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Summary

The first step in the analysis of single-cell RNA sequencing (scRNA-Seq) is dimensionality

reduction, which reduces noise and simplifies data visualization. However, techniques such as

principal components analysis (PCA) fail to preserve non-negativity and sparsity structures

present in the original matrices, and the coordinates of projected cells are not easily interpretable.

Commonly used thresholding methods avoid those pitfalls, but ignore collinearity and covariance

in the original matrix. We show that a deterministic column subset selection (DCSS) method

possesses many of the favorable properties of PCA and common thresholding methods, while

avoiding pitfalls from both. We derive new spectral bounds for DCSS. We apply DCSS to two

measures of gene expression from two scRNA-Seq experiments with different clustering workflows,

and compare to three thresholding methods. In each case study, the clusters based on the small

subset of the complete gene expression profile selected by DCSS are similar to clusters produced

from the full set. The resulting clusters are informative for cell type.
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1. Introduction

Advances in RNA sequencing technology have recently made it possible to measure the genome-

wide expression profile of single cells (Tang et al., 2009). This promising technology is not without

computational and analytical challenges, some of which include quality control, quantification,

normalization, technical variability, and other confounding factors such as batch effects (Stegle,

Teichmann and Marioni, 2015; Wagner, Regev and Yosef, 2016). More general challenges stem

from the high dimensionality of the expression profiles: for example, selecting informative features

from within the expression profiles.

One use for single-cell RNA sequencing (scRNA-Seq) data is the characterization of hetero-

geneity of expression within a population of cells and the discovery of new cell types through

clustering of expression profiles (Zeisel et al., 2015). This note explores the following question:

is it possible reduce the number of features in the expression profile without a large effect on

the error rate for clustering and classification? This question is inspired by the quality control

and technical variability challenges of scRNA-Seq. Common techniques for quality control and

technical variability reduction include simple thresholding schemes and principal components

analysis (PCA). Both of these techniques reduce the number of features in the data matrix.

One commonly used technique to reduce the number of features in the data matrix involves

selecting columns from the original data matrix A, to form a column submatrix C, by thresholding

the individual columns based on a score. Frequently used scores are on measures of abundance (Lun,

McCarthy and Marioni, 2016), empirical variance (Kwon, Fan and Kharchenko, 2017), abundance

and empirical variance (McCarthy et al.), and index of dispersion (empirical variance/mean) (Satija

et al., 2015; Trapnell et al., 2014). Read count thresholds are intended to reduce low-abundance

genes (Bourgon, Gentleman and Huber, 2010) or genes with high dropout rates (Brennecke et al.,
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2013), as these genes are not considered informative. Variance thresholding methods assume that

the most variable genes are responsible for the important differences between cells (McCarthy et

al.). Index of dispersion thresholding has a natural interpretation in terms of formal hypothesis

testing, when the null model for gene abundance is the Poisson distribution (Cox and Lewis,

1966). We call these methods simple thresholding methods, because the score for each column i

depends only on column i. Furthermore, within each column i, covariance between the rows (cells)

of that column is not taken into account. By selecting columns and not linear combinations of

columns from A, the elements of C will maintain the properties of non-negativity, sparsity, and

interpretability, an advantage over PCA, but there are no guarantees that C will have similar

properties to the original data matrix A.

Replacing the original data matrix of scRNA-Seq expression profiles with a rank-k PCA

truncation of the profiles is another commonly used technique to reduce the number of features

and the technical variability (Wagner, Regev and Yosef, 2016). To understand the PCA truncation,

we must establish some matrix notation that we will use throughout this note. We orient the

original data matrix A so that the n rows are cells and d columns are features, where n < d. For

PCA, singular value decomposition (SVD) is performed on the column-mean centered matrix

Ã = A − 1µT , where 1 is an n × 1 column vector and µ = 1
nAT1 is a d × 1 column vector

of column-means. The sum of the spectrum of eigenvalues of ÃÃT is proportional to the total

empirical variance of A. The rank-k PCA truncation of A, which we call T̃, is the rank-k SVD

truncation of Ã. SVD is reviewed in Sec. 6.1, and the formula for T̃ is provided there. As a

consequence of the SVD, the spectrum of the square of the rank-k PCA truncation T̃ is identical

to the spectrum of the square of the mean-centered data matrix Ã up to rank k; PCA gives

a rank-k approximation to the mean-centered data Ã that preserves the maximum empirical

variance of A. PCA is performed to reduce technical variability under the assumption that the

technical variation is primarily captured by the non-leading eigenvalues and eigenvectors of ÃÃT .
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The drawback of replacing the original data matrix with the rank-k PCA truncation of the data

that it fails to preserve non-negativity and sparsity structures present in the original data matrix,

and the coordinates of projected cells are not interpretable in terms of single features.

The goal of column subset selection (CSS) is to extract from a matrix A a column submatrix C

that conserves favorable properties, such as conditions on the spectrum of the column submatrix

C (Tropp, 2009). Like the simple thresholding methods, CSS maintains the properties of non-

negativity, sparsity, and interpretability, and like PCA, CSS conserves favorable matrix properties.

Similar to the simple thresholding methods discussed above, each column has a score, however in

CSS algorithms, the score for each column i also depends on all of the other columns. We will

consider rank-k subspace leverage scores in this note. Leverage scores have been considered for

regression diagnostics and outlier detection in statistics (Velleman and Welsch, 1981; Chatterjee

and Hadi, 1986) and were brought to prominence more recently in the context of randomized

matrix algorithms (Drineas, Mahoney and Muthukrishnan, 2006). The rank-k subspace leverage

score τi(Ak) for the ith column of A is,

τi(Ak) = aTi (AkA
T
k )+ai, (1.1)

where the ith column of A is an (n × 1)-vector denoted by ai, M+ denotes Moore-Penrose

pseudoinverse of M, and Ak is the rank-k SVD approximation to A, defined in Sec. 6.1. The

leverage score τi(Ak) can also be written as the solution to the following optimization problem

(Cohen et al., 2015),

τi(Ak) = min
Akx=ai

||x||22 x ∈ Rd, (1.2)

where ||x||22 refers to the Euclidean (L2) norm of the vector x. The vector x measures how easily

the column ai can be written as a linear combination of the columns of Ak. Eqn. 1.2 shows that

leverage scores capture the importance of each column ai in the column space of Ak and are

sensitive to collinearity between columns. We illustrate this point with a toy example in Sec. 2.1.
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CSS algorithms select columns either with a random sampling procedure (such as in Drineas,

Mahoney and Muthukrishnan (2006)) or a deterministic procedure. We showcase the deterministic

CSS (DCSS) algorithm introduced by Papailiopoulos, Kyrillidis and Boutsidis (2014). Papailiopou-

los, Kyrillidis and Boutsidis (2014) show that for datasets with power-law decay in τi(Ak), DCSS

will select a least-squares approximation for A, CC†A, requiring fewer columns with the same

accuracy than random sampling methods. One of the contributions of this note is a new bound

for the spectrum of the square of C selected by DCSS projected onto the rank-k subspace that

best approximates A (Eqn. 2.9). This bound means that, once both C and A are projected onto

the rank-k subspace that best approximates A, CCT is “close" to AAT . Another consequence

is that the Frobenius norm of C is bounded (Eqn. 2.10). The Frobenius norm is a measure of

the “size" of a matrix, so this bound provides confidence that the DCSS column matrix C is also

similar in “size" to A and Ak. In the event that DCSS is performed on a mean-centered matrix Ã,

the Frobenius norm provides a measure of empirical variance. We also show a similar bound holds

for random sampling (Eqn. 2.11), and under the assumption of power-law decay, DCSS requires

fewer columns for the same error than random sampling.

In addition to the spectral bound, we present two case studies on two different scRNA-Seq

experimental and analysis workflows to illustrate empirically the effect of thresholding features with

DCSS compared to read count, variance, and index of dispersion on clustering and classification.

To the best of our knowledge, this is the first time DCSS has been applied to scRNA-Seq data.

The first case study is the genome-wide expression profiles of 3, 005 cells from the mouse cortex

and hippocampus (Zeisel et al., 2015) and the clustering workflow of Ntranos et al. (2016). The

second case is the genome-wide expression profiles of 4, 423 cells from mouse bone marrow (Paul

et al., 2015) and the trajectory workflow of Setty et al. (2016). In both case studies, DCSS reduces

the low abundance genes and maintains many of the most variable and over-dispersed genes. This

shows that DCSS shares the best features of the simple thresholding methods and, like PCA, comes
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with additional bounds on the spectrum. This supports our conclusion that DCSS can be used

instead of the simple thresholding methods for quality control and to reduce technical variability,

in addition to selecting informative features. In both case studies, only a small fraction of the

features are necessary to obtain clusters reflecting cell types, consistent with results in (Kwon,

Fan and Kharchenko, 2017). We show that the error rate between the clustering assignments

computed with the complete expression profile and the reduced expression profile is small.

2. Methods

The aim of this note is to explore the effect of thresholding features, measurements of gene

expression, with DCSS. We compare DCSS to simple thresholding methods and also to the

complete data. These thresholding methods are the first step in the pre-processing workflow. In

this section, we include the DCSS algorithm for completeness, and we describe the new bounds

for DCSS.

2.1 The DCSS algorithm (Papailiopoulos, Kyrillidis and Boutsidis, 2014)

Algorithm 1. The DCSS algorithm selects for the submatrix C all columns i with a rank-k

subspace leverage score τi(Ak) above a threshold θ, determined by the error tolerance ε and the

rank, k. The algorithm is as follows.

1. Choose the rank, k, and the error tolerance, ε.

2. For every column i, calculate the rank-k subspace leverage scores τi(Ak) (Eqn. 1.1).

3. Sort the columns by τi(Ak), from largest to smallest. The sorted column indices are πi.

4. Define an empty set Θ = {}. Starting with the largest sorted column index π0, add the

corresponding column index i to the set Θ, in decreasing order, until,

∑
i∈Θ

τi(Ak) > k − ε, (2.3)
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and then stop. Note that k =
∑d
i=1 τi(Ak). It will be useful to define ε̃ =

∑
i 6∈Θ τi(Ak). Eqn.

2.3 can equivalently be written as ε > ε̃.

5. . If the set size |Θ| < k, continue adding columns in decreasing order until |Θ| = k.

6. The leverage score τi(Ak) of the last column i included in Θ defines the leverage score

threshold θ.

7. Introduce a rectangular selection matrix S of size d× |Θ|. If the column indexed by (i, πi) is

in Θ, then Si,πi
= 1. Si,πi

= 0 otherwise. The DCSS submatrix is C = AS.

Theorem 3 of Papailiopoulos, Kyrillidis and Boutsidis (2014) states that when the rank-k

subspace leverage scores exhibit a power-law decay in the sorted column index πi,

τπi
(Ak) = π−ai τπ0

(Ak) a > 1, (2.4)

the number of sample columns selected by DCSS is,

|Θ| = max

((
2k
ε

) 1
a − 1,

(
2k

(a−1)ε

) 1
a−1 − 1, k

)
. (2.5)

Papailiopoulos, Kyrillidis and Boutsidis (2014) demonstrate the power-law decay behavior of many

real-world datasets; we show that this behavior is a reasonable assumption for the scRNA-Seq

applications in Sec. 3.

For a statistical interpretation of DCSS, consider the data ai, i = 1, . . . , d to be identi-

cally and independently distributed (i.i.d.) according to the degenerate multivariate distribution

N (0,AkA
T
k ). See Rao (1973) pg. 527-528 for a discussion of the degenerate multivariate distribu-

tion. Then the total likelihood of the data matrix A is,

L(A) =
1

(2π)
1
2kd
∏k
j=1 |σj |d

exp

(
− 1

2

d∑
i=1

aTi
(
AkA

T
k

)+
ai

)

=
1

(2π)
1
2kd
∏k
i=j |σj |d

exp

(
− 1

2

d∑
i=1

τi(Ak)

)
, (2.6)
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where |σj | are the k largest singular values of Ak. In contrast, the total likelihood of the DCSS

matrix C is,

L(C) =
1

(2π)
1
2k|Θ|

∏k
j=1 |σj ||Θ|

exp

(
− 1

2

∑
i∈Θ

τi(Ak)

)

=
1

(2π)
1
2k|Θ|

∏k
j=1 |σj ||Θ|

exp

− 1
2

∑
i∈Θ

τi(Ak)− 1
2

∑
i 6∈Θ

τi(Ak) + 1
2 ε̃


= L(A) exp

(
1
2 ε̃
)
(2π)

1
2k(d−|Θ|)

k∏
j=1

|σj |d−|Θ|. (2.7)

This shows that the DCSS matrix C preserves the total likelihood of the data up to a factor of

exp
(

1
2 ε̃
)
< exp

(
1
2ε
)
and a normalization constant, under the assumption that the data is i.i.d.

according to N (0,AkA
T
k ). Any other selection set Θ′ of the same number of columns (|Θ′| = |Θ|)

will have equal or greater error (ε 6 ε′). This interpretation illustrates that DCSS accounts

for covariance AkA
T
k between rows (cells). In contrast, the Poisson null model for the index of

dispersion assumes independence between rows (cells) for each column (gene).

The DCSS method has two parameters, k, ε which jointly determine the number of columns

|Θ| in the DCSS column submatrix C. The parameter k determines the rank of interest of the

SVD approximation to A. The tuning parameter ε is a measure of the error tolerance in the

“size" of C compared to Ak. The selection of these parameters is a model selection problem, and

in concert with a loss function, one could select these parameters using one’s preferred model

selection method (e.g. cross-validation). The aim of this note, to compare clustering performed

with the complete data matrix and a column submatrix, does not have a well-defined loss function,

and so we use the heuristic “elbow" method for selecting k (Jolliffe, 2002), and we choose ε to be

0.1 or 0.05 in our applications.

As a toy example to illustrate how DCSS differs from the simple thresholding methods, consider

the following toy data matrix,

A =

(
40 20 10
20 10 15

)
. (2.8)
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If the goal is to select a column submatrix with two columns, it is easy to check that simple

thresholding by mean, variance, and index of dispersion all select the first and second columns.

However, the resulting column submatrix is only rank 1, because the first and second columns are

linearly dependent. In contrast, DCSS with (k = 2, ε > 0.2) will select the first and third columns,

and the resulting DCSS column submatrix will be rank 2. Unlike the first three methods, DCSS

takes into account the collinearity between columns in the selection procedure. If the DCSS error

tolerance for this toy example is less than 0.2, DCSS will select all three columns.

We also mention two asides: first, in applications where the number of cells is far greater than

the number of gene features (n > d), the method can instead be applied to AT instead of A to

filter cells instead gene features; second, the method can be modified to select columns for any

rank-k subspace defined by k singular vectors of A, and not just the leading-k subspace (e.g. drop

component 1 but include component 2). This could be useful when some of the leading singular

vectors are highly correlated with batch or other confounding effects.

2.2 New bounds for DCSS

We derive a new spectral approximation bound (Bound 2.9) for the square of the submatrix C

selected with DCSS and projected onto the rank-k subspace that best approximates A.

Theorem 2.1 Let A ∈ Rn×d be a matrix of at least rank k and τi(Ak) be defined as in Eqn. 1.1.

Construct C following the DCSS algorithm described in Sec. 2.1. Then C satisfies,

(1− ε)AkA
T
k �UkU

T
kCCTUkU

T
k � AkA

T
k . (2.9)

The symbol � denotes the Loewner partial ordering which is reviewed in Sec 6.1. Conceptually, the

Loewner ordering is the generalization of the ordering of real numbers (e.g. 1 < 1.5) to Hermitian

matrices. This bound means that after projection onto the rank-k subspace that best approximates

A, CCT is “close" to AAT on that subspace. Statements of Loewner ordering are quite powerful;
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important consequences include inequalities for the eigenvalues and Euclidean distances. Some of

the consequences of the Loewner ordering are reviewed in Sec 6.1. Bound 2.9 and the fact that

CCT � AAT implies a bound on the Frobenius norm of C, a measure of the “size" of a matrix,

(1− ε)||Ak||2F 6 ||C||2F 6 ||A||2F . (2.10)

In the event that A is mean-centered, this means that the total empirical variance of C is bounded

from below by (1− ε) the variance in Ak and bounded from above by the total variance of A.

The proof of Bound 2.9 and Bound 2.10 is included in Sec. 6.2.

One simple consequence of Bound 2.9 is the following bound,

(1− ε)AkA
T
k �UkU

T
kCCTUkU

T
k � (1 + ε)AkA

T
k . (2.11)

Bound 2.11 also holds for C selected by random sampling methods with t columns (see Sec.

6.3 for the theorem and proof). Thus, DCSS selects fewer columns with the same accuracy ε in

Bound 2.11 for power-law decay in the rank-k subspace leverage scores when,

|Θ| = max

((
2k
ε

) 1
a − 1,

(
2k

(a−1)ε

) 1
a−1 − 1, k

)
< 2

ε2 (k +mγ)
(
1 + 1

3ε
)

ln
(

16k
δ

)
6 t. (2.12)

In this expression, m is the number of columns with zero rank-k subspace leverage score, γ is the

minimum non-zero leverage score, and δ is the probability that Bound 2.11 fails to hold under

random sampling.

3. Results

We present two case studies where we compare DCSS to the simple thresholding methods of

variance, count, and index of dispersion. We analyze the overlap in the selected columns. We also

illustrate the effect of DCSS compared to the complete data for single-cell clustering.
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3.1 Zeisel et al. (2015)

As a concrete illustration of the DCSS method, we focus on the genome-wide expression profiles

of 3005 cells from the mouse somatosensory cortex and hippocampal CA1 region (Zeisel et al.,

2015) and the clustering workflow of Ntranos et al. (2016). The main contribution of Ntranos et

al. (2016) is to perform clustering directly on the partition of reads into equivalence classes (ECs)

rather than on a full quantification of reads into gene expression. ECs are a partition of reads

into distinct classes, such that every read in a class maps to exactly the same set of transcripts

(Nicolae et al., 2011). This method is computationally scalable, comparable across scRNA-Seq

experiments, and can be more accurate than clustering performed on a full quantification of reads

into gene expression profiles (Ntranos et al., 2016).

The Ntranos et al. (2016) data matrix A is 3, 005 cells × 246, 981 EC counts. By the elbow

method, we choose k = 5 for the DCSS workflow (Fig. 1a). We select an error tolerance of ε = 0.1.

The rank-5 subspace leverage scores and the power-law fit for the top-scored 10, 000 ECs are

shown in Fig. 1b. The column submatrix C has only 862 ECs, or approximately 0.3% of the total

ECs. These ECs contain 42.3% of the reads. These 862 ECs map to 2, 748 transcripts and to

1, 642 genes. Table 1 contains the gene ontology term enrichment analysis (The Gene Ontology

Consortium, 2015) on the genes corresponding to the DCSS (k = 5, ε = 0.1) ECs. Enrichments

relevant for the brain include neuron part, neuron projection, and olfactory receptor activity. The

enrichment analysis has an important caveat: because we map ECs to transcripts without positing

an error model, there could be a high rate of false positives in the resulting transcripts and genes.

We compare DCSS to the three simple thresholding methods with the same number of columns

in Fig. 1c and Fig. 1d. These figures show the similarities and differences in columns selected

by the four thresholding methods. The simple thresholding methods have sharp boundaries in

Fig. 1c, while the DCSS boundary is not linearly separable. The DCSS boundary approximately

interpolates between the count and variance boundaries, and is most distinct from the index of
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12 S. R. McCurdy and others

dispersion boundary. Fig. 1d summarizes the overlap between selected columns in a Venn diagram.

These figures illustrate that the DCSS method selects columns that are highly variable, have large

counts, and frequently are over-dispersed; as such, the DCSS method is prescribed for quality

control and to control technical variability.

The Ntranos et al. (2016) workflow for the Zeisel et al. (2015) dataset is to perform spectral

clustering on pairwise Jensen-Shannon (JS) distances derived from the partition of reads into ECs.

The spectral clustering clustering algorithm used is standard; the algorithm is to perform k-means

clustering on the k-dimensional SVD projection of the normalized Laplacian of the symmetric

similarity matrix S. The similarity matrix used for spectral clustering is S(p,q) = 1−DJS(p,q),

where DJS(p,q) is the JS distance between two probability mass functions p,q ∈ Rd. JS distances

are well-suited to high-dimensional data, and provide more accurate clustering than L2 distances

on scRNA-Seq data (Ntranos et al., 2016). For the Zeisel et al. (2015) data, the probability

mass function for each cell is the vector of EC counts, normalized to sum to one. For the four

thresholded workflows (DCSS, count, variance, and index of dispersion), the probability mass

function for each cell is the subset vector of EC counts, normalized to one.

We evaluate the average spectral clustering classification error between the complete data

and thresholded workflows, regarding the complete data workflow as the ground-truth. Since

spectral clustering requires a random initialization for k-means, the average is over T = 10 random

initializations. Fig. 2 shows the average spectral clustering classification error rate for both two

and nine spectral clusters for the workflow with the matrix A and the workflow with the column

submatrix C for various k, ε. The different cells were curated into 47 subtypes by Zeisel et al.

(2015), but we evaluate our method on courser-grained classifications because we have higher

confidence in the spectral clustering ground-truth. Two spectral clusters identify neurons and

non-neurons, while nine spectral clusters only loosely correspond to the nine major cell types. We

also include the error for the three simple thresholding methods with the same number of columns
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as the DCSS method. We find that 0.3% of the total ECs give an error rate of 1.7% compared

to the complete data for two clusters for k = 5, ε = 0.1 DCSS; only a small fraction of the gene

expression profiles currently produced in scRNA-Seq experiments may be necessary to obtain the

clusters reflecting cell types.

3.2 Paul et al. (2015)

As a second application of the DCSS method, we focus on the genome-wide mRNA expression

profiles of 4, 423 cells from mouse bone marrow myeloid progenitors (Paul et al., 2015), and

the wishbone trajectory workflow of Setty et al. (2016). The contribution of Setty et al. (2016)

to scRNA-Seq is to use diffusion maps to identify components related to the development and

maturation of cells, specifically myeloid and erythroid progenitors from hematopoietic stem and

progenitor cells (HSPCs).

The Setty et al. (2016) data matrix for the (Paul et al., 2015) dataset is A is 4, 423 cells

× 14, 955 gene unique molecular identifier (UMI) counts. The Setty et al. (2016) workflow is

quite involved. In brief, the wishbone algorithm creates a nearest-neighbor Euclidean distance

graph. This graph is used to estimate all of the shortest path distances between a set of randomly

sampled cells and the rest of the cells, and the shortest path distances are used to make the

trajectory and branch assignments. The wishbone algorithm acts on a set of diffusion components

which are selected for immune cell differentiation through a gene-set enrichment analysis. The

diffusion components are calculated from the diffusion map of the similarity matrix derived from

the Gaussian kernel of the 10-nearest-neighbor Euclidean distance matrix from the 15-dimensional

PCA projection of the normalized UMI gene counts (Setty et al., 2016).

We choose k = 14 for the DCSS workflow by the elbow method (Fig. 3a). We choose k = 14

rather than an elbow at a smaller k because the diffusion component workflow is sensitive to more

components. We select an error tolerance of ε = 0.05. The rank-14 subspace leverage scores and

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/159079doi: bioRxiv preprint 

https://doi.org/10.1101/159079
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 S. R. McCurdy and others

the power-law fit for the top-scored 5, 000 genes are shown in Fig. 3b. The column submatrix C

has 4, 693 genes, or approximately 31.4% of the total genes. These genes contain 90.4% of the

UMI counts.

We compare DCSS thresholding with k = 14, ε = 0.05 to the three simple thresholding methods

with the same number of columns in Fig. 3c and Fig. 3d. The distribution of columns on the

count-variance plots are qualitatively different between the Paul et al. (2015) data (Fig. 3c) and

the (Zeisel et al., 2015) data (Fig. 1c). This difference is expected due to the differences between

ECs and gene UMI counts. Although the index of dispersion method is more differentiated from

the other methods on the Paul et al. (2015) dataset, the behavior of the DCSS method in relation

to the simple thresholding methods is similar between the datasets.

We calculate the average wishbone classification error between the two workflows, again

regarding the complete data workflow as the ground-truth. Since the wishbone algorithm utilizes

random sampling, the average is over T = 10 wishbone branch assignments. The original wishbone

analysis included only diffusion components 1 and 2. We additionally include diffusion component

4, since it is also enriched for immune cell differentiation according to the GSEA. For the Paul et

al. (2015) dataset, wishbone assigns cells to three branches. Setty et al. (2016) used the behavior

of four markers (CD34, Gata1, Gata2, and Mpo) to verify that the three branches correspond to

HSPCs, myeloid progenitors, and erythroid progenitors, and the behavior does not change with the

inclusion of component 4. Fig. 3 shows the average branch assignment classification error rate for

the workflow with the matrix A and the workflow with the column submatrix C for various k, ε,

and also the three simple thresholding methods with the same number of columns as the DCSS

method for each k, ε point. Not all the thresholding methods successfully complete the wishbone

workflow at large ε, due to the sensitivity of the diffusion component GSEA enrichment analysis,

which we perform with keyword string matching. We find that for the k = 14, ε = 0.05 DCSS,

31.4% of the total genes give an error rate of 3.3% for three branch assignments compared to the
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complete data; this supports our conclusion that only a small fraction of the gene expression profile

from scRNA-Seq experiments may be necessary to obtain meaningful cell-type classifications.

4. Discussion

scRNA-Seq experiments allow researchers to probe the cell-specific heterogeniety in gene expression.

Quality control and technical variability are significant challenges for scRNA-Seq experiments,

and additionally the whole-genome expression profile is high-dimensional. In this note, we explore

three existing simple thresholding schemes– count, variance, and index of dispersion– and propose

a novel application of a thresholding scheme – DCSS– to select informative features and control

quality and technical variability. We prove a bound on the “closeness" of the DCSS data submatrix

to the complete data matrix (Eqn. 2.9), enlarging upon the existing set of error guarantees for

DCSS (Papailiopoulos, Kyrillidis and Boutsidis, 2014), and illustrating the advantage of DCSS

over the three simple thresholding schemes. Other advantages of DCSS include sensitivity to

collinearity of features and covariance of cells. Since scRNA-Seq experiments are frequently used

to cluster and classify cells, we choose the error rate for clustering and classification compared to

the complete data as the evaluation metric for these thresholding schemes.

We present two case studies, the first on mouse cortex and hippocampus scRNA-Seq (Zeisel

et al., 2015; Ntranos et al., 2016), and the second on mouse bone marrow scRNA-Seq (Paul et

al., 2015; Setty et al., 2016). For the mouse cortex, the data matrix is cells × ECs, and only an

incredibly small fraction of the ECs are necessary to obtain neuron and non-neuron cell clusters.

For the mouse bone marrow, the data matrix is cells × genes, and only a small fraction of the genes

are necessary to obtain HSPC, myeloid progenitor, and erythroid progenitor branch assignments.

For both case studies, DCSS performs similarly to the simple thresholding schemes, in that it

reduces the low abundance genes, maintains the most variable and over-dispersed genes. This

supports our recommendation to use DCSS to control quality and technical variability. In both
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case studies, the error rate between the clustering computed with the complete expression profile

and the reduced expression profile is small, suggesting that the clustering algorithms rely on a

small subset of informative features.

5. Software

The Python-package containing code to perform the methods described in the article can be

found at https://github.com/srmcc/dcss_single_cell.git. The package also contains code

to download the datasets used as examples in the article.
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6. Appendix

6.1 Brief linear algebra review (Horn and Johnson, 2013)

The singular value decomposition (SVD) of any complex matrix A is A = UΣV†, where U and

V are square unitary matrices (U†U = UU† = I,V†V = VV† = I), Σ is a rectangular diagonal

matrix with real non-negative non-increasingly ordered entries. U† is the complex conjugate and

transpose of U, and I is the identity matrix. The diagonal elements of Σ are called the singular

values, and they are the positive square roots of the eigenvalues of both AA† and A†A, which

have eigenvectors U and V, respectively. U and V are the left and right singular vectors of A.

Defining Uk as the first k columns of U and analogously for V, and Σk the square diagonal

matrix with the first k entries of Σ, then Ak = UkΣkV
†
k is the rank-k SVD approximation to A,

and T = AVk = UkΣk is a rank-k SVD truncation of A. Furthermore, we refer to matrix with

only the last n− k columns of U,V and last n− k entries in Σ as U\k,V\k, and Σ\k.

The Moore-Penrose pseudo inverse of a rank r matrix A is given by A+ = UrΣ
−1
r V†r.

The Frobenius norm ||A||F of a matrix A is given by ||A||F =
√

tr (AA†). The spectral norm

||A||2 of a matrix A is given by the largest singular value of A.

The Eckart-Young-Mirsky theorem (Eckart and Young, 1936) states that, for A = UΣV† the

SVD of A, and B any complex matrix with compatible dimension to A and rank 6 k,

Ak = argminrank(B)6k||A−B||F

min
rank(B)6k

||A−B||F =
√

tr (Σ\kΣ
T
\k). (6.13)

The minimizer Ak is unique if and only if σk+1 6= σk, where σi are the respective non-increasingly

ordered singular values in Σ.

A square complex matrix F is Hermitian if F = F†. Symmetric positive semi-definite (S.P.S.D)

matrices are Hermitian matrices. The set of n× n Hermitian matrices is a real linear space. As

such, it is possible to define a partial ordering (also called a Loewner partial ordering, denoted
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by �) on the real linear space. One matrix is “greater" than another if their difference lies in

the closed convex cone of S.P.S.D. matrices. Let F,G be Hermitian and the same size, and x a

complex vector of compatible dimension. Then,

F � G ⇐⇒ x†Fx 6 x†Gx ∀x 6= 0. (6.14)

A few simple consequences of the Loewner partial ordering are as follows. If F is Hermitian

and S.P.S.D., then 0 � F, where 0 is the zero matrix.

If F is Hermitian with smallest and largest eigenvalues λmin(F), λmax(F), respectively, then,

λmin(F)I � F � λmax(F)I. (6.15)

Let F,G be Hermitian and the same size, and let H be any complex rectangular matrix of

compatible dimension. The conjugation rule is,

If F � G, then HFH† � HGH†. (6.16)

In addition, let λi(F) and λi(G) be the non-decreasingly ordered eigenvalues of F,G. Then,

If F � G, then ∀i, λi(F) 6 λi(F). (6.17)

Since the trace of a matrix F is the sum of its eigenvalues, trF =
∑
i λi(F), and the Loewner

ordering implies the ordering of eigenvalues (Eqn. 6.17), the Loewner ordering also implies the

ordering of their sum,

If F � G, then trF 6 trG. (6.18)

Let F1,G1,F2,G2 be Hermitian and the same size. Then if F1 � G1 and F2 � G2, then

F1 + F2 � G1 + G2. (6.19)

As a simple consequence of Eqn. 6.14, consider the real matrices FFT and GGT , and the

vector x which has a one in row i and a minus one in row j, and zeros elsewhere. The Euclidean
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distance between rows i, j with respect to G is di,j(G):

di,j(G) = xTGGTx. (6.20)

Thus, if FFT � GGT , by Eqn. 6.14 with appropriate vectors, di,j(F) 6 di,j(G)∀i, j.

Furthermore, let F be Hermitian and dimension n, Uk be a semi-orthogonal rectangular matrix

(U†kUk = I) of compatible dimension n× k, 1 6 k 6 n, and λi(M) refer to the non-decreasingly

ordered eigenvalues of a matrix M. Then the upper bound of the Poincaré separation theorem

states,

λi(U
†
kFUk) � λn−k+i(F) i = 1, . . . , k. (6.21)

We will also use the von Neumann trace inequality. Let F,G be complex matrices of compatible

dimension and minimum dimension n. Let σi(F), σi(G) be the respective non-increasingly ordered

singular values. Then

Re(trFG†) 6
n∑
i=1

σi(F)σi(G). (6.22)

6.2 Proof of Bound 2.9

The upper bound (Bound 2.9) in Theorem 2.1 follows from the fact that 0 � I− SST and the

conjugation rule (Eqn. 6.16),

0 �A(I− SST )AT = AAT −CCT . (6.23)

This upper bound is true for any column selection of A. A second application of the conjugation

rule gives the upper bound in Bound 2.9.

For the lower bound (Bound 2.9), consider the quantity Y = Σ−1
k UT

kA(I−SST )ATUkΣ
−1
k =

Vk
T (I− SST )Vk. By the conjugation rule (Eqn. 6.16) on Eqn. 6.23, 0 � Y, so Y is S.P.S.D. By

the construction of DCSS (Eqn. 2.3) trY =
∑
i/∈Θ

∑k
l=1 V

2
il = ε̃ < ε, and because Y is S.P.S.D.,
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λmax(Y) 6 trY. By Eqn. 6.15 and the previous facts, Y � λmax(Y)I � εI. As a result of the

conjugation rule applied to this upper bound,

UkΣkYΣkU
T
k = AkA

T
k −UkU

T
kCCTUkU

T
k � εAkA

T
k

(1− ε)AkA
T
k �UkU

T
kCCTUkU

T
k , (6.24)

providing the lower bound of Bound 2.9.

For Bound 2.10, the lower bound of Bound 2.9 implies,

(1− ε)trAkA
T
k 6 trUT

kCCTUk, (6.25)

by Eqn. 6.18 and the cyclic property of the trace. Similarly, Eqn. 6.23 implies trCCT 6 trAAT .

Since Uk is semi-orthogonal (UT
kUk = I), by Eqn. 6.21, every ordered eigenvalue of UT

kCCTUk is

smaller than its counterpart ordered eigenvalue of CCT . Since the trace is the sum of eigenvalues,

this implies Bound 2.10,

(1− ε)trAkA
T
k 6 trUT

kCCTUk 6 trCCT 6 trAAT . (6.26)

Note that if A is full rank and k = rank(A) = n, then Bound 2.9 becomes,

(1− ε)AAT � CCT � AAT . (6.27)

6.3 Proof of Bound 2.11 for random sampling.

The following theorem pertains to a new spectral bound for the square C selected by rank-

k subspace leverage scores and the random sampling procedure from Drineas, Mahoney and

Muthukrishnan (2006).

Theorem 6.1 Let A ∈ Rn×d be a matrix of at least rank k and τi(Ak) be defined as in Eqn.

1.1. Construct C by sampling t columns of A, reweighted to 1√
tpi

ai, with probability pi =

(τi(Ak)+γ1(τi(Ak) = 0))/(
∑d
i=1 pi), where 1() is the indicator function and γ is a small, positive,
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non-zero number γ = minτi(Ak)>0(τi(Ak)). Let m =
∑d
i=1 1(τi(Ak) = 0),

∑d
i=1 pi = k +mγ. If

the number of selected columns t > 2
ε2 (k +mγ)

(
1 + 1

3ε
)

ln
(

16k
δ

)
, then with probability 1− δ, the

matrix C satisfies:

(1− ε)AkA
T
k � UkU

T
kCCTUkU

T
k � (1 + ε)AkA

T
k . (6.28)

If A is full rank and k = rank(A) = n, then Bound 6.28 becomes,

(1− ε)AAT � CCT � (1 + ε)AAT . (6.29)

The proof of Theorem 6.1 is similar in structure to Theorem 3 in Cohen, Musco and Musco

(2017). Theorem 3 in Cohen, Musco and Musco (2017) pertains to a different type of leverage

score.

Consider the quantity Y = Σ−1
k UT

k (CCT −AAT )UkΣ
−1
k . Note the sign change from Sec.

6.2. This can be rewritten as,

Y =

t∑
j=1

Σ−1
k UT

k (cjc
T
j − 1

tAAT )UkΣ
−1
k

Y =

t∑
j=1

Xj ,

∀j, (Xj)i = 1
tΣ
−1
k UT

k ( 1
pi

aia
T
i −AAT )UkΣ

−1
k with categorical probability pi. (6.30)

If ||Y||2 6 ε, then −εI � Y � εI, and Bound 6.28 follows from this and the definition of Y.

Thus, the proof of Bound 6.28 relies on showing that ||Y||2 6 ε. We use an intrinsic dimension

matrix Bernstein inequality ((Tropp, 2015) , Theorem 7.3.1), specialized to Hermitian matrices,

to show that ||Y||2 is small with high probability. The Bernstein inequality requires that, for a

finite sequence Y =
∑t
j=1 Xj of random Hermitian matrices Xj of the same size,

1. ∀j,E(Xj) = 0,

2. ∀j, ||Xj ||2 6 L,

3. and that
∑
j E(XjX

T
j ) � V.
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Then, for ε >
√
||V||2 + L/3,

P(||Y||2 > ε) 6 8 trV
||V||2 exp

(
− ε2/2
εL/3+||V||2

)
. (6.31)

Requirement 1 is satisfied because,

E(Xj) =
d∑
i=1

pi(Xj)i = 1
tΣ
−1
k UT

k (
d∑
j=1

aia
T
i −AAT )UkΣ

−1
k = 0. (6.32)

To show that requirement 2 is satisfied, we need the following fact:

Σ−1
k UT

k aia
T
i UkΣ

−1
k � τi(Ak)I. (6.33)

Eqn. 6.33 follows from the fact that for all y ∈ Rk,

yTUkΣ
−1
k UT

k aia
T
i UkΣ

−1
k UT

k y = tr
((

yyT
) (

UkΣ
−1
k UT

k aia
T
i UkΣ

−1
k UT

k

))
6 τi(Ak)yTy.

where the inequality comes from the Von Neumann trace inequality (Eqn. 6.22) applied to the

product of two rank 1 matrices. Using eqn. 6.33 in the definition of Xi gives,

Xj = 1
tpi

Σ−1
k UT

k aia
T
i UkΣ

−1
k −

1
t I �

1
tpi
τi(Ak)I− 1

t I

= (k+mγ)τi(Ak)
t(τi(Ak)+γ1(τi(Ak)=0))I−

1
t I

� k+mγ
t I, (6.34)

and ||Xj ||2 6 L = k+mγ
t follows immediately.

To show that requirement 3 is satisfied, we compute directly,

E(Y2) = tE(XjX
T
j )

= t
d∑
i=1

pi

((
1
tΣ
−1
k UT

k ( 1
pi

aia
T
i −AAT )UkΣ

−1
k

)(
1
tΣ
−1
k UT

k ( 1
pi

aia
T
i −AAT )UkΣ

−1
k

))
= t

d∑
i=1

pi

((
1
tΣ
−1
k UT

k ( 1
pi

aia
T
i −AAT )UkΣ

−1
k

)(
1
tpi

Σ−1
k UT

k aia
T
i UkΣ

−1
k

))
= t

d∑
i=1

pi

(
1

t2p2i
Σ−1
k UT

k aia
T
i UkΣ

−2
k UT

k aia
T
i UkΣ

−1
k

)
− 1

t I

�
d∑
i=1

(
1
tpi

Σ−1
k UT

k aia
T
i UkΣ

−1
k τi(Ak)I

)
− 1

t I
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� k+mγ
t

d∑
i=1

(
Σ−1
k UT

k aia
T
i UkΣ

−1
k

)
= k+mγ

t I = V. (6.35)

It follows immediately that ||V||2 = k+mγ
t and trV = k(k+mγ)

t .

Then, for ε >
√

k+mγ
t + k+mγ

3t ,

P(||Y||2 > ε) 6 8k exp
(
− tε2/2

(k+mγ)(ε/3+1)

)
6 1

2δ. (6.36)

Solving for t as a function of ε, δ, and γ gives,

t > 2
ε2 (k +mγ)

(
1 + 1

3ε
)

ln
(

16k
δ

)
. (6.37)

Bound 6.28 also holds for C selected by the DCSS algorithm, as a consequence of Bound 2.9.

Thus DCSS selects fewer columns with the same accuracy for power-law decay for Bound 6.28

when |Θ| < t.
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7. Figures and Tables
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(a) Eigenvalues for AAT . The first “elbow" occurs
at the fifth largest eigenvalue.
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(b) Power-law decay of k = 5 subspace leverage scores
with index. The fit is to Score = b × (Index) a.

(c) Count-Variance plot for each column of A. The
color for each column represents whether the column is
selected or not by k = 5, ε = 0.1 DCSS. The plot also
shows the thresholds for count, variance, and index of
dispersion with same number of selected columns as
DCSS.

(d) Venn diagram comparing the overlap between se-
lected columns between k = 5, ε = 0.1 DCSS, count,
variance, and index of dispersion thresholding. Figure
tool credit: VIB / UGent Bioinformatics and Evolu-
tionary Genomics.

Fig. 1: Figures for the Zeisel et al. (2015) and Ntranos et al. (2016) dataset.
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(a) Clustering error rate for two clusters, varying ε
with k = 5 for DCSS.
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(b) Clustering error rate for two clusters, varying k
with ε = 0.1 for DCSS.
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(c) Clustering error rate for nine clusters, varying ε
with k = 5 for DCSS.
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(d) Clustering error rate for nine clusters, varying k
with ε = 0.1 for DCSS.

Fig. 2: Average spectral clustering error for two and nine clusters for DCSS, count, variance, and
index of dispersion threshoding for the Zeisel et al. (2015) and Ntranos et al. (2016) dataset.
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(a) Eigenvalues for AAT . “Elbows" are not as ap-
parent as in Fig. 1a. We choose the elbow at the
fourteenth eigenvalue due to the sensitivity of the
diffusion component GSEA enrichment analysis.
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(b) Power-law decay of k = 14 subspace
leverage scores with index. The fit is to
Score = b × (Index) a.
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(c) Count-Variance plot for each column of A. The
color for each column represents whether the column
is selected or not by k = 14, ε = 0.05 DCSS. The
plot also shows the thresholds for count, variance,
and index of dispersion with same number of selected
columns as DCSS.

(d) Venn diagram comparing the overlap between se-
lected columns between k = 14, ε = 0.05 DCSS, count,
variance, and index of dispersion thresholding. Figure
tool credit: VIB / UGent Bioinformatics and Evolu-
tionary Genomics.
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(e) Branch assignment error rate, varying ε with k = 14
for DCSS.
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(f) Branch assignment error rate, varying k with ε =
0.05 for DCSS

Fig. 3: Figures for the Paul et al. (2015) and Setty et al. (2016) dataset.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/159079doi: bioRxiv preprint 

https://doi.org/10.1101/159079
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 31

Table 1: PANTHER overrepresentation test (release 20160715) with the GO Ontology database
(release 2016-08-22) for the k = 5, ε = 0.1 DCSS 862 ECs mapped to 1, 642 genes.

Type Gene ontology (GO) term Bonferroni
p-value

Biological process cellular component organization (GO:0016043) 1.12E-02
Biological process cellular component organization or biogenesis 8.01E-03

(GO:0071840)
Biological process localization (GO:0051179) 4.37E-02

Cellular component neuron projection (GO:0043005) 4.52E-04
Cellular component neuron part (GO:0097458) 8.24E-05
Cellular component cell projection (GO:0042995) 8.36E-03
Cellular component cytoplasm (GO:0005737) 1.59E-02
Cellular component intracellular part (GO:0044424) 4.89E-02

Molecular function enzyme binding (GO:0019899) 3.35E-02
Molecular function olfactory receptor activity (GO:0004984) 1.30E-02
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