 49 26 34 6.64 

R Precentral Gyrus      

R Middle Temporal Gyrus      

R Medial Frontal Gyrus      

L Middle Occipital Gyrus 

4006 -43 -86 6 6.37 

L Lingual Gyrus 

L Inferior Occipital Gyrus 

L Cuneus 

L Fusiform Gyrus 

L Cerebellum Posterior Lobe 

L Precuneus 

L Superior Occipital Gyrus 

L Middle Temporal Gyrus 

L Inferior Temporal Gyrus 

L Inferior Parietal Lobule 1003 -54 -40 41 5.11 
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L Postcentral Gyrus 

L Supramarginal Gyrus 

L Superior Temporal Gyrus 

L Precentral Gyrus 

L Angular Gyrus 

L Precentral Gyrus 

582 -19 -29 74 4.74 
L Postcentral Gyrus 

L Superior Parietal Lobule 

L Inferior Parietal Lobule 

R Postcentral Gyrus           

R Inferior Parietal Lobule 400 56 -26 52 4.84 

R Precentral Gyrus      

R Superior Frontal Gyrus 
311 23 57 -8 5.04 

R Middle Frontal Gyrus 

Bilat. Medial Frontal Gyrus           

Bilat. Paracentral Lobule 193 -10 -22 52 4.51 

Bilat. Cingulate Gyrus      

L Superior Frontal Gyrus           

L Middle Frontal Gyrus 189 -17 35 50 4.26 

L Medial Frontal Gyrus      

R Inferior Temporal Gyrus 
145 62 -29 -19 4.34 

R Middle Temporal Gyrus 

L Thalamus 
130 -6 2 3 4.34 

L Caudate 

Bilat. Medial Frontal Gyrus 
129 -8 55 8 4.2 

Bilat. Anterior Cingulate 

R Angular Gyrus           

R Middle Temporal Gyrus 121 32 -59 36 4.01 

R Inferior Parietal Lobule      

Bilat. Medial Frontal Gyrus 

(VMPFC) 107 -1 42 -25 4.05 

Bilat. Orbital Gyrus 

L Middle Frontal Gyrus 92 -34 44 -3 4.2 

R Middle Frontal Gyrus 90 38 37 -12 4.31 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/158964doi: bioRxiv preprint 

https://doi.org/10.1101/158964
http://creativecommons.org/licenses/by-nc-nd/4.0/


R Inferior Frontal Gyrus 

R Superior Temporal Gyrus 
90 65 -35 1 4.02 

R Middle Temporal Gyrus 

Spaced Reward vs. Loss >   

Massed Reward vs. Loss 

Bilat. Inferior Frontal Gyrus 

4057 -34 44 -5 5.47 

L Middle Temporal Gyrus 

L Superior Temporal Gyrus 

L Middle Frontal Gyrus 

Bilat. Medial Frontal Gyrus 

Bilat. Anterior Cingulate 

L Superior Frontal Gyrus 

L Inferior Temporal Gyrus 

Bilat. Orbital Gyrus 

Bilat. Anterior Insula 

R Middle Frontal Gyrus 

3460 18 -4 61 5.09 

R Inferior Frontal Gyrus 

R Superior Temporal Gyrus 

R Middle Temporal Gyrus 

Midbrain 

R Superior Frontal Gyrus 

R Insula 

R Parahippocampal Gyrus 

R Hippocampus 

R Medial Frontal Gyrus 

L Inferior Parietal Lobule 

1306 -54 -37 41 5.71 

L Precuneus 

L Occipital Lobe 

L Cuneus 

L Superior Occipital Gyrus 

L Superior Parietal Lobule 

R Superior Frontal Gyrus           

R Middle Frontal Gyrus 871 18 46 39 4.54 

R Medial Frontal Gyrus      

Bilat. Medial Frontal Gyrus           

L Parietal Lobe 633 -21 -33 54 4.87 
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L Postcentral Gyrus      

L Superior Frontal Gyrus           

L Medial Frontal Gyrus 616 -19 37 52 5 

L Middle Frontal Gyrus      

R Inferior Parietal Lobule           

R Middle Temporal Gyrus      

R Supramarginal Gyrus 532 51 -55 23 4.52 

R Superior Temporal Gyrus      

R Angular Gyrus      

L Middle Frontal Gyrus 
169 -32 15 63 4.13 

L Superior Frontal Gyrus 

R Middle Occipital Gyrus 131 36 -86 3 3.99 

L Medial Frontal Gyrus           

L Superior Frontal Gyrus 119 -17 9 54 4.23 

L Middle Frontal Gyrus      

L Middle Frontal Gyrus 
108 -28 55 10 3.97 

L Superior Frontal Gyrus 

L Cerebellum 
106 -10 -40 -30 4.43 

L Brainstem 

R Postcentral Gyrus 
102 51 -13 19 4.23 

R Precentral Gyrus 

Spaced vs. Massed 

R Precentral Gyrus 

1031 58 -13 32 5.05 
R Postcentral Gyrus 

R Inferior Parietal Lobule 

R Supramarginal Gyrus 

L Medial Frontal Gyrus           

L Cingulate Gyrus 557 3 -9 61 3.93 

L Superior Frontal Gyrus      

L Superior Temporal Gyrus  
296 -45 -35 10 4 

L Parahippocampal Gyrus 

 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/158964doi: bioRxiv preprint 

https://doi.org/10.1101/158964
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1-1. Summary of univariate analysis results. Clusters of activity exceeding whole-

brain p < 0.05 FWE-corrected. Within each cluster, the first 10 regions are listed that 

include >= 10 voxels of a cluster. 

 

Contrast Regions 
Cluster 

size 
x y z 

Peak 

z stat 

Reward- vs. Loss-associated 

stimuli 

Bilat. Cuneus      

R Middle Occipital Gyrus      

R Inferior Occipital Gyrus      

Bilat. Precuneus 2497 1 -95 28 4.83 

R Lingual Gyrus      

R Fusiform Gyrus      

R Cerebellum Posterior 

Lobe      

L Inferior Occipital Gyrus           

L Fusiform Gyrus      

L Middle Occipital Gyrus 800 -41 -90 -19 4.15 

L Lingual Gyrus      

L Cerebellum Posterior Lobe      

L Middle Occipital Gyrus 528 -63 -73 12 4.28 

R Postcentral Gyrus 
242 40 -18 34 4.74 

R Inferior Parietal Lobule 

Reward vs. Non-reward 

feedback 

Bilat. Medial Frontal Gyrus           

Bilat. Anterior Cingulate      

Bilat. Superior Frontal Gyrus 1636 -15 51 -1 4.93 

Bilat. Middle Frontal Gyrus      

Bilat. Inferior Frontal Gyrus      

R Middle Occipital Gyrus           

R Cuneus      

R Middle Temporal Gyrus 756 34 -57 14 4.67 

R Superior Temporal Gyrus      

R Insula      

Bilat. Caudate / Nucleus 

Accumbens 
343 -10 9 -8 4.48 
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L Anterior Cingulate 

Subgenual Cingulate 

Lentiform Nucleus 

Putamen 

Inferior Frontal Gyrus 

L Middle Occipital Gyrus 
260 -41 -48 -3 4.14 

L Middle Temporal Gyrus 

R Cingulate Gyrus           

R Caudate Body 254 29 -20 23 3.94 

R Thalamus      

Non-reward vs. Reward 

feedback 

R Middle Frontal Gyrus           

R Inferior Frontal Gyrus 1224 47 13 30 4.48 

R Precentral Gyrus      

L Middle Frontal Gyrus           

L Inferior Frontal Gyrus 721 -50 15 30 4.44 

L Precentral Gyrus      

Bilat. Superior Frontal Gyrus 
592 -8 24 52 4.59 

Bilat. Medial Frontal Gyrus 

R Inferior Parietal Lobule           

R Superior Parietal Lobule 390 32 -66 43 3.65 

R Precuneus      

L Superior Temporal Gyrus 
266 -63 -51 19 4.44 

L Supramarginal Gyrus 

L Middle Occipital Gyrus           

L Fusiform Gyrus 250 -39 -64 -12 3.65 

L Middle Temporal Gyrus      

Non-loss vs. Loss feedback 

L Middle Temporal Gyrus 

503 -50 -70 23 4.88 
L Angular Gyrus 

L Superior Temporal Gyrus 

L Precuneus 

Loss vs. Non-loss feedback 

R Middle Frontal Gyrus 

5391 32 22 -12 5.69 
R Inferior Frontal Gyrus 

R Superior Frontal Gyrus 

R Medial Frontal Gyrus 
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R Cingulate Gyrus 

R Insula 

R Anterior Cingulate 

R Superior Temporal Gyrus 

R Precentral Gyrus 

R Subcallosal Gyrus 

R Fusiform Gyrus           

R Inferior Occipital Gyrus      

R Middle Occipital Gyrus      

R Cerebellum Posterior 

Lobe 1560 34 -64 -14 5.56 

R Lingual Gyrus      

R Cerebellum Anterior Lobe      

R Parahippocampa Gyrus      

L Cerebellum Posterior Lobe 

1010 -34 -70 -12 4.4 

L Inferior Occipital Gyrus 

L Fusiform Gyrus 

L Middle Occipital Gyrus 

L Cerebellum Anterior Lobe 

L Lingual Gyrus 

L Inferior Frontal Gyrus           

L Insula 674 -41 13 -3 4.64 

L Superior Temporal Gyrus      

Bilat. Midbrain 

400 7 -29 -16 4.56 

Bilat. Brainstem 

Bilat. Thalamus 

Bilat. Cerebellum Anterior 

Lobe 

R Inferior Parietal Lobule           

R Superior Parietal Lobule 363 45 -51 65 3.61 

R Precuneus      

Bilat. Cingulate Gyrus 
303 -4 -20 25 4.63 

Bilat. Posterior Cingulate 

R Lingual Gyrus 1206 34 -66 -10 4.34 
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Massed>Spaced:             

Loss vs. Non-loss feedback 

R Middle Occipital Gyrus 

R Cuneus 

R Inferior Occipital Gyrus 

R Fusiform Gyrus 

R Parahippocampa Gyrus 

L Inferior Frontal Gyrus           

L Middle Frontal Gyrus 870 -50 9 39 3.93 

L Precentral Gyrus      

R Middle Frontal Gyrus           

R Inferior Frontal Gyrus 735 38 37 17 3.79 

R Precentral Gyrus      

L Middle Occipital Gyrus 

668 -32 -90 -10 4.05 
L Inferior Occipital Gyrus 

L Lingual Gyrus 

L Cuneus 

R Precuneus           

R Superior Parietal Lobule 289 25 -64 45 3.77 

R Inferior Parietal Lobule      

XSS: Reward value cross-

stimulus repetition-

suppression 

R Inferior Frontal Gyrus 
695 49 4 41 4.38 

R Middle Frontal Gyrus 

R Inferior Frontal Gyrus 
500 49 26 1 3.97 

R Anterior Insula 

R Superior Temporal Gyrus 
442 54 -42 10 3.93 

R Middle Temporal Gyrus 

Midbrain 397 1 11 50 4.01 
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